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We construct strongly anisotropic quantum droplets with embedded vorticity in the 3D space, with
mutually perpendicular vortex axis and polarization of atomic magnetic moments. Stability of these
anisotropic vortex quantum droplets (AVQDs) is verified by means of systematic simulations. Their
stability area is identified in the parametric plane of the total atom number and scattering length of the
contact interactions. We also construct vortex–antivortex–vortex bound states and find their stability region
in the parameter space. The application of a torque perpendicular to the vorticity axis gives rise to robust
intrinsic oscillations or rotation of the AVQDs. The effect of three-body losses on the AVQD stability is
considered too. The results show that the AVQDs can retain the topological structure (vorticity) for a
sufficiently long time if the scattering length exceeds a critical value.
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Quantum droplets (QDs), representing a novel form of
quantum matter, have drawn much interest in recent years
[1–17]. These are droplets of an ultradilute superfluid
maintained by the balance between the mean-field (MF)
and beyond-MF effects [18,19], the latter one being the
Lee-Huang-Yang (LHY) correction [20,21] to the MF
nonlinearity induced by quantum fluctuations. QDs have
been experimentally observed in dipolar Bose-Einstein
condensates (BECs) [22,23], as well as in binary
BECs of nonmagnetic atoms, with quasi-2D [24,25] and
3D [26–28] systems. Contrary to that, experimental reali-
zation of self-trapped BECs in free space solely through the
MF effect is impossible due to the critical or supercritical
collapse instability in the 2D and 3D settings, respectively
[29–32] (nevertheless, weakly unstable quasi-2D Townes
solitons were experimentally created in a binary BEC
[33,34]). 3D QDs in nonmagnetic condensates appear in
the isotropic form, whereas their shapes are anisotropic in
dipolar BECs [35,36] (a possibility to create stable iso-
tropic QDs in a 2D dipolar BEC was considered too [37]).
Note that stable anisotropic quasi-2D fundamental (zero-
vorticity) MF solitons (in the absence of the LHY correc-
tion) can be created in the magnetic BEC with the in-plane
dipole polarization [38], but they do not exist in the 3D
form [39].

QDs are the subject of a vast research area, including
Monte Carlo simulations [40–42], collective excitations
[43–45], supersolids [46–51], Borromean droplets [52],
etc. A particularly interesting direction of the studies is
embedding vorticity into the self-bound QDs. It is well
known that the creation of self-trapped vortices in the
multidimensional space is a challenging issue. The azimu-
thal instability, which is induced by the underlying self-
attraction, tends to split the 2D vortex ring or 3D torus
(“donut”) into fragments [53–57]. This instability develops
faster than the collapse driven by the self-attraction. In
QDs, the splitting instability may be arrested by the
competition between the MF attraction and LHY self-
repulsion, similar to the stabilizing effect of the cubic-
quintic nonlinearity in optics [55–58]. Stable vortex QDs
with the winding numbers (topological charge) up to 5
and 2 (at least) were predicted in 2D [59] and 3D
geometries [60], respectively. Stable semidiscrete vortex
QDs were predicted in arrays of one-dimensional traps
[61]. These results indicate that the equilibrium state of the
LHY-stabilized superfluid provides a versatile platform for
the creation of the stable self-bound vortices [62].
The above-mentioned findings were produced for

binary BECs of nonmagnetic atoms. For the dipolar
QDs, isotropic vortex modes have been reported, with
the vortex axis parallel to the polarization of atomic
magnetic moments, represented by “type 1” in Fig. 1.
This configuration is rotationally symmetric with respect to
the vorticity axis, but it is known to be unstable [63]. The
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creation of anisotropic vortex QDs in dipolar BECs and
their stability is a challenging problem. This problem is also
relevant in studies of other nonlinear systems, as no
example of anisotropic vortex solitons in free space was
reported in any context. Very recently, stable vortex QDs
were predicted in a 2D dipolar setup [64]. However, this
problem was not previously addressed in the full 3D
geometry.
In this Letter, we predict the existence of stable 3D

