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We propose to detect signals from quark orbital angular momentum (OAM) through exclusive π0

production in electron- (longitudinally polarized) proton collisions. Our analysis demonstrates that the
sin 2ϕ azimuthal angular correlation between the transverse momentum of the scattered electron and the
recoil proton serves as a sensitive probe of quark OAM. Additionally, we present a numerical estimate of
the asymmetry associated with this correlation for the kinematics accessible at the Electron-Ion Colliders in
the U.S. and China. This study aims to pave the way for the first experimental study of quark OAM in
relation to the Jaffe-Manohar spin sum rule.
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Introduction—The exploration of nucleon spin structure
sparked by the revelation of the “spin crisis” has developed
into a captivating research field over the past three decades.
A central goal of this field is to comprehend the nucleon’s
spin in terms of contributions from its underlying partons.
Significant progress has been made in deciphering this
partonic content of nucleon spin, particularly in con-
straining contributions from quark and gluon spins in
the moderate- and large-x regions through measurements
of parton helicity distributions at accelerator facilities
worldwide [1–4]. The upcoming Electron-Ion Colliders
in the U.S. and China (EIC and EicC) [5,6] are expected to
play a crucial role in precisely determining the gluon
helicity distribution at small x. While parton helicities
represent a significant fraction of nucleon spin, there
remains ample opportunity to investigate the contribution
of parton orbital angular momentum (OAM) to nucleon
spin, constituting another key objective of the EIC
and EicC.
In an interacting theory like quantum chromodynamics

(QCD), two types of OAMs exist: the kinetic type (Ji type)
and the canonical type (Jaffe-Manohar type). The differ-
ence between the two definitions of OAM in QCD can be
attributed to the gauge potential term. In practice, the
kinetic OAM of quarks and gluons is determined
by subtracting their helicity contributions from the

total angular momentum contributions, which can be
accessed through hard exclusive processes [7,8]. How-
ever, extracting the Jaffe-Manohar-type parton OAM [9], or
equivalently canonical OAM, in high-energy scatte-
ring processes poses a significant experimental challenge.
Progress in this direction was limited until a connection
between parton OAM and Wigner distribution functions
[10], or equivalently, generalized transverse-momentum-
dependent distributions (GTMDs) [11], was revealed about
a decade ago. For the quark case, this connection is given
by [12–14]

Lqðx; ξÞ ¼ −
Z

d2k⊥
k2⊥
M2

Fq
1;4ðx; k⊥; ξ;Δ⊥ ¼ 0Þ: ð1Þ

All quantities that appear in the above equation will be
specified below. The quark OAM can be reconstructed
by integrating over the x-dependent OAM distribution:
Lq ¼

R
1
0 dxLqðx; ξ ¼ 0Þ. This relation coupled with Eq. (1)

thus opens a new avenue to directly access the parton
canonical OAM contribution to the nucleon spin through
GTMDs. Note that this relation is expected to hold beyond
the tree level up to some power corrections [15–17]. In
recent years, theoretical efforts have primarily centered on
investigating the experimental signals of the gluon GTMD
F1;4 [18–22]. Conversely, the exclusive double Drell-Yan
process, the sole known process providing access to quark
GTMDs, mainly offers sensitivity to quark GTMD F1;4 in
the Efremov-Radyushkin-Brodsky-Lepage (ERBL) region
[23] (refer to [24] for the interpretation of this region). This
poses a challenge when extrapolating the distribution to the
forward limit.
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In this Letter, we introduce a novel observable to
experimentally detect the quark GTMD F1;4 in the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) region,
establishing a direct link to quark OAM through Eq. (1). Our
proposal involves the exclusive π0 production process in
electron-proton collisions (see Fig. 1): ep → e0p0π0, with a
longitudinally polarized proton target. Our analysis demon-
strates that the longitudinal single target-spin asymmetry
results in a sin 2ðϕl⊥ − ϕΔ⊥Þ azimuthal angular correlation,
where ϕl⊥ and ϕΔ⊥ denote the azimuthal angles of the trans-
verse momentum of the scattered electron and the recoil
proton. This correlation exhibits a direct sensitivity to
quark OAM.
The proposed observable stands out as an ideal probe for

quark OAM from both theoretical and practical perspec-
tives. First, the background for this process remains clean,
free from contamination by final-state soft gluon radiation
effects [25–30]. Additionally, our observable, akin to the
unpolarized cross section, constitutes a twist-3 contribution
(or equivalently, a subleading power correction). This
characteristic enables the maximal enhancement of the
asymmetry without being washed out by the unpolarized
cross section.
Probing the quark GTMD F1;4 in exclusive π0

production—First, let us define the kinematics of the
process under consideration,

eðlÞ þ pðp; λÞ ⟶ π0ðlπÞ þ eðl0Þ þ pðp0; λ0Þ: ð2Þ

The standard kinematic variables are defined as follows:
Q2 ¼ −q2 ¼ −ðl − l0Þ2 representing the photon’s virtual-
ity, and the incoming electron’s momentum is parametri-
zed as lμ ¼ ðlþ; l−; l⊥Þ ¼ f½Qð1 − yÞ= ffiffiffi

