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Generalization is the ability of machine learning models to make accurate predictions on new data by
learning from training data. However, understanding generalization of quantum machine learning models
has been a major challenge. Here, we introduce the data quantum Fisher information metric (DQFIM). It
describes the capacity of variational quantum algorithms depending on variational ansatz, training data, and
their symmetries. We apply the DQFIM to quantify circuit parameters and training data needed to
successfully train and generalize. Using the dynamical Lie algebra, we explain how to generalize using a
low number of training states. Counterintuitively, breaking symmetries of the training data can help to
improve generalization. Finally, we find that out-of-distribution generalization, where training and testing
data are drawn from different data distributions, can be better than using the same distribution. Our work
provides a useful framework to explore the power of quantum machine learning models.

DOI: 10.1103/PhysRevLett.133.050603

The key challenge in quantum machine learning is to
design models that can learn from data and apply their
acquired knowledge to perform well on new data [1]. This
latter ability is called generalization and has been intensely
studied recently [2–19]. Constructing models that general-
ize well is essential for quantum machine learning tasks
such as learning unitaries [20–27], classification [28,29],
compiling [11,30,31], generative modeling [32,33], quan-
tum simulation [10,34,35], quantum autoencoders [36,37],
and black-hole recovery protocols [38]. However, the
conditions for generalization are not well understood.
Recently proposed uniform generalization bounds [7,39]
have been shown to be loose [40], do not account for sym-
metries, and are unable to explain numerical observations
of generalization with few training data [10,39,40].
Thus, there is an urgent need for a framework to

understand the conditions for successful training and
generalization [8,41–51] to potentially gain advantage over
classical models [52–55]. In classical machine learning,
generalization has been evaluated using the classical Fisher
information [4,5,56–58]. Recent works proposed the quan-
tum Fisher information metric (QFIM) to characterize
capacity and overparametrization of parametrized quantum
states [49,59–61], however a connection with generaliza-
tion has not been established.

Here, we introduce the data quantum Fisher information
metric (DQFIM) to study generalization and overparamet-
rization. In contrast to the QFIM, the DQFIM correctly
captures the effect of data and circuit symmetries on the
capacity of quantum machine learning models. The rank of
the DQFIM quantifies the circuit depth and amount of data
needed for generalization and convergence to a global
minimum of the cost function. We apply our methods to
learning unitaries, quantum control, generative models,
finding excited states, and classification tasks. Using the
connection between DQFIM and dynamical Lie algebra
(DLA), we explain why quantum machine learning can
generalize with few training data. While symmetries have
been known to benefit quantum machine learning, we
surprisingly find that symmetries in data can also hinder
generalization. Finally, we show that out-of-distribution
generalization, i.e., the training data are drawn from a
different distribution than the test data, can exhibit better
performance compared to in-distribution generalization.
Our methods provide a quantum geometric picture to
understand generalization which guides the design of better
quantum machine learning models.
Model—We consider a unitary UðθÞ parametrized byM-

dimensional parameter vector θ and training set SL ¼
fjψli; OlgLl¼1 of size L. SL consists of input states jψli
drawn from a distribution jψli∈W, as well as Hermitian
operator Ol which represents the label [10,35,39]. We now
learn by minimizing the cost function

Ctrainðθ; SLÞ ¼ 1 −
1

L

XL

l¼1

hψljUðθÞ†OlUðθÞjψli: ð1Þ
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Here, we assume without loosing generality that the
eigenvalues of Ol are (tightly) upper bounded by 1 such
that Ctrain ≥ 0. The trained model generalizes when the test
error in respect to unseen test data jψi∈W and corre-
sponding label Ojψi is small