strongly anisotropic vortex quantum droplets (3D-AVQDs)
in the dipolar BEC with the magnetic dipoles polarized
perpendicular to the vortex axis, corresponding to the “type
2” configuration in Fig. 1. Note that this configuration is
not a straightforward extension of its 2D counterpart. In
particular, the introduction of the third direction may
readily give rise to flexural instability along the axis
perpendicular to the plane of the original 2D mode, thus
destroying the stability of the original 2D vortices.
Moreover, the instability can also induce abundant new
dynamics, such as the self-rotation along the dipole
orientation, which does not exist in their 2D counterparts.
Therefore, the stability of the 3D AVQDs is a challeng-
ing issue.
The respective 3D LHY-amended Gross-Pitaevskii equa-

tion (GPE) is written as

iℏ
∂

∂t
ψ ¼ −

ℏ2

2m
∇2ψ þ gjψ j2ψ

þ κψ

Z
Uddðr − r0Þjψðr0Þj2dr0 þ γjψ j3ψ

þ i
ℏ
2
Λ3jψ j4ψ ; ð1Þ

where ℏ and m are the reduced Plank constant and atomic
mass, g ¼ 4πℏ2as=m with as being the s-wave scattering
length of interatomic collisions, is the strength of the
contact nonlinearity, which may be tuned by the
Feshbach resonance [65,66]. The coupling coefficient of
the dipole-dipole interaction (DDI) is κ ¼ μ0μ

2=4π, where
μ0 and μ are the vacuum permeability and atomic magnetic

moment of the atom. The coefficient in front of the LHY
term is γ ¼ ð32ga3=2s =3

ffiffiffi
π

p Þð1þ 3ϵ2dd=2Þ [67–69], where
the relative DDI strength ϵdd ≡ add=as is determined by the
dipole scattering length, add ¼ μ0μ

2m=12πℏ [22]. The DDI
potential is Uddðr − r0Þ ¼ ð1 − 3cos2ΘÞ=jr − r0j3 [70,71],
where cos2Θ ¼ ðx − x0Þ2=jr − r0j2, and coefficient Λ3 rep-
resents the three-body losses.
Disregarding the losses, the stationary solutions with

chemical potential Ω are looked for in the usual form,
ψðr; tÞ ¼ ϕðrÞe−iΩt=ℏ, with a stationary wave function
ϕðrÞ. Equation (1) with Λ3 ¼ 0 conserves the total atom
number, N ¼ R jψðrÞj2dr, energy, E¼ R

dr½ðℏ2=2mÞ
j∇ψ j2 þ 1

2
gjψ j4 þ 1

2
κjψ j2 R Uddðr− r0Þjψðr0Þj2dr0þ 2

5
γjψ j5�,

and momentum (here we consider quiescent modes, with
zero momentum).
3D-AVQD solutions with integer vorticity S can be

produced in the numerical form by means of the imaginary-
time-integration method [72–74], initiated with an aniso-
tropic input,

ϕð0Þðx; y; zÞ ¼ Ar̃S exp
�
−α1r̃2 − α2z2 þ iSθ̃

�
; ð2Þ

where A and α1;2 are positive real constants that determine
widths of the input, and the deformed polar coordinates in
the ðx; yÞ plane are fr̃; θ̃g≡ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ β2y2

p
; arctanðβy=xÞg

with an anisotropy factor β > 1. In this work, we select
parameters of the BEC of dysprosium, 164Dy, which has a
significant dipole scattering length, add ¼ 131a0 (a0 is the
Bohr radius) [22]. The control parameters of the system are
N and as.
The stability of the numerically obtained 3D-AVQDs

solutions of Eq. (1) with S ¼ 1 was tested by real-time
simulations of the perturbed evolution. The numerically
found stability area for them in the ðN; asÞ plane is plotted
in Fig. 2(a), with a typical example of a stable 3D-AVQD
shown in Fig. 2(b). The average atomic density of this state
is 140 × 1020 atoms=m3, in agreement with the estimate in
Ref. [75]. In the simulations, stable 3D-AVQDs, which
populate the blue areas in Fig. 2(a), maintain their integrity
during a sufficient long time (at least, ∼100 ms), which is
longer than the levitation time (∼90 ms) in the experiment
[22]. On the other hand, the unstable 3D-AVQDs [in the
gray area in Fig. 2(a)] spontaneously transform into
ground-state QDs after a few milliseconds. It is thus
observed that 3D-AVQDs exist at as > 12a0, and they
are stable at as > 27a0.
In the 2D geometry, particular stable bound states with a

vortex–antivortex–vortex structure were revealed [64].
Remarkably, similar bound states can be created in the
current 3D setting too, by means of input

