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The physics of bound states in the continuum (BICs) allows the design and demonstration of optical
resonant structures with large values of the quality factor (Q factor) by employing dielectric structures with
low losses. However, BIC is a general wave phenomenon that should be observed in many systems,
including the metal-dielectric structures supporting surface plasmon polaritons where optical resonances
are hindered by losses. Here we suggest and develop a comprehensive strategy to achieve high-Q
resonances in plasmonic metasurfaces by effectively tailoring the resonant modes from local to nonlocal
regimes, thus transitioning from quasi-isolated localized resonances to extended resonant modes involving
strong interaction among neighboring structure metaunits.
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Introduction—Recent progress in metaphotonics is
driven by the physics of optical resonances allowing us
to achieve high values of the radiative quality factor (Q
factor). One mechanism enabling high-Q dielectric meta-
photonics is based on the physics of bound states in the
continuum (BICs), which support sharp resonances for
spatially localized modes within the continuum spectrum of
extended states [1]. An ideal BIC in metasurfaces [2] is a
dark state with an infinite lifetime that in practice always
transforms into a quasi-BIC (qBIC) mode with finite Q
manifested in the Fano effect. The study of BICs and qBICs
has attracted much attention in recent years. The BIC
concept has been employed for many problems requiring
the enhancement of light-matter interaction with many
applications including nanolasers [3,4], harmonic gener-
ation [5], biosensing [6], and optical imaging [7].
In a majority of applications, BICs are realized in

dielectric photonic structures fabricated of materials with
high value of refractive index [6–9], and the underlying
physics explores the idea to reduce the radiative Q factor
by adjusting geometric parameters, such as asymmetry of
meta-atoms composing metasurfaces [2]. At the same time,
several recent studies demonstrated the use of the BIC
concept for hybrid metal-dielectric [10–12] and purely
plasmonic [13–15] nanostructures.
We notice that the BIC concept relies on the basic

principles of wave physics and wave interference [16];
thus, in general, it should be applied to both low-loss

dielectric and high-loss plasmonic structures. The main
question is, what is the general strategy for engineering
high-Q resonances in plasmonic structures? In this Letter,
we uncover the basic physics underpinning high-Q plas-
monic structures via the manipulation of dissipative proper-
ties of the resonant modes during the transition between
local and nonlocal regimes in plasmonic metasurfaces.
Here, “local” signifies quasi-isolated site resonances char-
acterized by localized E fields and minimal mutual inter-
action among metaunits, whereas “nonlocal” indicates
collective resonances with significantly extended E fields
and strong interaction among metaunits.
Local to nonlocal transition in the parameter space—To

illustrate our general strategy, first we focus on one recent
example of a plasmonic metasurface (Fig. 1), consisting of
vertical split-ring resonators (VSRRs) on a golden film
substrate [13]. This plasmonic structure supports dark and
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FIG. 1. Left: light trapping in a plasmonic (gold) BIC metasur-
face with vertical split-ring resonators. Right: transition between
local and nonlocal resonances through the parameter scaling,
with α being the scaling parameter.
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bright localized surface plasmon resonances (LSPRs). The
initial geometric parameters are shown in the caption of
Fig. 2. By exclusively scaling the height parameters (the
pillars and middle-connector heights) with the scaling
factor α while keeping other parameters constant, it
facilitates a transition between local and nonlocal regimes
for both the modes. Here, α > 1 indicates an increase,
while α < 1 indicates a decrease.
Figure 2 illustrates this transition in parameter space at

the Γ point of arrays, specifically, at the in-plane emission
wave vector kk ¼ ðkx; kyÞ ¼ 0, where kx and ky denote the
wave vector components along the x and y axes. We
categorize odd and even symmetry LSPRs, corresponding
to in-plane and out-of-plane resonances, as bright and dark
modes based on their far-field radiation at local regimes.
Decreasing the scaling parameter α from 1.5 to 0.01 leads
to a shift from local to nonlocal resonance with two notable
features: (1) the resonance wavelengths (in free space)
approach the period (λ → P, where P ¼ 3 μm), as shown
in Fig. 2(c); (2) a significant increase inQ factor [Fig. 2(a)],
and mode volume [Fig. 2(b)] for both modes, with
differences spanning several orders of magnitude. The Q
factor is calculated usingQ ¼ ωr=2ωi, where ωr and ωi are
the real and imaginary parts of eigenfrequencies.

