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Non-Abelian holonomy, a noncommutative process that measures the parallel transport of non-Abelian
gauge fields, has so far been realized in degenerate Hermitian systems with degenerate eigenstates or
nondegenerate non-Hermitian systems with exceptional points. Here, we introduce non-Abelian holonomy
into degenerate non-Hermitian systems possessing degenerate exceptional points and degenerate energy
topologies. The interplay between energy degeneracy and energy topology around exceptional points leads
to a non-Abelian holonomy with multiple energy levels and multiple degenerate levels simultaneously,
going beyond that in degenerate Hermitian systems with a single energy level, or in nondegenerate
non-Hermitian systems with a single degenerate level. We exploit an on-chip photonic platform to
experimentally demonstrate the holonomy induced non-Abelian phenomenon, including the switching of
eigenstates associated with different degenerate exceptional points and sequence-dependent holonomic
outcomes. Our work shifts the paradigm of non-Abelian holonomy and adds new degrees of freedom for
non-Abelian applications.
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In physics, holonomy refers to a phenomenon that arises
when a state of a system is adiabatically transported around
a closed loop in Hilbert space but fails to preserve its initial
status due to the associated nontrivial gauge fields [1–4]. A
well-known example of holonomy is Berry phase [5],
which is a gauge invariant scalar quantity associated with
an Abelian gauge field. Gauge fields can also be non-
Abelian in nature, meaning that the induced consequences
are noncommutative. The resulted matrix-valued non-
Abelian holonomy has played a pivotal role in various
areas of physics [6–9], and has been realized in various
physical systems including neutral atoms [10,11], acoustic
systems [12,13], superconductors [14], and photonic sys-
tems [15–20]. These systems are Hermitian systems and the
holonomy is realized via the construction of a degenerate
eigenspace that supports multiple degenerate eigenstates
occupying the same energy level. Non-Abelian Berry-
Wilczek-Zee phase matrix [2] appears when these degen-
erate states are simultaneously evolving in Hilbert space.
Holonomy can also be realized in non-Hermitian systems
when there exist exceptional points (EPs) [21–23]. The
topology of the energy surface around EPs allows the
switching of eigenstates at different energy levels by
encircling the EPs. This process has been demonstrated
in various nondegenerate non-Hermitian systems based on
stroboscopic experiments [24–28] and dynamical experi-
ments [29–35]. The non-Hermitian holonomy can exhibit

non-Abelian features when the system possesses two or
more EPs [36].
These two non-Abelian schemes imply that the non-

Abelian holonomy is associated with multiple degenerate
levels but only one energy level in degenerate Hermitian
systems [see Fig. 1(a) for a schematic], while that in
nondegenerate non-Hermitian systems has multiple energy
levels but only one degenerate level [see Fig. 1(b)]. This
straightforwardly indicates that the paradigm and physical
consequence of non-Abelian holonomy can be greatly
enriched by realizing a holonomic process with multiple
energy levels and multiple degenerate levels simultane-
ously. Apparently, such process would require a degenerate
eigenspace with multiple degenerate EPs (DEPs) and
associated degenerate energy topologies, where the holo-
nomy induced eigenstate transformation can occur simul-
taneously between different energy levels and degenerate
levels [see Fig. 1(c)]. However, research in this direction
has been elusive, either in theory or experiment.
Here, we propose the design principle and experimental

realization of the non-Abelian holonomy in degenerate
non-Hermitian systems. We construct a six-state non-
Hermitian system consisting of degenerate three-state
subsystems, in which two DEPs are respectively supported.
By enforcing path-dependent hopping coefficients, on-site
energies and on-site non-Hermitian losses, two eigenstates
associated with one DEP can be adiabatically pumped to
those associated with the other DEP, leading to a non-
Abelian holonomy with two energy levels and two degen-
erate levels. All the available holonomic operations in
the proposed system are found to form a non-Abelian
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group D4, which is revealed to be constructed by the
interplay between two Abelian groups associated with the
energy level and degenerate level, respectively. We have
exploited femtosecond laser direct writing techniques to
fabricate non-Hermitian photonic waveguides to demon-
strate the features of the holonomy.
Building block of a non-Abelian holonomic system—We

