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Encoding logical qubits in bosonic modes provides a potentially hardware-efficient implementation of
fault-tolerant quantum information processing. Here, we demonstrate high-fidelity and deterministic
preparation of highly nonclassical bosonic states in the mechanical motion of a trapped ion. Our approach
implements error-suppressing pulses through optimized dynamical modulation of laser-driven spin-motion
interactions to generate the target state in a single step. We demonstrate logical fidelities for the Gottesman-
Kitaev-Preskill state as high as F̄ ¼ 0.940ð8Þ, a distance-3 binomial state with an average fidelity of
F ¼ 0.807ð7Þ, and a 12.91(5) dB squeezed vacuum state.
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Fault-tolerant quantum error correction (QEC) for quan-
tum information processing necessitates the implementa-
tion of redundant encoding within a sufficiently large
Hilbert space to yield protection against local hardware
errors [1]. At present, the predominant strategy focuses on
encoding a logical qubit with multiple discrete-variable
physical qubits manipulated with ultralow operational
errors [2,3]. This approach is resource intensive, and,
despite many impressive demonstrations [4–9], the viability
of using QEC in this way to deliver net improvements in
hardware error rates remains challenging. Many analyses
indicate that a large ratio of physical-to-logical qubits is
necessary for fault-tolerant operation in target algorithms,
posing a substantial resource penalty and far outstripping
device sizes available in the near future [10]. An alternative
approach involves encoding logical qubits within continu-
ous-variable systems [11,12]. In particular, the infinite-
dimensional Hilbert space spanned by the bosonic mode of
a harmonic oscillator offers a highly symmetrical physical
system that lends itself to logical encodings including
Gottesman-Kitaev-Preskill (GKP) [13], binomial [14],
and cat [15] codes. This approach demands fewer individ-
ual physical devices at the cost of increased complexity in
preparing and controlling the logical code words.
Several experimental works have successfully created

different classes of bosonic logical states [16–21], imple-
mented logical gate sets [22], and demonstrated QEC
protocols [23–29]. However, preparing high-quality bosonic
codes for use in QEC remains a significant challenge. For
instance, attaining fault tolerance by concatenating the GKP
code with discrete-variable error-correcting codes requires a

squeezing parameter currently estimated at approximately
10 dB [30,31], a threshold yet to be experimentally reached.
Additionally, only the lowest-order binomial code words
(distance-2) have been experimentally realized so far, while a
minimum distance of 3 is necessary to correct all types of
bosonic errors [14].
In this work, we experimentally demonstrate high-fidelity

deterministic preparation of a variety of bosonic states by
integrating concepts of error suppression via robust control
into the protocol for QEC encoding. Code word generation
is achieved in a single step using optimized time-domain
modulation of the control fields used tomanipulate the qubit
and motional modes of a trapped ion. The control pulses,
obtained from a numerical optimizer, are designed to exhibit
robustness against motional dephasing [32]. We demon-
strate the versatility of our approach by creating several
classes of bosonic states: a highly squeezed 12.91(5) dB
state; square and hexagonal GKP states with a logical
fidelity and squeezing as high as 0.940(8) and 7.5(2) dB,
respectively; and the first realization of a distance-3 bino-
mial logical state that can simultaneously protect against
universal (correctable) bosonic errors. Finally, we demon-
strate the robustness of our protocol to systematic imper-
fections by demonstrating up to 4.8× lower error than
nonrobust solutions in the presence of quasistatic
motional-frequency offsets.
State-preparation is implemented by laser-induced spin-

boson interactions for a single trapped ion described by the
effective Hamiltonian