In pure local regimes, when α ¼ 1.5, the bright LSPR
mode, for example, exhibits a resonance wavelength
(λ ∼ 10 μm) several times larger than the lattice period
(P ¼ 3 μm), as shown in Fig. 2(c). The individual unit
resonance (local) prevails in this local LSPR, overshad-
owing negligible contributions from collective resonances
(nonlocal) that depend on strong interactions among
neighboring units [17]. This is evident because a single
isolated unit exhibits a nearly identical electric field profile
and spectral enhancement as the entire array [see
Supplemental Material (SM) [18], S3].
However, the Q factor for the bright LSPR is low, Q ≈

19.8 at α ¼ 1.5 [Fig. 2(a)]. This is predominantly attributed
to two reasons.
First, its tight light confinement, evident through hot spots

on the tops of pillars [Fig. 2(d)] and an ultrasmall mode
volume (SM [18], S2) well below the diffraction limit
[Veff ∼ 5.13 × 10−5λ3, Fig. 2(b)]. These hot spots amplify
the electric field (jEj), causing a notable increase in the
metal’s dissipation density, w ¼ 1=2ϵ0ImðϵÞjEj2, where ϵ0
and ϵ ¼ ϵr þ iϵi denote the vacuumpermittivity and relative
permittivity of gold. This giant dissipation loss hampers
sustaining light energy exchange between theE field and the
H field, preventing high-Q resonances. The reason is
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FIG. 2. Eigenmode analysis at the Γ point of VSRR metasurfaces. (a)–(c) The Q factor, mode volume, and resonance wavelength
dependence on the scaling parameter α for the dark and bright modes. The initial parameters (at α ¼ 1) are period 3 μm, square pillar
width 0.4 μm and high 1.8 μm, middle connector height 0.5 μm, center-to-center distance between pillars 0.8 μm. (c) Inset: Γ-point
position. (d) The radiation patterns and electric fields (Ez) for various α.
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simple: high-Q resonances, known for long-lasting light
oscillation in cavities, require a sustaining oscillation
between electric field energy (uE ∝ ϵE2) and magnetic field
energy (uH ∝ μH2) in a cavity due to light’s electromagnetic
nature, where μ is the permeability [41]; Once giant E-field
or H-field hot spots present, this sustaining oscillation is
damaged, leading to low-Q resonances.
Second, it has giant radiation loss. In plasmonic cavities,

their resonance Q factor reads

Q−1 ¼ Q−1
rad þQ−1

dis; ð1Þ
where Qrad and Qdis are, respectively, the radiation and
dissipation Q factors. See SM [18], S1 for simulation and
calculation details.
One way to improve the LSPR Q factor is to suppress

radiation loss using dark modes with Qrad ¼ ∞. The Q
factor for the dark LSPR is Q ≈ 107.8 at α ¼ 1.5
[Fig. 2(a)], representing a 5× improvement over the bright
LSPR. This improvement is also attributed to the non-
locality of the dark LSPR. Notably, the resonance wave-
length of the dark LSPR (λdark ≈ 6 μm) is significantly
smaller than that of its bright counterpart (λbright ≈ 10 μm).
A shorter resonance wavelength enhances nonlocality (see
latter discussion and SM [18], S3).
While purely local resonances are limited to isolated

plasmonic particles, all resonances in plasmonic arrays
exhibit nonlocality due to coupling between neighboring
metaunits, resulting in suppressed in-plane radiation (SM
[18], S3). In this study, we refer to dark and bright modes in
plasmonic arrays with large height scaling parameters (e.g.,
α ¼ 1.5) as local resonances for simplicity, as they are
primarily driven by LSPRs. More accurately, these modes
should be termed quasi-isolated localized modes.
However, the dark LSPR’s Q factor is limited by signi-