2
p

y�; ðQ=
ffiffiffi
2

p
yÞ;

ðQ ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
=yÞg. Here, “þ=−” denotes the light-cone plus

or minus components. The y ¼ pq=pl represents the usual
momentum fraction. The γ�p center-of-mass energy is given
by W2 ¼ ðpþ qÞ2. The pion mass in our calculation is
neglected (l2π ≈ 0), simplifying the analysis. We work in the
symmetric frame where the initial-state and the final-state
proton carry the transverse momenta p⊥ ¼ −Δ⊥=2 and
p0⊥ ¼ Δ⊥=2, respectively. The skewness variable is given by
ξ¼ ðpþ−p0þÞ=ðpþ þp0þÞ ¼−Δþ=ð2PþÞ ¼ xB=ð2− xBÞ,
xB ¼ Q2=2pq, and the momentum transfer squared can be
expressed as t ¼ ðp − p0Þ2 ¼ −½ð4ξ2M2 þ Δ2⊥Þ=ð1 − ξ2Þ�,
with M being the proton mass.

In the near forward region, the leading power contribu-
tion to the exclusive transversely polarized virtual photon
production of π0 emerges at the twist-3 level. This
suppression of the leading power contribution is a result
of the conservation of angular momentum along the
direction of the virtual-nucleon beam. Since the unpolar-
ized cross section starts at twist-3, the investigated longi-
tudinal-spin asymmetry is not power suppressed. In the
region where the momentum transfer t is exceedingly
small, the exclusive π0 production process becomes sus-
ceptible to being dominated by the Primakoff process [31–
37], and the interference between the Primakoff process
and the contribution from the gluon GTMD F1;4 [38]. In
this work, we specifically concentrate on the valence quark
region, where ξ ∼ 0.1, thereby permitting the neglect of
contributions from both the Primakoff process and the
gluon-initiated process [38].
We will perform the calculation within the framework of

collinear higher-twist expansion. This technique, first
developed in Refs. [39,40], was applied to the study of
the canonical OAM [see Ref. [18] Eq. (5)], which we
closely follow in this work. In this approach, the hard factor
Hðk⊥;Δ⊥Þ is expanded in terms of k⊥=Q and Δ⊥=Q,
where k⊥ denotes the relative transverse momentum carried
by the exchanged quarks,

Hðk⊥;Δ⊥Þ ¼ Hðk⊥ ¼ 0;Δ⊥ ¼ 0Þ

þ ∂Hðk⊥;Δ⊥ ¼ 0Þ
∂kμ⊥

����
k⊥¼0

kμ⊥

þ ∂Hðk⊥ ¼ 0;Δ⊥Þ
∂Δμ

⊥

����
Δ⊥¼0

Δμ
⊥ þ � � � : ð3Þ

The zeroth-order expansion of k⊥ andΔ⊥ yields a null result
for both the spin-averaged cross section and the longitudinal
polarization-dependent cross section. Following this expan-
sion, the subsequent step involves integrating over k⊥.
Consequently, the scattering amplitudes are expressed as
the convolution of the next-to-leading power of Eq. (3) with
the generalized parton distribution (GPDs) or the first k⊥
moment of certain GTMDs, including the k⊥ moment of the
quark GTMD F1;4—in other words, the quark OAM
distribution.
The leading twist quark GTMDs for nucleons are para-

metrized as the off-forward quark-quark correlator [11,41],

W½Γ�
λ;λ0 ¼

Z
d3z

2ð2πÞ3 e
ikzhp0; λ0jq̄

�
−
z
2

�
Γq

�
z
2

�
jp; λi

����
zþ¼0

;

ð4Þ

where Γ indicates a generic gamma matrix. The Wilson line
in Eq. (4) is suppressed for brevity. In the notation of
[11,12], they are expressed as follows:

FIG. 1. An illustration of exclusive π0 production.
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W½γþ�
λ;λ0 ¼

1

2M
ūðp0; λ0Þ

�
F1;1 þ

iσiþ

Pþ ðki⊥F1;2 þ Δi⊥F1;3Þ

þ iσijki⊥Δ
j
⊥

M2
F1;4

�
uðp; λÞ; ð5Þ

W½γþγ5�
λ;λ0 ¼ 1

2M
ūðp0; λ0Þ

�
−iεij⊥ki⊥Δ

j
⊥

M2
G1;1 þ

iσiþγ5ki⊥
Pþ G1;2

þ iσiþγ5Δi⊥
Pþ G1;3 þ iσþ−γ5G1;4

�
uðp; λÞ; ð6Þ

where εij⊥ ¼ ε−þij with ε0123 ¼ 1. The arguments of the

GTMDs depend on ðx; ξ; k⃗⊥; Δ⃗⊥; k⃗⊥ · Δ⃗⊥Þ but have been
omitted in the above formulas for the sake of notation
convenience. In addition to F1;4, the quark GTMD G1;1 is
particularly intriguing. The real part of G1;1 encodes
information about the quark’s spin-orbital angular momen-
tum correlation inside an unpolarized nucleon [11,12].
These GTMDs have been explored in various models
[11,12,42–54] and studied in the small-x limit [50,55].
There are a total of four diagrams contributing to the

exclusive π0 production amplitude. One of these diagrams
is shown in Fig. 2. Our explicit calculation has confirmed
that the contributions from all four diagrams vanish at the
leading power. To isolate the twist-3 contribution, we
perform an expansion in k⊥ and Δ⊥. In doing so, it is
essential to handle the k⊥ and Δ⊥ dependencies from the
exchanged quark legs with utmost care. To address this, we
employ a technique known as the special propagator
technique, first introduced in Ref. [56]. The inclusion of
the special propagator contribution is crucial to ensure
electromagnetic gauge invariance. It is noteworthy that an
alternative approach, which also maintains electromagnetic
gauge invariance at twist-3 accuracy, has been developed in
Refs. [57,58].
Depending on the various vector structures, the scatter-

ing amplitude can be organized into three terms,

M1 ¼
g2sefπ
2

ffiffiffi
2

p ðN2
c−1Þ2ξ

N2
c

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p δλλ0
ϵ⊥×Δ⊥

Q2
fF 1;1þG1;1g;

M2 ¼
g2sefπ
2

ffiffiffi
2

p ðN2
c−1Þ2ξ

N2
c

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p δλ;−λ0
Mϵ⊥ ·S⊥

Q2
fF 1;2þG1;2g;

M4 ¼
ig2sefπ
2

ffiffiffi
2

p ðN2
c−1Þ2ξ

N2
c

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p λδλλ0
ϵ⊥ ·Δ⊥
Q2

fF 1;4þG1;4g; ð7Þ

where fπ ¼ 131 MeV represents the π0 decay constant, ϵ⊥
denotes the virtual photon’s transverse polarization vector,
and S⊥ is defined as Sμ⊥ ¼ ð0þ; 0−;−i; λÞ. F i;j and Gi;j

serve as shorthand notations for complex convolutions
involving the GTMDs Fi;j, Gi;j, and the π0 distribution
amplitude (DA) ϕπðzÞ. They are expressed as follows:

F 1;1 ¼
Z

dxdzF̃ð0Þ
1;1ðx; ξ;Δ⊥Þx2

ϕπðzÞð1þ z2 − zÞ
z2ð1 − zÞ2 ; ð8Þ

G1;1¼
Z

dxdzG̃ð1Þ
1;1ðx;ξ;Δ⊥Þ

ϕπðzÞðx2þ2x2zþξ2Þ
z2

; ð9Þ

F 1;2 ¼
Z

dxdzF̃ð1Þ
1;2ðx; ξ;Δ⊥Þ

× xξð1 − ξ2ÞϕπðzÞð1þ z2 − zÞ
z2ð1 − zÞ2 ; ð10Þ

G1;2 ¼
Z

dxdzG̃ð1Þ
1;2ðx; ξ;Δ⊥Þ

×
ϕπðzÞðx2 þ 2x2zþ ξ2Þð1 − ξ2Þ

z2
; ð11Þ

F 1;4 ¼
Z

dxdzF̃ð1Þ
1;4ðx; ξ;Δ⊥Þxξ

ϕπðzÞð1þ z2 − zÞ
z2ð1 − zÞ2 ; ð12Þ

G1;4 ¼
Z

dxdzG̃ð0Þ
1;4ðx; ξ;Δ⊥Þ

×
xð4ξ2zþ ξ2 − 2x2zþ x2Þ

z2ξ
ϕπðzÞ; ð13Þ

where

f̃ðnÞðx;ξ;Δ⊥Þ¼
Z

d2k⊥
�
k2⊥
M2

Þ
n 1ffiffi

2
p

�
2
3
fuþ 1

3
fd
	

ðxþξ− iϵÞ2ðx−ξþ iϵÞ2
ð14Þ

with n ¼ 0, 1, and
R
dxdz≡ R

1
−1 dx

R
1
0 dz. The superscript

on the GTMDs “f,” whose arguments have been sup-
pressed for brevity, indicates the summation of up and
down quark contributions. Here, z represents the longi-
tudinal momentum fraction of π0 carried by the quark. The
derivation of the above expressions involves the repeated
use of the symmetry property

R
dz½zϕπðzÞ=z2ð1 − zÞ2� ¼R

dz½ð1 − zÞϕπðzÞ=z2ð1 − zÞ2�.
A few remarks are now in order. First, we obtain the

terms F 1;2, F 1;4, G1;1, and G1;2 by performing k⊥ expan-
sion, while the Δ⊥ expansion gives rise to the contributions
F 1;1 and G1;4. Second, the amplitudes M1, M2, and M4

exhibit distinct Δ⊥-dependent behaviors. Notably, M2

persists as Δ⊥ approaches zero, even when averaging over
S⊥ in the unpolarized cross section. This persistence is
attributed to the helicity flip mechanism provided by theFIG. 2. A diagram contributing to exclusive π0 production.
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quark GTMDs F1;2 andG1;2, akin to what the gluon GTMD
F1;2 does [59]. The last point to emphasize is that exclusive
π0 production selects a C-odd exchange. This implies that
the hard factors associated with F1;1,G1;1, andG1;2 must be
even functions of x, while those proportional to F1;2, F1;4,
and G1;4 must be odd functions of x. This property is
explicitly satisfied by our results. Note that our treatment of

the twist-3 contribution to spin-independent amplitudes
differs from the approach advocated in Refs. [60,61] which
involves a twist-3 pion DA.
Assembling all the pieces, we derive the following

spin-averaged and single target longitudinal polarization-
dependent cross section:

dσT
dtdQ2dxBdϕ

¼ ðN2
c − 1Þ2α2emα2sf2πξ3Δ2⊥

2N4
cð1 − ξ2ÞQ10ð1þ ξÞ ½1þ ð1 − yÞ2�

×


�
jF 1;1 þ G1;1j2 þ jF 1;4 þ G1;4j2 þ 2

M2

Δ2⊥
jF 1;2 þ G1;2j2

�

þ cosð2ϕÞa½−jF 1;1 þ G1;1j2 þ jF 1;4 þ G1;4j2�

þ λ sinð2ϕÞ2aRe½ðiF 1;4 þ iG1;4ÞðF �
1;1 þ G�

1;1Þ�
�
; ð15Þ

where ϕ ¼ ϕl⊥ − ϕΔ⊥ and a ¼ f2ð1 − yÞ=½1þ ð1 − yÞ2�g.
Equation (15) stands as the central result of our Letter. The
real part of the quark GTMD F1;4, and consequently, the
quark OAM, leaves a distinct signature through an azimu-
thal angular correlation of sin 2ϕ in the longitudinal single
target-spin asymmetry.
Numerical results—We now present the numerical results

for both the unpolarized cross section and the sin 2ϕ
asymmetry. It is noteworthy that two of the k⊥-integrated
GTMDs, F1;1 and G1;4, can be linked to the standard
unpolarized GPD and the helicity GPD [11]. In the forward
limit, the GTMD F1;2 is related to the Sivers function f⊥1T
[11,59,62,63], and the GTMDG1;2 reduces to theworm-gear
function g1T [11]. In our first attempt at a numerical study, we
choose to neglect contributions from the GTMDG1;1, which
lacks a GPD or TMD counterpart [64]. Regarding the F 1;2,
F 1;4, andG1;4 terms,weonly consider their pole contributions
from their imaginary parts. However, for the term F 1;1, G1;2,
we include both its imaginary and real parts in the numerical
estimation, as they dominate the cross section at high and low
t, respectively.
Note that the hard part becomes divergent as z

approaches 0 or 1. This behavior known as the end point
singularity typically signals factorization breaking. From a
phenomenological standpoint, regularization is achievable
by considering the transverse momentum dependence of
the pion DA [67–69]. An effective way to introduce
transverse momentum dependence is to modify the upper

and lower integration limits of z to
R 1−hp2⊥i=Q2

hp2⊥i=Q2 dz [60],

where hp2⊥i is the mean-squared transverse momentum of
the quark inside the pion. Its central value is chosen to be
hp2⊥i ¼ 0.04 GeV2 in our numerical calculation, based on
a fit to the Jlab measurement (see Supplemental Material
[70] for brief discussion, which includes Refs. [71–78]).

