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We propose a fault-tolerant quantum computation scheme in a measurement-based manner with finite-
sized entangled resource states and encoded-fusion scheme with linear optics. The encoded fusion is an
entangled measurement devised to enhance the fusion success probability in the presence of losses and
errors based on a quantum error-correcting code. We apply an encoded-fusion scheme, which can be
performed with linear optics and active feedforwards to implement the generalized Shor code, to construct a
fault-tolerant network configuration in a three-dimensional Raussendorf-Harrington-Goyal lattice based on
the surface code. Numerical simulations show that our scheme allows us to achieve up to 10 times higher
loss thresholds than nonencoded fusion approaches with limited numbers of photons used in fusion. Our
scheme paves an efficient route toward fault-tolerant quantum computing with finite-sized entangled
resource states and linear optics.
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Toward scalable quantum computation [1–5], photonic
systems have been considered as leading platforms thanks to
high-quality sources and detectors, efficient modularity and
connectivity, and long decoherence time at room temper-
ature [6–8]. Especially, extremely fast measurements on
photons make them suited for measurement-based quantum
computing [9–13]. In measurement-based quantum com-
puting, universal gate operations are realizable via single-
qubit measurements applied on entangled resource states
prepared off-line. However, due to the nondeterministic
fusion [14,15]—a projective measurement on entangled
photons—and loss in photonic platforms, an extensive
number of entangled photons are consumed to prepare
the resource states for fault-tolerant architectures [9–13].
To circumvent such formidable prerequisites, fusion-based

quantum computing (FBQC)was recently proposed [16–18],
performed via fusions between constant-sized resource states
without extensive entanglement prepared and with stability
maintained during the process. Its architecture consists of
resource states and fusions,which are connected to each other
to create a specific network configuration called a fusion
network. By constructing a fusion network, a quantum
error-correcting (QEC) code can be implemented. For exam-
ple, surface code is implemented as three-dimensional
Raussendorf-Harrington-Goyal (RHG) lattice [2–5]. The
details of FBQC are in Ref. [16]. The fusion thus plays a
crucial role in FBQC and its efficiency directly affects the
computation performance. However, the fusion success

probability is limited by 50% with linear optics. Moreover,
its boost with ancillary entangled photons [19] turned out to
be in a trade-off with the loss tolerance [16]. Therefore,
fusions in the presence of loss degrade the performance of
FBQC significantly, which becomes more crucial when the
system size increases, and, as a result, it may be still
challenging to build a fault-tolerant architecture in photonic
quantum computing platforms.
In this Letter, we propose a scheme for fault-tolerant

quantum computation with finite-sized entangled states and
fusions protected by QEC. An encoded fusion is devised to
enhance the fusion success probability under loss by QEC.
We apply an encoded fusion designed based on ðn;mÞ-
generalized Shor [20] or parity code [21–23], implementable
with linear optics and active feedforwards, to construct a
RHG lattice. Numerical simulations show that our scheme
achieves up to 10 times higher loss thresholds for individual
photons than nonencoded fusion approaches [16–18] with a
limited number of photons used per fusion. Specifically, a
record-high threshold 14% is achieved with moderate
encoding numbers, e.g., (7,4) with single-step feedforward.
We also show that when adopting the same encoded resource
states, our scheme can reach significantly higher loss thresh-
olds than FBQC [16] by consuming fewer photons.
Our approach, while motivated from Ref. [16], offers a

different way toward fault tolerance. The result demon-
strates that a concatenation of two QECs, one for the fusion
and the other for the network configuration, can dramati-
cally enhance the loss thresholds. A similar approach has
been recently introduced in Ref. [24]. We here focus on
RHG lattice and resource states used in Ref. [16] for direct*Contact author: swleego@gmail.com
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comparison, but our scheme is not limited to a specific
configuration but generally applicable for various archi-
tectures and resource states [17,18].
Encoded-fusion-based quantum computation—Let us