start by studying a three-state non-Hermitian system with a
Hamiltonian

H0 ¼

2
64
β0 þ iγ κAB 0

κAB β0 þ δ κBC

0 κBC β0 þ iγ

3
75; ð1Þ

which can be realized using three single-mode paraxial pho-
tonic waveguides A, B, and C as illustrated in Fig. 2(a). Here,
thewaveguidesAandCare assignedwith position-dependent
losses weighed by γðzÞ, the waveguide B is introduced with a
position-dependent detuning δðzÞ, and the coupling strengths

between adjacent waveguides are denoted by κABðzÞ and
κBCðzÞ. These parameters along the wave propagating direc-
tion (i.e., þz axis) are presented in Fig. 2(b). The eigen-
values of the Hamiltonian, which are also the propa-
gation constants of the coupled waveguides, are β1;2¼β0þ
1
2
ðδþiγ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2ABþ4κ2BCþδ2−γ2−2iδγ

p
Þ and β3 ¼ β0 þ iγ,

where β0 is the eigenvalue of a nondetuned lossless wave-
guide (≈11.7 μm−1). The system supports anEPat δ ¼ 0 and
γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2AB þ 4κ2BC

p
, and the choice of the parameter combi-

nations in Fig. 2(b) is to encircle this EP in a δ − γ parameter
space for mode switching.
We assume the term κ2AB þ κ2BC to be a constant and plot

the calculated real part of the eigenvalues as a function of δ
and γ in Fig. 2(c). The blue and gray energy sheets
represent the eigenstate with lowest and highest losses,
respectively. When we set a symmetric mode located in the
waveguides A and B (namely sAB mode, which is an
eigenmode of the system) at the input port, its adiabatic
evolution in the system follows the yellow path in Fig. 2(c)
that encircles an EP in counterclockwise. The topology
around the EP adiabatically switches the injected sAB mode

FIG. 2. (a) Schematic diagram of a non-Hermitian system
consisting of three photonic waveguides. (b) The position-
dependent coupling coefficients κAB and κBC, detuning δ and
non-Hermitian loss γ in the Hamiltonian of Eq. (1). The symbol L
is the length of the system. (c) The calculated real part of the
eigenvalues as a function of δ and γ, with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2AB þ κ2BC

p
¼

0.78 mm−1. The eigenfield distributions indicate the mode
switching behavior in (a) where an EP is encircled following
the yellow path. (d) A local microscopic photograph of the
fabricated samples. (e),(f) The measured output light diffraction
patterns of the non-Hermitian system with L ¼ 25 mm when a
sAB mode (e) or an aAB mode (f) is injected.

FIG. 1. (a) Non-Abelian holonomy in a degenerate Hermitian
system that possesses triple-degenerate energy sheets with real
eigenvalues. The eigenfunctions at the starting and ending point
(circle) are defined as

��ψ i;1

�
,
��ψ i;2

�
, and

��ψ i;3

�
, where the

subscript “i” indicates that they all occupy the ith energy level,
while the number denotes the degenerate level. The lower panel
shows the non-Abelian holonomy induced switching of eigen-
states. (b) Non-Abelian holonomy in a nondegenerate non-
Hermitian system with three nondegenerate energy sheets and
two EPs. The holonomy induced switching of the three eigen-
states