ficant dissipation loss linked to strong local light confine-
ment, observed as hot spots on pillar tops [Fig. 2(d)].
Utilizing our local-to-nonlocal transition strategy effec-

tively minimizes dissipation loss. In this transition, the E
field becomes less confined and extends more into the loss-
less air (SM [18], S4). This is accomplished by increasing
mode volumes [Fig. 2(b)] and the gradual disappearance of
hot spots on pillar tops, eventually resulting in a uniformly
distributed E-field profile on the gold film plane [Fig. 2(d)].
These features substantially reduce resonances’ dissipation
loss, as indicated by large Q factors, Q ≈ 3439 (dark) and
Q ≈ 3802 (bright) at α ¼ 0.01 for both modes [Fig. 2(a)],
several orders of magnitude larger than the local LSPRs.
These high-Q nonlocal modes are collective resonances
strongly coupled with nonlocal diffraction orders.
Diffraction orders and nonlocality—Collective resonance

modes in a plasmonic array can be decomposed into Bloch
harmonics [42], given by EðrÞ ¼ P

aðp;qÞe−iðkkþpGxþqGyÞr,
where aðp;qÞ is the complex amplitude, kk the in-plane k
vector, Gx ¼ ð2π=PxÞx̂ and Gy ¼ ð2π=PyÞŷ the array
reciprocal vectors, with the metaunit periods Px ¼ Py ¼
P ¼ 3 μm and p; q∈Z.

The empty lattice dispersion equation jkk þ pGx þ
qGyj ¼ 2π=λ defines momentum space positions where
propagating diffraction orders ðp; qÞ emerge [gray dashed
lines, Fig. 3(a)]. Specifically, at the Γ point of the array, we
identify a highly symmetric position termed the D point
[blue circle in Fig. 3(a)], where three diffraction orders
(1,0), ð−1; 0Þ, and ð0;�1Þ degenerate. We assign the
corresponding operational wavelength λD ¼ P as the
degenerate wavelength.
At Γ-point direction,D point is a critical transition point.

Specifically, the Bloch harmonics (1,0), ð−1; 0Þ, ð0;�1Þ can
either exist as bounded evanescent waves when λ > λD or
transform into propagating diffraction orders when λ < λD.
At λ ¼ λD those harmonics travel along the array surface at a
grazing angle and interact with many metaunits (nonlocal-
ity).Weuse normalized detuningwavelength (Δ) to describe
the distance between resonance wavelength λ and λD:

Δ ¼ λ − λD
λD

¼ λ − P
P

: ð2Þ

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

c
π2/P

ω

kxP/2π

0
50

100
150

Q
 fa

ct
or

2
θ (deg)

10 20 30 40 50 60 0
50

100
150

Q
 fa

ct
or

2
θ (deg)

10 20 30 40 50 60

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

c
π2/P

ω

kxP/2π

α = 0.3 α = 1.5

α = 0.3 α = 1.5 α = 0.3 α = 1.5
kxP/2π = 0 kxP/2π = 0.2

x
y

y
z

BIC qBIC

-max

max

Ez

3

4

5

6

0 10 20 30 40 50 60

( htgneleva
W

μm
)

θ (deg)

4

5

6

7

0 10 20 30 40 50 60

W
av

el
en

gt
h 

(μ
m

)

θ (deg)

(b)

nonlocal

BIC

local

BIC

α = 0.3 α = 1.5Reflection 10

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

c
π2/P

ω

kxP/2π

0 250
Q factor

α = 0.3
α = 1.5

(0,±1)

D

z

x

θ
k

E

(d)

(c)

(a)