introduce the encoded-fusion-based quantum computing
(EFBQC). In EFBQC, the process to create a fusion
network and logical gate operations is conceptually equiv-
alent to FBQC [16] except that fusions are replaced with
encoded fusions. Compared to FBQC, however, EFBQC is
aimed more at correcting the errors from resource states,
fusion failure, and photon loss by fusion itself, while
constructing a fusion network, as illustrated in Fig. 1.
Fusions are applied between resource states to construct a
specific fusion network. A fusion network can thus be
designed appropriately such that all measurements are
projections onto stabilizer states, and corresponding
QEC schemes based on the stabilizer formalism can then
be applied to achieve the fault tolerance. We here focus on
fusion networks in which fusions are the projection onto a
particular stabilizer basis, i.e., the Bell basis. Such a fusion,
called Bell fusion, can be described as X1X2 and Z1Z2

measurements on two qubits 1 and 2, whose operators form
a stabilizer group hX1X2; Z1Z2i. The outcomes of all Bell
fusions combine to perform parity checks to enable error
correction, e.g., by surface code.
To realize FBQCwith linear optics, we should account for

two imperfections leading to erasures of measurement out-
comes: (i) photon loss, a dominant error source in any
photonic platforms, and (ii) the 50% limit of the success
probability of Bell fusion or equivalently Bell-state meas-
urement (BSM) with linear optics. Specifically, a fusion
failure can be treated as an erasure of either X1X2 or Z1Z2

outcome. Any loss in each fusion causes a complete erasure

of outcomes. As a result, such erasures reduce the error
tolerance of FBQC significantly, which becomes a crucial
factor in building a linear optical scalable architecture. It
turnedout that boosting the success probabilitywith ancillary
entangled photons [19] increases the rate of erasures and
eventually harms the loss tolerance of FBQC [16].
On the other hand, in EFBQC, encoded fusions play a

role logically as X1X2 and Z1Z2 on two encoded qubits
1 and 2 of loss so that all events of erasures of X1X2 and
Z1Z2 can be suppressed. Therefore, all fusion outcomes
are consistent with the resource state stabilizers, and, in
principle, error correction in fusion network exhibits the
maximum performance of the fault tolerance (see
Supplemental Material for details [25]). An encoded fusion
can be implemented by performing multiple linear-optic
BSMs consecutively with a QEC protocol that enables
increasing the success probability even in the presence of
photon loss, as we introduce in the following.
Encoded fusion with linear optics—Several schemes

have been proposed to overcome the 50% limit of the
fusion success probability with linear optics by using
ancillary entangled photons [19,30], squeezing [31], and
Greenberger-Horne-Zeilinger (GHZ) encoding [32,33].
However, employing a large number of photons in fusion
generally is at a higher risk of photon loss, which offsets an
advantage and eventually is in a trade-off with the loss
threshold of FBQC [16]. In contrast, an encoding only
against photon loss does not solve the problem induced by
the low efficiency of fusion. Therefore, it is essential to
enhance the success probability of fusion while suppressing
the effects of photon loss that may occur in the fusion and
resource state preparation.
We introduce a method to enhance both the fusion

success probability and loss tolerance by a QEC protocol
with linear optics. Consider the ðn;mÞ-Shor or parity
code [21] with dual-rail qubits as a representative example.
We define the logical basis as j0Li ¼ jþðmÞi⊗n and
j1Li ¼ j−ðmÞi⊗n, where j�ðmÞi ¼ ðjHi⊗m � jVi⊗mÞ= ffiffiffi

2
p

consists of n blocks, each of which includes m photons
in j�i state. Interestingly, the encoded Bell states jΨ�i ¼
j0Lij1Li � j1Lij0Li and jΦ�i ¼ j0Lij0Li � j1Lij1Li can
be decomposed into n number of block-level Bell states,
each of which in turn is decomposed into m number of
photonic Bell states [25]. While a linear-optic BSM can
discriminate only two out of the four Bell states, such
characteristics of the encoded states make it possible to
logically distinguish the Bell states by a series of n ×m
linear-optic BSMs with much higher efficiencies.
We now sketch the encoded-fusion protocol based on

linear optics and active feedforwards (details in Supplemental
Material [25]).
In physical qubit level, we use three types of linear-optic

BSMs discriminating jψþi=jψ−i, jψþi=jϕþi, and
jψ−i=jϕ−i deterministically, denoted as Bψ , Bþ and B−,
respectively. Note that BSM can be implemented by basic