��ψ i;1

�
,
��ψ j;1

�
, and

��ψk;1

�
is enabled by encircling the two

EPs. (c) Non-Abelian holonomy in a degenerate non-Hermitian
system having three triple-degenerate energy sheets that are
connected by two DEPs, each of which is also triple-degenerate.
By encircling the two DEPs, the holonomy results in the
switching of eigenstates simultaneously between different energy
levels and degenerate levels.
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to an output mode localized in the waveguides B and C with
an antisymmetric phase distribution, namely aBC mode. The
counterpart process, i.e., adiabatic transformation from an
aAB mode to a sBC mode, can be realized by reversing the
sign of δ, corresponding to the encirclement of the EP in
clockwise [see the inset of Fig. 2(c)]. The above conclusion
still holds when κ2AB þ κ2BC is not a constant (Supplemental
Material [37], Fig. S1). We emphasize that all the holo-
nomic processes in this Letter occur on the lowest-loss
energy sheet and the evolution loop is far away from the EP.
In this way, possible nonadiabatic transitions could be
avoided (see Supplemental Material [37], Sec. I for
discussions).
We fabricated the three photonic waveguides inside

boroaluminosilicate glass by employing the femtosecond
laser direct writing technique [18,19,38,39]. The coupling
strength and detuning are respectively controlled by the
gap distance and the moving speed of laser, while the
non-Hermitian losses are introduced by writing position-
dependent scatterers inside the waveguide [see Fig. 2(d),

also Supplemental Material [37], Sec. II, for experimental
details]. We fabricated two samples featuring the encircle-
ment of the EP in counterclockwise and clockwise, in
which the sAB mode and aAB mode are excited, respectively.
The measured light diffraction patterns at the output facet
with working wavelength of 808 nm are shown in Figs. 2(e)
and 2(f). Since these patterns do not contain the phase
information, the symmetry of the mode is identified by
examining the light intensity in the gap between two
waveguides, i.e., a symmetric mode exhibits a field
enhancement in the gap but the antisymmetric mode does
not because of destructive interference. Based on this
principle, the outputs in Figs. 2(e) and 2(f) are found to
be antisymmetric mode and symmetric mode, respectively,
in accordance with theoretical predictions.
Design and experimental realization of non-Abelian

holonomy in degenerate non-Hermitian systems—The
proposed three-state system can be used as a building
block to construct a six-state non-Hermitian system with a
Hamiltonian

H ¼

2
6666666664

β0 þ δA þ iγA
κAB

0

0

κAX

0

κAB

β0 þ δB þ iγB
0

0

0

κBY

0

0

β0 þ δC þ iγC
κCD

κCX

0

0

0

κCD

β0 þ δD þ iγD
0

κDY

κAX

0

κCX

0

β0 þ δX þ iγX
0

0

κBY

0

κDY

0

β0 þ δY þ iγY

3
7777777775
: ð2Þ

The cross section and Hamiltonian parameters are shown in
Figs. 3(a) and 3(b), respectively. At the starting and ending
point of the holonomy, the system supports degenerate
symmetric modes sAB and sCD, and degenerate antisym-
metric modes aAB and aCD. The consequence of non-
Abelian holonomy in degenerate non-Hermitian systems
is the switching of eigenstates simultaneously between
different energy levels (e.g., “s” or “a” here) and degenerate
levels (e.g., mode location in “AB” or “CD” here), therefore
the outcome is a mode transformation between sAB and
aCD, and that between sCD and aAB. The whole holonomic
process can be divided into three steps. In each step, there
are two uncoupled three-state building blocks that imple-
ment the pumping of eigenmodes while guaranteeing
double-degenerate energy levels. At step I, the waveguides
A, B, and X form a building block in which an injected sAB
(or aAB) mode is transformed to an aAX (or sAX) mode,
while the left three waveguides form another building
block, leading to a conversion from the sCD (or aCD) mode
to the aDY (or sDY) mode. Step II enables a transformation
of the eigenmodes from waveguides “AX” (or “DY”) to
“CX” (or “BY”), while in step III the eigenmodes located in
waveguides “CX” (or “BY”) are pumped to “CD” (or

“AB”). After the three steps, the location of the eigenmode
is exchanged between that in waveguides “AB” and “CD,”
together with a change in the mode symmetry. In this way, a
non-Abelian holonomic process with two energy levels and
two degenerate levels is accomplished.
Figure 3(c) shows the calculated eigenvalues of the