FIG. 3. (a) Calculated band structure for the dark mode with
nonlocal (α ¼ 0.3) and local (α ¼ 1.5) characteristics, denoted by
circular and square markers, respectively. The color represents
eigenmode Q factor. The gray dashed lines represent three
diffraction orders: (1,0), ð−1; 0Þ, and ð0;�1Þ. The blue circle
denotes the D point. (b) The field distribution of dark modes for
two metasurfaces (α ¼ 0.3 and α ¼ 1.5) at kxP=2π ¼ 0 (Γ point)
and kxP=2π ¼ 0.2 (off Γ). (c) Reflection spectra for two
metasurfaces (α ¼ 0.3 and α ¼ 1.5) at oblique incidence in the
x-z plane under TM polarized light excitation (E-field vector in
the incident plane). (d) The corresponding Q factor of the two
dark modes at different oblique angles. TheQ factor is the ratio of
resonance wavelength to full width at half maximum.
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As Δ decreases approaching zero, LSPRs transition into
collective resonances dominated by surface plasmon polar-
itons (SPPs), (SM [18], S4). LSPRs exhibit strong light
confinement (hot spots) and weak interunit coupling.
Conversely, SPPs have significantly extended E fields into
the air due to strong interaction with nonlocal diffraction
orders. This explains the larger mode volumes of nonlocal
modes compared to local LSPRs [Fig. 2(b)].
Nonlocal nature of modes—The high-Q nonlocal modes

are trapped SPPs, characterized by standing SPP waves
confined in a Fabry-Perot cavity (SM [18], S4 and S5). Two
pieces of evidence support this interpretation.
First, trapped SPPs exhibit no far-field radiation. Conse-

quently, all nonlocal plasmonic modes, whether transition-
ing from a dark or bright LSPR in the local to nonlocal
shift, should remain subradiative if they are trapped SPPs.
The dark LSPR supports this characteristic throughout the
transition [Fig. 2(d)]. Interestingly, despite being radiative
in local regimes (α ¼ 1.5), the bright LSPR becomes less
radiative (α ¼ 0.3) and eventually becomes radiation-free
in nonlocal regimes (α ≤ 0.04) [see Fig. 2(d) and S4 in SM
[18] ]. This aligns with the dark feature of trapped SPPs.
See S8 in SM [18] for radiation pattern understanding.
Second, another evidence is linked to the Q-factor limit of
the nonlocal mode.
Q-factor limit—As Δ decreases, dark and bright LSPRs

shift into trapped SPPs, exhibiting minimal dissipation loss,
enabling efficient energy exchange between E field and H
field. To determine the upper limit ofQ factors for nonlocal
plasmonic resonances, we can assess

Qmax ¼
krSPP
2kiSPP

; ð3Þ

where krSPP and kiSPP are the real and imaginary part
of SPP’s k vector, such that kSPP ¼ krSPP þ ikiSPP ¼
ð2π=λÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ϵϵ0=ðϵþ ϵ0Þ�

p
, where ϵ and ϵ0 are the permittiv-

ities of gold and vacuum [43]. As ϵ varies with wavelength,
the maximum Q factor of nonlocal plasmonic resonance is
wavelength dependent (SM [18], S6). For λ ≈ 3 μm, the
trapped SPP’s Q factor is calculated as ∼3805, consistent
with numerical results of nonlocal mode in Fig. 2(a).
Local-nonlocal transition in the momentum space—The

local-to-nonlocal transition can also occur in the momen-
tum space as the resonance modes interact with nonlocal
diffraction orders. For example, we calculate the eigenfre-
quency and Q factor for two dark modes with different
height parameters, α ¼ 1.5 (local) and α ¼ 0.3 (nonlocal);
see Fig. 3(a). They are symmetry-protected BICs with zero
radiation loss at the Γ point (kk ¼ 0); see Fig. 3(b) (left). As
the in-plane vector kx ¼ ðω=cÞ sinðθÞ increases, BICs
transit to qBICs with two distinguished properties.
First, the Q factor of the local qBIC mode experiences a

rapid decrease, whereas the Q factor of the nonlocal qBIC
mode remains stable, as verified by both eigenmode studies