ĤðtÞ ¼ ΩrðtÞ
2

σ̂þâeiϕrðtÞ þ ΩbðtÞ
2

σ̂þâ†eiϕbðtÞ þ H:c:; ð1Þ

where σ̂þ ¼ j↑ih↓j is the raising operator of the qubit and â
(â†) is the annihilation (creation) operator of the oscillator.*Contact author: tingrei.tan@sydney.edu.au
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The two terms in the Hamiltonian are referred to as the red-
(RSB) and blue-sideband (BSB) interactions [33] with their
respective time-dependent Rabi rates, Ωr;bðtÞ, and phases,
ϕr;bðtÞ. This Hamiltonian provides sufficient control to
produce the bosonic states considered in this work, where
the required nonlinearities for these states are generated
from noncommuting terms in the Hamiltonian at different
times [34]. Furthermore, universal control of the qubit-
oscillator system may be obtained through the addition
of a carrier interaction ĤcðtÞ ¼ ΩcðtÞσ̂þeiϕcðtÞ=2þ H:c:
[19,43], but is not necessary to prepare the states consid-
ered in this Letter.
We numerically design the time-dependent controls of

ĤðtÞ such that a target bosonic state is created via the time

evolution operator e−i
R

ĤðtÞdt with fΩr;bðtÞ;ϕr;bðtÞg as
optimizable control parameters. Optimized control pulses
are obtained through a gradient-based constrained optimi-
zation using Q-CTRL’s Boulder Opal package [32,44].
Constraints are included on candidate control pulses to
improve experimental implementation: first, the Rabi
rates of the RSB and BSB interactions are kept constant
throughout the evolution [ΩrðtÞ ¼ ΩbðtÞ ¼ 2π × 2 kHz] to
avoid unwanted time-varying Stark shifts; second, slew-
rate and filtering constraints are added to the optimized
waveform phases to comply with hardware limitations. We
define the cost function to maximize pulse fidelity for a
target state-preparation task in the presence of motional
dephasing (the dominant source of noise in our system)
while also minimizing total pulse durations [34].
Our experiment is performed with a single 171Ybþ ion

confined in a macroscopic Paul trap, with radial frequencies
fωx;ωyg ¼ 2π × f1.33; 1.51g MHz. The bosonic states
are encoded in the radial-x mode, while the ancillary qubit
is made up of the two magnetically insensitive hyperfine
levels of the 2S1=2 ground state with j↓i ¼ jF ¼ 0; mF ¼ 0i
and j↑i ¼ jF ¼ 1; mF ¼ 0i. Coherent spin-motion inter-
actions are enacted by a 355 nm pulsed laser through
stimulated Raman transitions. Phase modulation of the
RSB and BSB interactions is implemented by adjusting a
radio-frequency (rf) signal that drives an acousto-optic-
modulator in the path of the Raman beam (see Refs. [45,46]
for more details on the experimental system).
The experimental pulse sequence used in state-prepa-

ration is shown in Fig. 1; after initializing the qubit and
bosonic mode to their ground state, j↓i ⊗ j0i, we apply the
Hamiltonian of Eq. (1) with the numerically optimized
pulses to prepare the target state j↓i ⊗ jψi. This is
followed by a state reconstruction protocol that aims to
retrieve the density matrix of the experimentally generated
state. To this end, we measure the characteristic function

χðβÞ ¼ hD̂ðβÞi; ð2Þ
where D̂ðβÞ ¼ eβâ

†−β�â is the displacement operator and
β∈C is a point in phase space.

The characteristic function is sampled using the protocol
outlined in [47]. We apply a state-dependent force (SDF)
D̂½βðtÞσ̂x=2�, where βðtÞ=2 ¼ Ωte−iðϕr−ϕbÞ=2=2, which
maps information from the bosonic mode onto the qubit
for readout. The SDF is implemented by simultaneously
applying the RSB andBSB interactions withΩr ¼ Ωb ¼ Ω.
The real part of the characteristic function, Re½χðβÞ�, is
determined through projective readout of the internal qubit
state of the ion (the imaginary part of the characteristic
function can be obtained by applying a qubit rotation prior to
the SDF). We only perform measurements in the positive
quadrant of phase space. For the states considered in this
work, the remaining quadrants are obtained in postprocess-
ing by the symmetry of χðβÞwith respect to both phase space
axes. Furthermore, we only reconstruct Re½χðβÞ� as the
imaginary part vanishes under this same symmetry.
We experimentally generate several bosonic states to