Ctestðθ;WÞ ¼ 1 − E
jψi∈W

½hψ jUðθÞ†OjψiUðθÞjψi�: ð2Þ

Let us now give two important examples of our model.
First, unitary learning or quantum compiling aims to
represent a target unitary V with a parametrized unitary
UðθÞ such that Vjψli ¼ UðθÞjψli [26,30]. Here, jψli are
initial states with corresponding label operator Ol ¼
VjψlihψljV† being the target state to be learned. This
learning model also describes quantum control problems
[62]. Further, unsupervised generative models to learn a
probability distribution pðxÞ can be converted into unitary
learning tasks [63] by encoding empirical distribution qðxÞ
into a state jΦi with qðxÞ ∼ jhxjΦij2, and choosing
Ol ¼ jΦihΦj.
Another important task is classification [28]. Here, the

goal is to identify two classes, e.g., images of cats and dogs.
One encodes the feature vector xl into jψlðxlÞi with
corresponding label yl ¼ �1 and label operator
Ol ¼ ylσz, where cats have y ¼ 1 and dogs y ¼ −1.
The trained model infers the class y by measuring
y ∼ hψ jUðθÞ†σzUðθÞjψi. We note that data reuploading
[64], where data and parametrized unitary are interlayered,
can also be mapped onto this model [65].
The parametrized unitary UðθÞ ¼ Q

G
k¼1U

ðkÞðθkÞ com-
monly consists of G repeating layers of unitaries
UðkÞðθkÞ ¼

Q
K
n¼1 expð−iθknHnÞ, where Hn are Hermitian

operators, θk a K-dimensional vector, and θ ¼ fθ1;…; θGg
the M ¼ GK dimensional parameter vector [22,62]. The
optimization program starts with a randomly chosen θ and
iteratively minimizes Eq. (1) with the gradient ∇CtrainðθÞ,
which can be efficiently estimated by a quantum computer
[66]. Gradient descent iteratively updates θ → θ − α∇Ctrain
with some α until reaching a minimum after E training
steps, where ∇Ctrainðθ�Þ ¼ 0 with converged parameter θ�.
We assume that ansatz UðθÞ can solve the learning task,
i.e., we ensure that there is a parameter θg such
that Ctestðθg;WÞ ¼ Ctrainðθg; SLÞ ¼ 0.
After training we have three possible outcomes:

(i) become stuck in local minimum Ctest ≥ Ctrain ≫ 0;
(ii) reach global minimum Ctrain ≈ 0, however, no gener-
alization with Ctest ≫ 0; (iii) generalization with
Ctrain ≈ Ctest ≈ 0. In the following, we show that the
DQFIM determines the critical number of circuit param-
eters McðLÞ for overparametrization as a function of L and
training states Lc for generalization.
DQFIM—First, we define what can be learned about

ansatz unitary UðθÞ via training set SL:

Definition 1 (unitary mapped onto data)—The data state
for training set SL ¼ fjψli; OlgLl¼1 of L states is

ρL ¼ 1

L

XL

l¼1

jψlihψlj ð3Þ

Training with cost function Eq. (1) and SL gives only
information about the unitary mapped onto the subspace of
the training data ULðθÞ ∼ UðθÞρL.
To understand Definition 1, consider the d-dimensional

unitary U ≡UðuÞ ¼ P
d
n;k¼1 unkjnihkj with complex para-

meters u ¼ fu11; u12;…; uddg and training data fjligLl¼1,
where jli∈W are computational basis states and our goal
is to learn some unitary V ¼ Uðu�Þ. For L ¼ 1, training
with Eq. (1) optimizesUj1i ¼ P

d
n¼1 un1jni. Thus, only the

column vector u1 ¼ ðu11; u21;…; ud1Þ of U can be trained,
while un>1 are not learnable. For arbitrary L, applyingU on
the training states gives us fUjli ¼ P

d
n¼1 unljnigLl¼1.