Fusion network

FIG. 1. Schematics of EFBQC. In a fusion network, the
photons participating in fusions are encoded in a QEC code,
and an encoded-fusion protocol is performed actively in a
concatenative manner between encoded qubits.
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linear-optical elements such as polarizing beam splitters,
wave plates, and photon detectors, which can discriminate
only two out of the four Bell states. The type can be easily
changed by simply rotating wave plates on the inputs of
polarizing beam splitters. The protocol is as follows: (i) In
each block, Bψ is applied on each pair of photons randomly
selected from distinct encoded qubits. Repeat until Bψ

succeeds, detects a loss, or consecutively fails j ≤ m − 1
times (a predetermined optimized number). (ii) Bþ or B− is
applied on the remaining photon pairs, if any Bψ succeeded
with the result jψþi and jψ−i, respectively. For loss
detection and j-times failure, Bþ or B− is randomly
selected. (iii) Total n times of block-level protocols, (i)
and (ii), are performed independently.
In each block, the sign (�) is identified by any success of

Bψ , and the letter ðψ ;ϕÞ is also identified based on the
results of all B� performed on remaining photon pairs. So,
full discrimination is possible unless loss occurs, and at
least the sign can be identified with any single success of
Bψ or B�. We denote the full discrimination and failure
probability as ps and pf, respectively. The probability of
only sign discrimination is then 1 − pf − ps.
By collecting all the results of independently performed

n-times block-level protocols, the logical result is deter-
mined. The letter is the same with any determined block-
level result. The sign can be identified by counting the
number of minus (−) signs from block-level results. As a
result, the success probability of encoded fusion based on
ðn;mÞ-Shor code is obtained as PsðηÞ ¼ ð1 − pfÞn − ð1 −
ps − pfÞn with a given loss rate η per photon, which
becomes 1 − 2−mn when no loss occurs. Note that, in
contrast to the boost scheme with ancillary entangled
photons [19], the encoded fusion can succeed with arbi-
trarily high rates with a moderate encoding number ðn;mÞ
in the presence of photon loss [25].
Encoded-fusion networks and resource states—A fusion

network is constructed to implement a foliated QEC
code [34]. A standard approach implementing the surface
code leads to form a three-dimensional RHG lattice [2–5].
A variation of surface code for biased noises, i.e., XZZX
code [35,36], can be implemented by constructing a XZZX
lattice fusion network [17]. The aforementioned lattice
models were shown to be fabricated by employing 4-star
and 6-ring shape resource states introduced in Ref. [16].
Linear cluster states can also be used as resource states [18]
to create a foliated Floquet color code architecture [37,38].
We here focus on RHG lattice structures for the direct
comparison with FBQC [16].
The process to form a RHG lattice and the corresponding

resource states are logically equivalent to FBQC. The
encoded-fusion networks in RHG lattice can thus be
constructed by applying encoded fusions on the encoded
4-star or 6-ring resource states as illustrated in Fig. 2.
However, not only the resource states but also the fusion
schemes are here reformulated as encoded forms, e.g., by

ðn;mÞ-Shor code in the current model. The encoded 4-star
and 6-ring resource states have the forms obtained by
replacing all the qubits participating in fusion with encoded
qubits. As simplest examples, (2,2) encoded 4-star and
6-ring resource states are illustrated in the inset of Fig. 2.
Such encoded resource states in arbitrary encoding numbers
can be generated straightforwardly by fusing entangled
resource states such as GHZ states [9]. For example, the
encoded 4-star resource state based on ðn;mÞ-Shor code is
composed of 4 × ðn ×mÞ photonic qubits, and can be
generated by fusing 4n-GHZ state and 4 × n number of
(mþ 1)-GHZ states. The generation schemes of encoded
resource states are elaborated in SupplementalMaterial [25].
Note that arbitrary n-GHZ states can be built from 3-GHZ
states that are readily available in current photonic tech-
nologies [39–46]. Once the resource states are preparedwith
an encoding number ðn;mÞ, the encoded fusions with the
same ðn;mÞ are correspondingly applied.
Thresholds of encoded-fusion networks—The perfor-