demonstrate the versatility of our protocol. Each state is
prepared by implementing a targeted control solution
obtained from the numerical optimizer with results
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FIG. 1. State preparation of nonclassical bosonic states in an
ion trap. (a) Two orthogonal Raman beams couple the spin and
motion of a trapped ion, inducing spin-dependent forces. (b) Ex-
perimental pulse sequence: (i) the bosonic mode and qubit are
initialized to their ground state; the control pulse evolves the
system to the target bosonic state under ĤðtÞ [Eq. (1)].
(ii) Reconstruction of characteristic function, χðβÞ, by applying
a displacement, D̂ð�β=2Þ, conditioned on the qubit state in the σ̂x
basis. Readout of the ancilla qubit in the σ̂z basis measures
Re½χðβÞ�. (c) Target bosonic states are prepared by modulating
ϕr;bðtÞ of the bichromatic fields. Insets show the time evolution of
the Wigner function for the ðj0i þ ffiffiffi

3
p j6iÞ=2 binomial state.
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summarized in Table I. The density matrix, ρ̂exp, is retrieved
from the experimentally measured characteristic function
using a convex optimization procedure [34,48]. State-
preparation fidelity is then computed as F ¼ hψ tjρ̂expjψ ti,
where jψ ti is the target state. For GKP states, we also report
the logical fidelity that quantifies the amount of logical
information contained in the state [49]. We bootstrap these
measurements to determine the associated uncertainties [50].
We first prepare a squeezed state ŜðrÞj0i, where ŜðrÞ ¼

exp½1
2
ðr�â2 − râ†2Þ�, with a target squeezing parameter of

r ¼ 1.55. The reconstructed characteristic function is

shown in Fig. 2(a), which we fit to theory [47] and find
a squeezing parameter r ¼ 1.487ð5Þ [12.91(5) dB]. We
detail squeezing estimations using multiple analysis meth-
ods in the Supplemental Material [34]. We determine a
fidelity of 0.753(4), where the accuracy is limited by
motional dephasing during reconstruction.
We next prepare approximate GKP code words (see the

Supplemental Material [34] for a detailed description). The
exact GKP codespace is defined as the mutual þ1 eigen-
space of the stabilizer displacement operators ŜX ¼ D̂ð2αÞ
and ŜZ ¼ D̂ð2βÞ, for βα� − β�α ¼ iπ and α; β∈C. This
definition admits unphysical GKP code words whose
Wigner functions are two-dimensional grids of delta
functions with infinite extent. GKP states can be made
physical by applying a Gaussian envelope characterized by
the parameter Δ∈ ½0; 1�, where the exact code words are
recovered in the limit Δ → 0 [13].
We prepare the j0iL logical states of a square and a

hexagonal GKP code with target squeezings of 10.43 dB
(Δ ¼ 0.301), and an additional square GKP code with
12.15 dB (Δ ¼ 0.247) [see Figs. 2(c)–2(h)]. The prepara-
tion of j1iL states is not shown experimentally; however,
our pulse optimization scheme produces similar results in
fidelity and duration. The state-preparation fidelity, F , and
logical fidelity, F̄ [34], are reported in Table I.
The achieved squeezings of the GKP states are

calculated from ρ̂exp with hŜXi and hŜZi, as defined
in Ref. [51] (see Table I). Alternatively, using the

TABLE I. Fidelities, squeezings, and durations of experimen-
tally prepared bosonic states. The state-preparation fidelities,
defined as F ¼ hψ tjρ̂expjψ ti, are calculated from the recon-
structed density matrices ρ̂exp of the data in Figs. 2 and 3. We
also report the logical fidelities of the GKP states, denoted by the
subscript L. Uncertainties correspond to the 1-sigma deviation
obtained from bootstrapping.

State Fidelity Squeezing (dB) Time (μs)

Ŝðr ¼ 1.55Þj0i 0.753(4) 12.91(5) 1057
GKPsΔ¼0.247 0.90ð1ÞL, 0.60(1) 5.5(2), 6.3(2) 1301
GKPsΔ¼0.301 0.940ð8ÞL, 0.83(1) 7.5(2), 7.5(2) 933
GKPhΔ¼0.301 0.91ð1ÞL, 0.77(3) 6.5(3), 6.3(4) 978