ϕð0Þ ¼
X
þ;−

A�r̃� exp
�
−α1r̃2� − α2z2 þ iθ̃�

�

þ Ar̃ exp
�
−α1r̃2 − α2z2 − iθ̃

�
: ð3Þ

FIG. 1. Possible relations between the vorticity axis and polari-
zation of atomicmagnetic dipoles, which is fixed bymagnetic field
B along the x axis. Type 1: the vorticity parallel to the polarization
(the same as in Ref. [63]). This configuration is always unstable.
Type 2: the new configuration, which may be stable, with the
vorticity oriented perpendicular to the polarization.
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Here, A� > 0 and α1;2 > 0 are real constants,

r̃� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ β2y2

p
, θ̃� ≡ arctan ½βy=ðx� x0Þ�, and

x0 is an appropriately chosen separation. A typical example
of such a stable composite QD with average density 200 ×
1020 atoms=m3 is displayed in Fig. 2(c). They are stable in
the orange area in the plane of ðN; asÞ, which is embedded
in the broader stability region of the regular 3D-AVQDs,
see Fig. 2(a). It is seen that the stable three-pivot vortex
bound states exist in the region of 30 < as=a0 < 45
and 1800 < N < 6400.
As mentioned above, the vortex states with the vorticity

axis parallel to the polarization of the dipoles (see type 1 in
Fig. 1) are completely unstable. Because these solutions are
axially symmetric, they are marked SYM in Fig. 3. The 3D-
AVQD solutions obtained here are anisotropic, therefore
they are marked by the ASY label. Figure 3 displays the
comparison of the total energy between the isotropic and
anisotropic species of the vortex solutions. The energy of
the fundamental (zero-vorticity) QDs, marked by FUND, is
also included, as a reference. Figures 3(a) and 3(b) show
that the unstable SYM vortex QDs have the highest energy
(which is a natural explanation for their instability), while
stable ASY vortex states have a lower energy, which is
almost identical to that of the fundamental QDs.
For the SYM type of the vortex QDs, the void around the

long axis implies the removal of a long tube filled by
dipoles chiefly featuring attractive DDIs, i.e., the removal
of the negative interaction energy, which causes them to
have higher actual energy values, in accordance with
Figs. 3(a) and 3(b). A typical example of the evolution
of the SYM vortex-QD is displayed in Figs. 3(c1)–3(c3),

which demonstrates the instability-induced splitting. These
results agree with the instability of the isotropic vortex
solitons that was reported in Ref. [63]. On the other hand,
the stability of the ASY type is feasible because the
corresponding axial void removes a tube filled by dipoles
chiefly featuring repulsive DDIs with the positive energy,
thus producing lower actual energy values, as corroborated
by Figs. 3(a) and 3(b). Additional analysis has demon-
strated that the application of the imaginary-time-integra-
tion method to Eq. (1) does not generate 3D-AVQD
solutions with multiple vorticity, S ≥ 2.
To present systematic results for the 3D-AVQDs,we define

their ellipticity A and normalized angular momentum L̄z:

A ¼ DS

DL
; L̄z ¼

Z
ϕ�L̂zϕ

N
dr; ð4Þ

whereDS andDL are, respectively, the short and long axes of
the QDs, and L̂z ¼ iℏðy∂x − x∂yÞ is the operator of the z
components of the angular momentum. Dependences of the
chemical potential, ellipticity, and angular momentum on the
number of atoms, for two different values of as, are produced
in Fig. 4.
In Fig. 4(a), the chemical potential Ω satisfies the

Vakhitov-Kolokolov criterion, dΩ=dN < 0, which is the
well-known necessary stability condition for self-trapped
modes [30,76]. A basic feature of QDs is their

FIG. 3. (a),(b) The total energy (E) of the fundamental QDs (the
gray curve labeled FUND), 3D-AVQDs (the blue curve labeled
ASY), and axially symmetric vortical QDs (the red curve labeled
SYM) versus N (a) and as (b). (c1)–(c3) The unstable evolution
of a SYM vortex QD with ðN; asÞ ¼ ð104; 50a0Þ illustrated by its
density profiles at t ¼ 0, 1, and 2 ms, respectively.