mance of fusion networks can be analyzed with two error
models: (i) hardware-agnostic error model with the erasure
rate Perasure and the measurement (flipped) error rate Perror,
and (ii) linear-optical error model with the fusion success
rate PsðηÞ and the loss rate η for individual photons. The
thresholds of FBQCwas analyzed in Ref. [16], in which the
correctable regions of two parameters Perasure and Perror
were evaluated by Monte Carlo simulation, e.g., yielding
Perasure thresholds 6.90% for 4-star and 11.98% for 6-ring
fusion networks when no measurement error occurs.
Photon loss thresholds under the linear-optical error model
were then estimated as about 0.25% and 0.78% per
individual photon for 4-star and 6-ring fusion networks,
respectively [16], assuming boosted fusion success prob-
abilities with ancillary entangled photons [19]. It was also

FIG. 2. For the direct comparison with FBQC [16], we apply
our scheme to the networks in RHG lattice fabricated with the
encoded 4-star and encoded 6-ring resource states. The insets
illustrate the simplest example with ðn;mÞ ¼ ð2; 2Þ. The structure
and encoded resource states are the same with FBQC [16], while
the fusions are replaced with the encoded fusions in orange ovals.
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shown that FBQC using encoded qubits in (2,2)-Shor code
with boosting can achieve a higher threshold, e.g., 2.7% for
6-ring fusion network [16].
Let us now examine the loss thresholds of EFBQC. We

employ the same hardware-agnostic model for the direct
comparison with FBQC, resulting in the same correctable
regions of Perasure and Perror. We can then estimate the loss
thresholds of encoded-fusion networks based on the linear-
optical error model characterized by PsðηÞ and η by
evaluating Perasure and Perror. We plot the thresholds of
EFBQC against the fusion success probability in Fig. 3 and
by changing the total number of photons used per fusion in
Fig. 4 with different fusion encoding numbers ðn;mÞ. For
comparison, we also plot the thresholds of FBQC obtained
in Ref. [16].
Figure 3 shows that EFBQC yields much higher loss

thresholds and fusion success probabilities than FBQC.
The thresholds of FBQC are maximized under a limited
fusion success probability and any further boosting
degrades these [16]. This implies that additional use of
photons increases the risk of loss in FBQC so that the
fusion success probability is in a trade-off with the thresh-
old. On the other hand, in EFBQC, the loss thresholds can
be improved together with the fusion success probability.
Our results show that the proposed encoded-fusion scheme
can enhance the success probability by increasing the
encoding number ðn;mÞ while suppressing the effect of
loss simultaneously, so that the loss thresholds of EFBQC
can be dramatically improved. A loss threshold 4.8% per

photon is achieved with (2,2) encoded 6-ring resource
states in EFBQC, which is almost doubled from 2.7%
obtained with the same resource states and additional
entangled photons for boosting in FBQC [16], notably
by consuming fewer photons and adding only a two-step
linear-optical process (j ¼ 1). See Supplemental Material
for the comparison of resource overheads [25].
In Fig. 4, we plot the loss thresholds of EFBQC numeri-

cally maximized in our protocol for given ðn;mÞ, and
compare the resultswith FBQCbychanging the total number
of photons used per fusion. See Supplemental Material for
the optimized protocol [25]. It exhibits that, with a fixed
number of photons in fusion, EFBQC can achieve much
higher thresholds than FBQC. Remarkably, the attained loss
thresholds of EFBQC are about 10 times higher than non-
encoded and about 5 times higher than encoded FBQCs that
were estimated in previous works [16–18]. Specifically,
EFBQCs with (7,4) encoded 4-star and 6-ring fusion net-
works, respectively, reach 11.44% and 13.97% loss thresh-
olds per photon. This implies that a moderate number of
additional photons used in fusion can substantially enhance
the loss thresholds by our scheme. Note that both 4-star and
6-ring encoded-fusion networks can reach arbitrarily up to
14% by increasing the encoding number ðn;mÞ. Such a
maximum threshold may be the characteristic of current
choices of concatenated QEC codes, i.e., generalized Shor
and surface code, and thus possibly can be enhanced further
with other codes [17,18].
Remarks—We have proposed a fault-tolerant quantum