The learnable parameters of U correspond to the d × L-
dimensional (unnormalized) isometry UL ¼ ðu1;…; uLÞ≡
UρL with (unnormalized) projector ρL ¼ L−1PL

l¼1 jlihlj
[see Fig. 1(a)]. Even if we find a global minima with
Ctrain ¼ 0, for L < d we gain no information about the
column vectors ðuLþ1;…; udÞ. The trained model Uðu�Þ
randomly guesses these column vectors, resulting in a large
generalization error Ctest. Only for L ¼ d, we have a
complete training set that can achieve generalization with
Ctest ¼ 0.
To understand generalization, we count the independent

parameters of UL, which we call the effective dimension
DL. For L ¼ 1, Uj1i ¼ P

d
n¼1 un1jni ¼

P
d
n¼1ðan1 þ

ibn1Þjni has 2d real parameters an1, bn1. However, due

(a) (b)

FIG. 1. (a) Ansatz unitary UðθÞ and M-dimensional parameter
vector θ is optimized in respect to cost function Eq. (1) using L
training data described by data state ρL [Eq. (3)]. Only the
subspace of the unitary that acts on the training data UL ≡
UðθÞρL can be learned. Its learnable degrees of freedom are given
by the maximal rank of the data quantum Fisher information
metric (DQFIM) RL. (b) Phase diagram of generalization with M
and L. Convergence to global minimum (Ctrain ≈ 0) is likely for
overparametrization M ≥ RL. Generalization to unseen test data
(Ctest ≈ 0) for overcomplete training data when L ≥ Lc≈
2R∞=R1 and M ≥ R∞.
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to global phase and norm, there are only D1 ¼ 2d − 2
independent parameters. For L ¼ d, parametrizing a com-
plete unitary U requires Dd ¼ d2 − 1 parameters. For
example, a single qubit has D1 ¼ 2 (Bloch sphere) and
D2 ¼ 3 (arbitrary unitary) free parameters [67], and thus
we require L ≥ 2 states to generalize. However, depending
on ansatz and data structure DL can decrease. Let us
consider UðθÞ ¼ e−iσzθk � � � e−iσzθM and distribution W ¼
fjþi; j−ig with j�i ∼ j0i � j1i and z-Pauli σz. While we
have M parameters, the generators commute and L ¼ 1 is
sufficient to generalize as D1 ¼ Dd ¼ 1. In contrast, for
W ¼ fj0i; j1ig we have DL ¼ 0 as only the trivial global
phase is rotated.
We now propose the DQFIM to quantify the effective

dimension [see Supplemental Material (SM) A [68] ].
Definition 2 (DQFIM)—For unitary UðθÞ≡ U and

training set SL, the DQFIM is defined as

QnmðρL; UÞ
¼ 4Re½trð∂nUρL∂mU†Þ − trð∂nUρLU†ÞtrðUρL∂mU†Þ�;

ð4Þ

where ∂n is the derivative in respect to the nth entry of the
M-dimensional vector θ ¼ ðθ1;…; θMÞ.
In SMA,wederiveQ½ρL; UðθÞ� as themetric that describes

how a variation θ → θþ dθ changes the mapping of UðθÞ
onto the span of ρL, and relate the DQFIM to the QFIM of the
purification of ρL. For L ¼ 1, we recover the QFIM F nm ¼
4Reðh∂nψ j∂mψi − h∂nψ jψihψ j∂mψiÞ [60,76].
The rank of Q gives the effective dimension

DL½ρL; UðθÞ� ¼ rank½QðρL; UðθÞ� ≤ M: ð5Þ

The case L ¼ 1 has been studied previously [49]: the
effective dimension D1 increases with M, until reaching a
maximal value R1 [see Fig. 2(a)]. Once maximal, the
parametrized state UðθÞjψ1i is overparametrized as it

can explore all its degrees of freedom [59]. While DLðθÞ
depends on θ, it turns out that due to self-averaging, a
randomly chosen θrand nearly always assumes its maximal
rank maxθDLðθÞ ≈DLðθrandÞ [49]. Just as D1, our DL
increases with M until a maximal RL, which describes the
maximal number of degrees of freedom thatUL can explore
and heralds overparametrization for arbitrary L:
Definition 3 (overparametrization)—Ansatz UðθÞ with

training data ρL is overparametrized when effective dimen-
sion DL does not increase further upon increasing the
number of parameters M. The maximal rank RL reached at
critical number of parameters M ≥ McðLÞ:

RL ≡ max
M≥McðLÞ;θ

DL½ρL; UðθÞ�: ð6Þ

For overparametrization withM ≥ McðLÞ, a variation of
θ can explore all degrees of freedom of UL and thus likely
find the global minimum [59,77–80]:
Observation 1 (convergence to global minimum)—

Global minimum Ctrainðθ�Þ ≈ 0 with training set SL is
reached with high probability when M ≥ McðLÞ ≥ RL.
As seen in Fig. 2(b), RL increases with L, where the

growth slows down due to unitary constraints. We find the
tight upper bound (SM, Sec. B or [81])

RL≤2dL−L2−1 forL≤d; RL≤d2−1 forL>d: ð7Þ

RL increases with L until its maximal possible value
RLc

≡ R∞. Here, the training data are overcomplete and
sufficient to learn all degrees of freedom of UðθÞ:
Definition 4 (overcomplete data)—A given model UðθÞ

and ρL is overcomplete when RL does not increase further
upon increasing L. Its maximal rank R∞ ¼ RLc

is reached
for a critical number of training data L ≥ Lc

R∞ ¼ RLc
≡max

L≥Lc

RLðρL; UÞ: ð8Þ

(a) (b) (c) (d)

FIG. 2. DQFIM for different unitaries U with M parameters and L training states. As defined in SM Sec. D, we show hardware
efficient circuit UHE with no symmetries and Haar random training states (blue curves), as well as UXY with particle number symmetry
using as training data either product states Wprod (orange) or symmetry-conserving states Wp¼1 (green). (a) Effective dimension DL

increases linearly with M, until it reaches a maximal value RL for M ≥ McðLÞ. We have N ¼ 8 qubits. (b) RL increases with L until
converging to R∞ for L ≥ Lc. Black dashed line shows approximation RL ∼ R1L. The inset shows generic ansatz without log-plot,
highlighting the nonlinear behavior of RL. (c) Scaling of R1 and R∞ with qubit number N. (d) Number Lc of training states needed for
generalization. Black dashed line shows Lc ≈ 2R∞=R1.
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We bound RL similar to R1 for Ref. [59] (see SM,
Sec. C [68]):
Theorem 1—The maximal rank RL is bounded by the

dimension of the DLA RL ≤ dimðgÞ where g ¼
spanhiH1;…; iHKiLie is generated by the repeated nested
commutators of the generators Hk of UðθÞ.
Thus, using an ansatz with restricted Lie algebra

[43,45,84] with dimðgÞ ∼ polyðNÞ generalizes with
Lc;Mc ∼ polyðNÞ where N is the number of qubits.
We can estimate Lc with the following consideration: to

generalize we have to learn all R∞ degrees of freedom of
the unitary. The first training state allows us to learn R1

degrees of freedom, while each additional state provides a
bit less as seen in Eq. (7). For the upper bound of Eq. (7) we
have Lc ≈ 2R∞=R1, which we numerically find to be a
good estimator also for other models:
Observation 2 (generalization for learning unitaries)—

A trained model generalizes Ctestðθ�Þ ≈ 0 with high prob-
ability when the model is overparametrized (i.e., M ≥
Mc ≥ RL for Definition 3) and overcomplete (i.e., L ≥ Lc
for Definition 4). The critical number of training states Lc
needed to generalize can be approximated by