[Fig. 3(a)] and full-wave simulations [Figs. 3(c) and 3(d)].
This results from different coupling strengths between the
two modes and diffraction order ð−1; 0Þ. For example, the
resonance frequency of nonlocal mode is closer to dif-
fraction order ð−1; 0Þ than its local counterpart at
kxP=2π ¼ 0.2. Thus, it relies more on the mutual inter-
action among neighboring units, which reduces its radia-
tion loss [17]. This makes it less radiative compared to the
local counterpart [Fig. 3(b), right]. Also, its nonlocal
feature makes it less dissipative. These two features help
it keep high-Q resonances at various oblique incidences
[Figs. 3(c) and 3(d)].
Second, the local mode becomes nonlocal at large

oblique incidence angles (θ > 40°) as it approaches
ð−1; 0Þ diffraction order [Fig. 3(c)]. This is evident by a
sudden increase in its Q factor when θ > 40° [Fig. 3(d)].
Local-nonlocal transition in plasmonic metasurfaces—

Our approach to improving the Q factor in plasmonic
nanostructures by reducing the height parameter is not
limited to a specific metasurface with VSRR units. Instead,
it is a universally applicable strategy that can be employed
for all types of plasmonic metasurfaces with various
metaunits, including single pillar, ring, dimmer, triangular
prism, pillar wall, and many others [13–15,44–51], as
shown in Fig. 4.
All metasurfaces in Fig. 4 support LSPRs. For simplicity,

we set them as square units with a 3 μm period and an
initial height of 1.8 μm (α ¼ 1). They have the same
degenerate wavelength λD ¼ P ¼ 3 μm. As the height
scaling parameter α decreases, LSPRs (dark or bright)
transition into trapped SPPs with similar, symmetric or
antisymmetric, E-field profiles (SM [18], S7).
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We study the dependence of the dissipationQ factorQdis
on the normalized detuning wavelength Δ for all plasmonic
metasurfaces during the local (LSPRs) to nonlocal (trapped
SPPs) transition (Fig. 4). An inverse square root law well
approximates the relationship,

Qdis ∝
1
ffiffiffiffi
Δ

p ; ð4Þ

where Δ is calculated using Eq. (2), and Qdis using Eq. (1)
(SM [18], S1). Notably, in pure nonlocal regimes
(Δ ∼ 10−3), the Q factor (Q ¼ Qdis as Qrad ¼ ∞) of all
plasmonic metasurfaces is approaching ∼3800, consistent
with prediction using Eq. (3), confirming the trapped SPPs
nature of the nonlocal modes.
The inverse square root law suggests an intelligent way to

engineer plasmonic structures with on-demand resonanceQ
factor. Most resonances have hybrid (LSPRsþ SPPs) prop-
erties during the local-to-nonlocal transition. For example, at
α ¼ 0.3, the bright mode has both hot spots on pillars’ tops
(local LSPR feature) and trapped SPPs (nonlocal) on the
ground plane [Fig. 2(d)]. Notably, hot spots [52] and high-Q
resonances [13] are effective ways to enhance the electro-
magnetic field. AmaximumE-field intensity occurs at some
point during this transition (SM [18], S3), which proves
beneficial for applications such as nonlinear enhancement
[53] and fluorescence enhancement [54].
Equation (4) holds for a broad range, Δ∈ ½10−3; 1�,

allowing diverse Q-factor choices (tens to thousands) for
most plasmonic metasurfaces. However, plasmonic Q
factors are inherently limited, approaching that of trapped
SPPs [Eq. (3)]. Achieving higher Q factors in nonlocal
regimes necessitates scaling up the lattice period to extend
the operational wavelength, as the maximum Q factor is
wavelength dependent. This is shown by Qmax ∼ 627 at
λ ¼ 880 nm and Qmax ∼ 6330 at λ ¼ 5 μm (SM [18], S6).
This wavelength-dependent trend aligns with recent exper-
imental results (Q ∼ 80 in near IR [44] andQ ∼ 500 in mid-
IR [55]).
Conclusion—We have suggested a general conceptual

approach for achieving large Q factors in plasmonic
metastructures by engineering dissipation Q factor of the
resonant modes. Our approach employs an efficient control
of local and nonlocal optical response, and it is under-
pinned by the physics of bound states in the continuum. We
believe the suggested strategy may open the door to many
novel applications of plasmonic structures including effi-
cient lasing, harmonic generation, biosensing, optical
imaging, and entangled photon generation.
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