computation scheme performed in a measurement-based

FIG. 3. Photon loss thresholds for different fusion success
probabilities PsðηÞ. The green, purple, magenta, and cyan curves
show the results of FBQC in Ref. [16]: the dots on the curves
represent the cases when the fusion success probability is boosted
with different numbers of additional entangled photons, e.g.,
PsðηÞ ¼ 0.75 with additional 2 photons per physical fusion
(additional 2 × 4 ¼ 8) for (2,2), and the star shows the maximum
value among them. The blue and red dots represent the loss
thresholds of EFBQC with different ðn;mÞ ¼ ð2; 2Þ; ð3; 3Þ; ð4; 3Þ
based on encoded 4-star and 6-ring fusion networks, respectively.

FIG. 4. Photon loss thresholds for the total number of photons
used per fusion. The thresholds of EFBQC are maximized by
optimizing the encoded-fusion protocol for a given encoding
number ðn;mÞ. The threshold for EFBQC generally gets higher
when increasing the number of photons used per fusion, while the
threshold for FBQC boosted with ancillary entangled photons
decreases. EFBQCs for encoded 4-star and 6-ring resource states,
respectively, yield 11.44% and 13.97% when ðn;mÞ ¼ ð7; 4Þ,
and both arbitrarily reach up to 14% as increasing ðn;mÞ.
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manner with finite-sized entangled resource states and
encoded fusions. In contrast to FBQC schemes [16–18],
two different QECs, one for the fusion and the other for the
network configuration, are used concatenatively in EFBQC.
The encoded fusion is devised to correct photon loss, fusion
failure, and resource errors within the fusion process by
implementing a QEC code. Moreover, an encoded fusion
with ðn;mÞ-Shor code is shown to be efficiently implement-
ablewith linear optics and active feedforwards only.We have
applied the encoded fusion to construct a fusion network in
RHG lattice. By numerical simulations, we have demon-
strated that our scheme improves the loss thresholds up to 10
times higher than nonencoded fusion approaches [16–18],
and allows us to attain ∼14% loss thresholds per individual
photon, which is to our knowledge a record-high threshold
among recent achievements in photonic quantum computing
platforms [16–18,47]. We have also shown that EFBQC
outperforms FBQC with respect to the attainable thresholds
by consuming the same number of photons.
We found that Bell et al. [24] have similarly studied

encoding for fusion to improve thresholds over FBQC [16];
10.5% is achieved by encoding into a 10-qubit graph code
with an adaptive protocol, which is comparable to our results
with (4,3) encoded (12-qubit) case, being lower, and higher
than (3,3) encoded (9-qubit) case, while our scheme enhan-
ces the threshold further up to 14% by increasing the
encoding size. Such an optimal graph state can be searched
by an exhaustive searchmethod priorly for a given encoding
size [24], while applying our scheme for arbitrary high
ðn;mÞ is straightforward with the same protocol. Despite
being developed independently using different codes and
protocols, both schemes provide a common alternative way
toward fault tolerance to overcome the limit of standard
FBQC. See also Ref. [48] in which high thresholds have
been achieved using GHZ-state measurements.
Our scheme can be implemented by linear opticswith few-

step feedforwards, which is efficiently realizable within
current technologies [49,50]. By simply adding one more
step of linear-optical process (j ¼ 1), EFBQC almost dou-
bles the threshold of (2,2)-Shor code encoded 6-ring network
estimated in FBQC [16]. Moreover, numerical optimization
shows that only one or two additional steps with a moderate
number of photons in encoding, e.g., (7,4) with single-
step feedforward (j ¼ 1), can yield loss thresholds up to
14% [25]. All required encoded resource states are produc-
ible with available entangled photon sources [39–46]. Our
scheme is thus readily implementable within current and
near-term photonic platforms.
Finally, we note that our approach is not limited to any

specific configuration or code, and generally applicable
for various architectures by e.g., XZZX surface [17] and
Floquet color code [18], and resource states, e.g., linear
cluster states [18]. Developing encoded-fusion protocols
with other QECs [24,51] would be also valuable as next
step of research.
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