Lc ≈ 2R∞=R1: ð9Þ
Applications—We want to learn the unitary evolution

VXY ¼ expð−iHXYtÞ at time t of the XY Hamiltonian
HXY ¼ P

N
k¼1ðσxkσxkþ1 þ σykσ

y
kþ1 þ hkσ

z
kÞ, where σαk ,

α∈ fx; y; zg is the Pauli operator acting on qubit k and
hk ∈R. We learn VXY with UXYðθÞ ansatz (see SM Sec. D
for definition [68]), which can represent any VXY with
polynomial number of parameters [85,86]. HXY and UXY

conserve the particle number operator P ¼ P
N
k¼1

1
2
ð1 − σzkÞ

with ½UXY; P� ¼ ½HXY; P� ¼ 0, where ½:� is the commutator.
As training states, we use jψli∈Wp¼1 which are states
symmetric in regard to P, i.e., Pjψli ¼ pjψli with the
same eigenvalue p ¼ 1 for all jψli∈Wp¼1. Further, we
have the single-qubit product states Wprod with
jψli ¼⊗N

k¼1 jϕk
li, jϕk

li∈HðC2Þ which are not symmetric
in respect to P.

Observation 3 (nonsymmetric data improve generaliza-
tion)—We train UXYðθÞ with (i) particle-number conserv-
ing states jψli∈Wp¼1 and (ii) single-qubit product states
jψli∈Wprod. For Wp¼1 we find exactly R1 ¼ 2N − 2,
R∞ ¼ N2 − 1, while for Wprod we find via numerical
extrapolation R1 ¼ 2N2 − 3N þ 2 and R∞ ¼ 2N2 − 1
[Figs. 2(c) and 2(d)]. Generalization requires less Lc ≈
2R∞=R1 training states for nonsymmetric data:

ðiÞSymmetric∶Lc¼N for jψli∈Wp¼1

ðiiÞNonsymmetric∶Lc¼2 for jψli∈Wprod; N>4:

Intuitively, nonsymmetric data require less L as it can use
information from other symmetry sectors.
Next, we consider out-of-distribution generalization

where the training data is drawn from a different distribu-
tion than the test data [8]:
Observation 4 (out-of-distribution generalization re-

quires less data)—Training UXYðθÞ with product states
jψli∈Wprod, but testing with number-conserving data
Wp¼1 achieves out-of-distribution generalization with only
L ≥ 2 training data. In contrast, in-distribution training and
testing with number-conserving data jψli∈Wp¼1 requires
L ≥ N states to generalize.
This result follows from Observation 3 and product

states being sufficient to learn arbitrary unitaries [8]. We
confirm our result numerically in Fig. 3(d).
Numerical results—In Figs. 3(a)–3(c) we study learning

of unitaries with hardware-efficient ansatz UHEðθÞ (see SM
Sec. D [68]). In Fig. 3(a), we converge to local minima with
Ctrain ≫ 0 for M ≤ RL, while we find global minimum
Ctrain ≈ 0 for M ≥ RL, which is indicated as black dashed
line. In Fig. 3(b), generalization Ctest ≈ 0 is achieved only
for M ≥ R∞ and L ≥ Lc ≈ 2R∞=R1 indicated by the
vertical black line. In Fig. 3(c), the number of training
steps E to converge show characteristic peaks close to Mc
and Lc indicated by black dashed lines. In Fig. 3(d) we
show the test error against L for the UXY ansatz which

(a) (b) (c) (d)

FIG. 3. (a) Median Ctrain againstM and L for learning unitaries. Dashed black lines indicateMcðLÞ ¼ RL and Lc ¼ 2R∞=R1. We have
aN ¼ 4 qubit hardware-efficient ansatz trained with random training states and gradient descent [82] simulated with [83]. Target unitary
is V ¼ UðθgÞ with random parameter θg, where we take median over 10 random instances. (b) Average Ctest against M and L.
(c) Number of training steps E until reaching Ctrain < 10−4. (d) Ctest against L with particle-number conserving UXY ansatz for N ¼ 6
qubits and M ¼ 90. We train and test with product states Wprod and particle-number conserving states Wp¼1.
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conserves particle number P. We find that training with
symmetric data Wprod generalizes for L ≥ 2, while training
with nonsymmetric Wp¼1 generalizes for L ≥ N which
numerically confirms Observation 3. Further, the green
curve shows out-of-distribution generalization where train-
ing with Wprod generalizes with test data from Wp¼1 using
only L ≥ 2, while in-distribution learning (blue curve)
requires L ≥ N, confirming Observation 4. We study
UXY in more detail in SM, Sec. E and other models which
generalize for constant L in SM, Sec. F [68].
Conclusion—Our newly introduced DQFIM Q and its