Hamiltonian in the holonomic process, where each energy
band is double-degenerate. Following the blue band, the
sAB (or sCD) mode is adiabatically transformed to the aCD
(or aAB) mode (see Fig. S11 in Supplemental Material [37]
for more details), while the opposite process, from the aAB
(or aCD) mode to the sCD (or sAB) mode, occurs along the
red band. This holonomy with two energy levels and two
degenerate levels is illustrated in Fig. 3(d), and is also
numerically simulated in Fig. 3(e) (see Supplemental
Material [37], Sec. II, for simulation details). The attenu-
ation in the light intensity induced by the non-Hermitian
losses could be alleviated by using a Hamiltonian hopping
method [34].
We fabricated the above system with its schematic and

microscope photographs presented in Fig. 4(a). To demon-
strate details of the holonomy, three samples are fabricated
with lengths of 25mm, 50mm, and 75mm, respectively: the
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first sample contains step I only, the second one contains
steps I and II, and the third sample contains all three steps. In
this way, measuring the light diffraction patterns at the
output facet of each step is available. The measured results
with injected sAB and sCD modes are shown in Figs. 4(b) and
4(c), respectively, which clearly demonstrate their evolu-
tions to the final aCD and aAB modes. We also fabricated
another system with reversed detuning while other
Hamiltonian parameters are kept the same, to demonstrate
the process from an input aABðaCDÞ mode to an output
sCDðsABÞ mode [Figs. 4(d) and 4(e)]. These two systems
with opposite detuning parameters share the sameholonomy
induced mode switching behavior (Supplemental Material
[37], Sec. I). Therefore, we have combined them to
demonstrate the full holonomy in experiments.
Non-Abelian group and its non-Abelian features—By

choosing different Hamiltonian parameters, the pro-
posed six-state non-Hermitian system can realize eight
holonomic processes that form a non-Abelian group
D4¼fE;R1;R2;R3;H;V;D;D0g, as depicted in Fig. 5(a).

FIG. 3. (a) Cross section of the designed non-Abelian holo-
nomic system. (b) The Hamiltonian parameters along the wave-
guiding direction. (c) Calculated eigenvalues of the non-
Hermitian Hamiltonian in Eq. (2). (d) The proposed non-Abelian
holonomy with two energy levels and two degenerate levels. The
inset shows the eigenfield distributions of the four eigenmodes
and the arrow marks the holonomy induced mode switching
direction, where the arrow color coincides with that in (c). (e) The
calculated state vector jφðzÞi ¼ ½φA;φB;φC;φD;φX;φY �T in the
holonomic process with the sAB mode (upper panel) and aCD
mode (lower panel) as the input, where φ0 denotes the amplitude
of the input.

FIG. 4. (a) Schematic diagram of the non-Hermitian system
designed following the Hamiltonian of Eq. (2). (b)–(e) Exper-
imentally measured light output patterns at the end of steps I, II,
and III (from left to right) when the input is the sAB mode (b), sCD
mode (c), aAB mode (d), and aCD mode (e).

FIG. 5. (a) Schematic diagram of all the eight holonomic
processes available using the proposed system, forming a non-
Abelian group D4. (b) Experimentally measured light output
patterns in a system consisting of the V operation andD operation
successively, where each arrowmarks a process from an input to a
measured outcome. (c) Same as (b) except that the sequence of
the two operations is swapped.
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The aforementioned holonomic process is represented by
the group element V, where the crossing of two lines
indicates the switching between the eigenmodes in wave-
guides “AB” and “CD,” while the solid line denotes that an
EP is encircled. Besides, we use two parallel lines to depict
the case that the eigenmodes located in waveguides “AB”
and “CD” are not switched, and the case in which no EP is
encircled is denoted by a dashed line.
We show how this non-Abelian group can be constructed

by two Abelian groups that are respectively associated with
the 2 degrees of freedom of the holonomy, i.e., the
degenerate level and the energy level. We define the
eigenfunction of a symmetric mode and an antisymmetric

mode as jψsi ¼ ½1; 0�T and jψai ¼ ½0; 1�T , respectively.
Meanwhile, the eigenfunction of the mode localized in
waveguides “AB” and “CD” is defined as jψABi ¼ ½1; 0�T
and jψCDi ¼ ½0; 1�T , respectively. Using these bases, the
four working eigenmodes at the start and end point of the
holonomy can be generated via