For simplicity, we consider the asymptotic form for the
pion’s DA, ϕπðzÞ ¼ 6zð1 − zÞ. On the other hand, the
discontinuity of the derivative of quark GPDs at the end
points x ¼ �ξ (as seen, for example, in Refs. [79,80]),
coupled with the double poles at x ¼ �ξ, may also
potentially lead to a divergent component in the cross
section. To address this potential issue, we employ a shift of
the double pole from ½1=ðx − ξþ iϵÞ2� to ½1=ðx − ξ −
hp2⊥i=Q2 þ iϵÞ2� (and similar for the negative x region).
A similar shift was introduced in Ref. [81] to handle the
aforementioned divergence. More phenomenological input
[60,82–93] is detailed in the Supplemental Material [70].
We now present numerical predictions for the EIC and

EicC kinematics. The t-integrated unpolarized cross section
is shown as a function of ξ in the top panel of Fig. 3. The
asymmetry quantified by the average value of sinð2ϕÞ and
depicted as a function of ξ in the bottom plot of Fig. 3 is
defined as

hsinð2ϕÞi ¼
R

dΔσ
dP:S: sinð2ϕÞdP:S:R

dσ
dP:S: dP:S:

; ð16Þ

where dΔσ ¼ σðλ ¼ 1Þ − σðλ ¼ −1Þ. The unpolarized
cross section exhibits a notable magnitude at EicC energy,
whereas it is relatively small at EIC energy. Note that at the
EIC, the cross section for lowQ2 would be similar to that at
the EicC. However, the EIC’s smaller ξ for the same Q2

might offer a greater leverage in constraining quark OAM
in the small-x region. Additionally, the asymmetries are
substantial for both EIC and EicC kinematics.
Consequently, our numerical results signify that the azi-
muthal asymmetry sin 2ϕ in exclusive π0 production stands
out as a promising avenue for probing the quark OAM
distribution.
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Summary—We propose extracting the quark OAM
associated with the Jaffe-Manohar spin sum rule by
measuring the azimuthal angular correlation sin 2ϕ in
exclusive π0 production at the EIC and EicC. This
observable serves as a clean and sensitive probe of quark
OAM for several reasons. First, the azimuthal asymmetry is
not a power correction, as both the unpolarized and
longitudinal polarization-dependent cross sections contrib-
ute at twist-3. Second, the produced π0 transverse momen-
tum−Δ⊥ remains unaffected by final-state QCD radiations.
Detecting π0 makes it less challenging to experimentally
measure Δ⊥, in contrast to the diffractive dijet production
case where reconstructing Δ⊥ from the total transverse
momentum of the dijet system is impossible due to the
contamination of final-state soft gluon radiations. Most
importantly, this process enables the direct access to the
quark GTMD F1;4 in the DGLAP region for the first time.
In addition to unveiling access to quark OAM, our work
highlights another significant finding that the quark com-
ponent of F1;2 and G1;2, or equivalently, the Sivers function
and the worm-gear function, respectively, contribute to the
unpolarized cross section of this process. This result is

particularly noteworthy since conventionally, the Sivers
function and the worm-gear function are understood to be
probed only through transversely polarized targets.
We compute the differential cross section within the

collinear higher-twist expansion framework. Despite the
substantial uncertainties associated with the model inputs,
our numerical results reveal a sizable azimuthal asymmetry,
which critically relies on the quark OAM distribution. In
the kinematic range accessible to the EIC and EicC, our
observable can be thoroughly investigated, paving the way
for the first experimental extraction of the canonical quark
OAM distribution in the future.
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error bands are obtained by varying the value of

ffiffiffiffiffiffiffiffiffiffi
hp2⊥i

p
from 150

to 250 MeV and the value of α0, which determines the t
dependence of the various distributions in the double distribution
approach (see Supplemental Material [70]), from 1.2 to 1.4.
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