maximal rank RL quantify the learnable degrees of freedom
of ansatz UðθÞ using L training states. RL increases with L
until the training data become overcomplete at RLc

¼ R∞
and Lc ≈ 2R∞=R1 where one is able to generalize.
Overparametrized models converge to global minima

with high probability [59,77,79,80,87–89]. We show that
overparametrization depends on L and occurs for M ≥
McðLÞ ≥ RL circuit parameters. Overparametrization and
generalization appear in three distinct regimes, where
training time increases substantially at the transitions,
potentially indicating computational phase transitions
[26,79].
While symmetries have been shown to improve gener-

alization [45,46], we show that symmetries in data can also
increase L needed to generalize due to higher R∞=R1 ratio
compared to nonsymmetric data. This also implies that out-
of-distribution generalization can outperform in-distribu-
tion generalization when training on nonsymmetric data,
but testing on symmetric data. Note that nonsymmetric data
have larger Mc, which implies an interesting trade-off
between Lc and Mc.
The DQFIM accurately characterizes overparametriza-

tion and generalization depending on the specific structure
and symmetries of ansatz UðθÞ and training data ρL. In
contrast, previously considered uniform generalization
bounds provide only a loose bound on generalization error
∼

ffiffiffiffiffiffiffiffi
1=L

p
without accounting for symmetries [7,39]. We

demonstrate the relationship between DLA and generali-
zation, showing that polynomial DLA implies overpara-
metrization and generalization with polynomial circuit
depth and dataset size. Generalization with few data is
possible whenever R∞=R1 ¼ const, explaining the numeri-
cal observations of Refs. [10,39] (see also SM Sec. F).
Thus, problem classes with polynomial DLA [41,84,90]
can be trained with low data cost and avoid barren
plateaus [91,92].
Our results apply to various quantum machine learning

algorithms. We study unitary learning problems, which
includes quantum compiling [30], quantum control (SM,
Sec. G), and quantum generative models (SM, Sec. H). In
SM Sec. I the DQFIM determines convergence of the
subspace-search variational quantum eigensolver for find-
ing eigenstates of Hamiltonians [93]. In SM Sec. J we apply
the DQFIM for classification tasks. Here, the label operator

Ol ¼ ylσz is not a projector and thus has not only one, but
2N−1 degenerate solutions. This reducesMcðLÞ ≈ RLγ by a
constant factor γ ≤ 1 where for a generic ansatz we find
γ ¼ 1

2
. γ can be smaller when the ansatz has symmetries

which opens an interesting approach to reduce circuit depth
in classification tasks.
Numerical evaluation of the DQFIM is straightforward

via differentiation (with code available online [94]) and is
scalable for matrix product states. Quantum computers can
efficiently measure the DQFIM using the Hadamard test
with a single ancilla and two control operations, or
alternatively the shift rule and purification [95] in SM,
Sec. A.
While the complexity of unitaries grows linearly withM

[49,96], we find that the learnable degrees of freedom RL of
unitaries grows only sublinearly with L. Generalization
error for overparametrized models scales as Ctest ∼ 1 −
ðL=LcÞ2 (see SM Sec. E) which saturates the lower bound
derived in Ref. [6]. We note that for underparametrized
models the empirical generalization error Ctest − Ctrain [40]
is not a good indicator of generalization due to convergence
to bad local minima (see SM, Sec. K).
Finally, future work can apply the DQFIM for kernel

models [97,98], noisy systems [61], and quantum natural
gradients [99].
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