FIG. 2. (a) The areas of stable and unstable 3D-AVQDs, as well
as stable vortex–antivortex–vortex bound states in the plane of
ðN; asÞ, which populate the blue, gray, and orange areas,
respectively. The left dashed vertical line, at as ¼ 12a0, is the
existence boundary for the 3D-AVQDs, and the right vertical line,
at as ¼ 27a0, is their stability boundary. Red-font numbers,
attached to the upper axis, are values of ϵdd. (b),(c) Typical
examples of a stable 3D-AVQD and vortex–antivortex–vortex
bound state with ðN; asÞ ¼ ð104; 50a0Þ and ð4000; 40a0Þ, cor-
responding to the red star and blue triangle, respectively, in panel
(a). They survive the perturbed evolution in the course of 100 ms,
at least.

FIG. 4. (a) The chemical potential (Ω), (b) ellipticity (A),
and (c) angular momentum (L̄z) [see Eq. (4)] versus N, for
as ¼ 50a0 and 60a0 (the chains of blue stars and red rhombuses,
respectively).
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incompressibility. This implies that the average density of
the droplets cannot exceed a maximum value [18], which
leads to flat-top QDs’ shape. Thus, the volume of the QDs
increases linearly with the growth of the number of atoms.
Further, due to the strong DDI anisotropy, the increase of
the volume is mostly represented by the extension along the
x axis, leading to the decrease of the ellipticity [see Eq. (4)]
in Fig. 4(b). As the internal vorticity is mainly concentrated
at the center of the droplet, Fig. 4(c) shows that larger
values of norm correspond to longer droplets and lower
values of the angular momentum. Moreover, Figs. 4(b) and
4(c) reveal that L̄z=ℏ ¼ 2A, which coincides with the
relation found for strongly anisotropic 2D-AVQDs [64].
The shape of the 3D-AVQDs suggests a possibility to set

it in rotation around an axis perpendicular to the vorticity
vector. To this end, a torque was applied around the x axis,
multiplying the established 3D-AVQD by the phase factor
exp½iðz=z0Þ tanhðy=y0Þ�, i.e., adding an x component of the
angular momentum to the original z component,
cf. Ref. [77]. Here, z0 and y0 are length scales, which
define the strength of the torque. Simulations reveal
oscillations or rotation of the 3D-AVQDs around the x
axis, depending on values of z0 and y0. The weak torque,
corresponding to large (z0 and y0), induces oscillations,
whose period increases with the decrease of z0 and y0.
Divergence of the oscillation period implies a transition to
the rotation, caused by a sufficiently strong torque (see
movies I and II in Supplemental Material [78]). The
rotation speed increases with the further decrease of y0
and z0, as the torque is made still stronger. Figure 5(a)
displays the oscillation and rotation regions in the plane of
ðz−10 ; y0Þ for ðN; asÞ ¼ ð104; 50a0Þ. The border between
these dynamical regimes is fitted by y0 ¼ Z2

0=z0 þ Y0, with
Z0 ≈ 0.88 μm and Y0 ≈ 0.06 μm. This relation is explained
by the fact that, for jyj≲ y0, the torque’s phase,
≈yz=ðy0z0Þ, is determined solely by product y0z0.
Periods of the oscillations and rotation are displayed, as
functions of z−10 , by insets in the respective regions.
A typical example of the stable rotation is presented in
Figs. 5(b1)–5(b3). The rotation picture is the same as
produced by the stationary solution of Eq. (1) in the rotating
reference frame, which includes the term ωL̂xψ , where
L̂x ¼ iℏðz∂y − y∂zÞ and ω is the rotation frequency.
We have also explored results of the application of the