��ψ s;AB

� ¼ jψ si ⊗ jψABi,��ψ s;CD

� ¼ jψ si ⊗ jψCDi,
��ψa;AB

� ¼ jψai ⊗ jψABi, and��ψa;CD

� ¼ jψai ⊗ jψCDi (e.g.,
��ψ s;AB

�
represents the

eigenfunction of the sAB mode). The transformation matrix
connecting the outcome and input of the holonomy is
written as (see Supplemental Material [37], Sec. III, for
derivation details)

Ui;j;k ¼ UEPUDEG ¼
�
MEP

i ⊗
�
1 0

0 0

�
þMEP

j ⊗
�
0 0

0 1

����
1 0

0 1

�
⊗ MDEG

k

�
; fi; j; k ¼ 0; 1g; ð3Þ

where UEP and UDEG are generating matrix from the EP
associated energy level and degenerate level, respectively. In
Eq. (3), we have introduced EP associated operatorsMEP

1 ¼	
0
1
1
0



and MEP

0 ¼ 	
1
0
0
1



, which deal with case that an EP is

encircled or not, respectively (e.g., MEP
1 jψ si ¼ jψai). De-

generate level associated operatorsMDEG
1 ¼	

0
1
1
0



andMDEG

0 ¼	
1
0
0
1



are alsoused to dealwith the case that a location change is

induced or not (e.g., MDEG
1 jψABi ¼ jψCDi).

Equation (3) gives rise to all the eight group elements in
Fig. 5(a). For instance, the element V is constructed
by setting i ¼ 1, j ¼ 1, and k ¼ 1, which satisfies
jψa;CDi ¼ Ujψ s;ABi. The generated matrix from Eq. (3)
is also the holonomy induced Berry-Wilczek-Zee geo-
metric phase matrix, i.e., a unitary matrix connecting the
input and output of the holonomy (Supplemental Material
[37], Sec. IV). The geometric phase matrix associated with
each group element is summarized in Table S1 and
discussed in Supplemental Material [37], Sec. V, while
the multiplication table of the non-Abelian group is given
in Table S2.
The non-Abelian feature of the group can be demon-

strated experimentally by cascading two or more different
holonomic processes. Without loss of generality, we
combine the group element V and D. Figure 5(b) shows
the experimental results in a cascaded sample where the V
operation andD operation are executed successively. When
we inject the sAB, sCD, aAB, and aCD mode, the output is
found to be the sCD, aAB, aCD, and sAB mode, respectively.
Since the two group elements are noncommutative, swap-
ping their order will result in distinct outcomes. The
corresponding experimental results are given in Fig. 5(c),
where the symmetry of all the output modes is different
from those in Fig. 5(b). The non-Abelian feature can also
be revealed by cascading any other two or more group
elements that are noncommutative.

Conclusion—To conclude, we have proposed the design
and experimental realization of a non-Abelian holonomy
with two energy levels and two degenerate levels. The
holonomy induced mode switching between eigenmodes
belonging to different DEPs has been experimentally
observed. The non-Abelian feature has been demonstrated
by cascading two noncommutative systems. The energy
levels and degenerate levels in the holonomy can be further
increased by introducing more DEPs or higher-order DEPs
and thus discrete non-Abelian groups with more elements
could be achieved. The multiple energy levels, i.e., the new
degree of freedom in non-Abelian holonomy, are expected
to inspire new non-Abelian applications (Supplemental
Material [37], Sec. VI).
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