torque around the y and z axes, in terms of Fig. 1. In the
former case, the torque drives a complex dynamical regime:
the prolate QD features oscillations in the ðz; xÞ plane,
simultaneously with irregular rotation around the x axis
(not around the y direction), as shown by movie III in
Supplemental Material [78]. Lastly, the application of a
weak torque along the z direction initiates oscillations of
the prolate vortex soliton in the ðx; yÞ plane (see
movie IV in Supplemental Material [78]), while a stronger
torque leads to its splitting, the boundary between the two

regimes being x0 ¼ Y2
0=y0 þ X0, where Y0 ≈ 0.67 and

X0 ≈ −0.5 μm, in terms of the torque’s spatial scales.
Finally, it is imperative to consider the effect of

three-body losses, characterized by coefficient Λ3 ¼
1.25 × 10−41 m6 s−1 in Eq. (1) [22]. In general, losses
may attenuate instabilities for fundamental (zero-vorticity)
states, but this is not applicable to vortex QDs, whose
stability is determined by the equilibrium value of the
density. We observe that the scattering length as signifi-
cantly affects the loss effect. Notably, for N ¼ 104, if as is
smaller than a critical value, 66a0, the losses drive rapid
degeneration of the initial vortex QD into a fundamental
(zero-vorticity) state in the course of < 100 ms (see movie
V in Supplemental Material [78]). The residual state
survives much longer, which implies that the QD’s topo-
logical structure is especially vulnerable to the loss effect.
However, at as > 66a0, the robustness is much improved.
For example, as shown in Figs. 6(a)–6(c), the vortex QD

FIG. 5. (a) The oscillation and rotation regions in the plane of
the torque’s parameters, for ðN; asÞ ¼ ð104; 50a0Þ. The insets
show the oscillation and rotation periods vs z−10 for fixed y0 ¼ 5

and 10 μm (the dashed and solid lines, respectively). (b1)–
(b3) Plots of the cross-section density in the ðy; zÞ plane
illustrating the robust rotation of the 3D-AVQD around the
x axis, with period 5.5 ms, initiated by the torque with
ðz0; y0Þ ¼ ð0.05; 5Þ μm.

FIG. 6. (a)–(c) The real-time evolution of the droplet with three-
body losses for N ¼ 104 and as ¼ 70a0. (d) The residual ratio of
N, V, and ρ vs time.
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with as ¼ 70a0 retains its topological charge for more
than 400 ms (see movie VI in Supplemental Material
[78]). As shown in Fig. 6(d), in the latter case the total atom
number N, effective volume V ¼ ðR jψ j2drÞ2= R jψ j4dr,
and density ρ ¼ N=V of the QD decrease slowly, demon-
strating that the losses are not a fatal factor.
Conclusion—We have predicted the existence of stable

AVQDs (anisotropic vortex quantum droplets) in 3D
dipolar BECs, with the strong anistropy imposed by the
orthogonality of the vorticity and polarization of atomic
magnetic moments. While isotropic vortex solitons in
dipolar BEC are completely unstable, we have identified
a vast stability region of 3D-AVQDs in the system’s
parameter space. The existence of stable composite states
with the vortex-antivortex–vortex structure is demonstrated
as well, and their stability area is identified. Essential
characteristics of the 3D AVQDs, including the chemical
potential, aspect ratio, and angular momentum, are pre-
sented as functions of control parameters. Furthermore, we
have demonstrated that the application of the torque
perpendicular to the vorticity axis initiates robust intrinsic
oscillations or rotation of the 3D-AVQDs. The dependence
of the oscillation and rotation periods on parameters of the
torque have been found. The persistence of the 3D-AVQDs
under the action of three-body losses was analyzed too,
demonstrating that the topological structure (vorticity) is
retained by the 3D AVQD for a sufficiently long time when
the scattering length exceeds a critical value.
As an extension of the present analysis, it may be

relevant to look for more complex bound states of
AVQDs, and to study a two-component version of the
model, cf. Refs. [79–81]. Another relevant problem is to
add an ingredient (probably, an external potential) that may
help to stabilize higher-order anisotropic vortex solitons,
with S ≥ 2.
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