ðj0i þ j4iÞ= ffiffiffi
2

p
0.889(9) � � � 514

ðj0i þ ffiffiffi
3

p j6iÞ=2 0.843(9) � � � 688

ð ffiffiffi
3

p j3i þ j9iÞ=2 0.77(1) � � � 780
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FIG. 2. Experimentally reconstructed characteristic functions of squeezed and GKP states. (a),(b) Squeezed state with a target
squeezing parameter r ¼ 1.55 created with only coherent first-order sideband interactions. (c)–(f) Approximate square GKP states with
target envelope parameters ofΔ ¼ 0.247 and Δ ¼ 0.301, respectively. (g),(h) Approximate hexagonal GKP state with targetΔ ¼ 0.301.
The theoretical characteristic functions of each GKP state are plotted below each subfigure. The phase space coordinates are normalized

with β̃ ¼ β=
ffiffiffiffiffi
2π

p
for the square and β̃ ¼ β=

ffiffiffiffiffiffiffiffiffiffiffiffi
3

p
π

p
for the hexagonal GKP plots. The achieved fidelities, squeezing levels, and pulse

durations are summarized in Table I. The theoretical decoherence-free fidelities are F th ≥ 0.99 for the squeezed state and F th ≥ 0.975
for the GKP states. We attribute the circular smearing in (c) and (e) to motional mode dephasing.
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analysis method of Ref. [19] results in squeezings
of fGKPsΔ¼0.247;GKP

s
Δ¼0.301;GKP

h
Δ¼0.301g ¼ f10.4ð1Þ;

9.47ð8Þ; 9.1ð1Þg dB, which are considerably higher than
the values calculated above. The discrepancy in the results
obtained by the two methods motivates a more compre-
hensive characterization method for GKP states (a dis-
cussion on these methods is included in the Supplemental
Material [34]).
We also prepare binomial code words, which encode

logical qubits in finite superpositions of Fock states [14]
(see the Supplemental Material [34] for a detailed descrip-
tion). Binomial codes can exactly correct for errors that are
polynomial in creation and annihilation operators [52]. We
first create the state jþZS¼1ibin ¼ ð1= ffiffiffi

2
p Þðj0i þ j4iÞ [see

Figs. 3(a)–3(c)],which can protect against linear errors in â or
â†. We then create distance-3 binomial states, jþZS¼2ibin ¼
1
2
ðj0i þ ffiffiffi

3
p j6iÞ and j−ZS¼2ibin ¼ 1

2
ð ffiffiffi

3
p j3i þ j9iÞ [see

Figs. 3(d)–3(i)], which protect against errors quadratic in â
or â† [14]. The achieved fidelities are reported in Table I. To
the best of our knowledge, this work appears to be the first
experimental preparation of distance-3 binomial code words.
Finally, we examine the impact of incorporating robust-

ness against motional dephasing by comparing robust and
nonrobust optimized state-preparation protocols. Here, we
remove duration constraints in the optimization for both
pulses, and the nonrobust pulse is optimized without â†â
Hamiltonian terms [34]. Experimentally, we compare both
protocols for binomial state jþZS¼1ibin preparation (see
Fig. 4) and measure a pseudofidelity

F̃ ¼ 1

N

X

i

χexpðβiÞχthðβiÞ; ð3Þ

which computes the overlap of experimental and theoretical
characteristic functions [53]. Here,N ¼ 1=

P
i χthðβiÞ2 is a

normalization factor. This strategy provides a qualitative
comparison with fewer measurements. We quantify the
robustness in the presence of applied quasistatic δâ†â
offsets, which can be associated with miscalibrations of
the motional frequency. Figure 4 illustrates that the fidelity
of the state generated using a robust pulse remains stable
despite errors up to δ=Ω ¼ �0.1, while errors accumulate
rapidly for the nonrobust pulse as jδj increases from zero.
Furthermore, the robust pulse achieves up to 4.8× lower
error for δ=Ω ¼ −0.1. Measurements for both cases align
well with theoretical predictions when incorporating state-
preparation and measurement (SPAM) errors.
The main error mechanisms affecting achieved fidelities

and squeezing parameters are thermal noise and motional
dephasing [34]. Thermal noise results from imperfect
cooling, with typically achieved average phonon occupan-
cies of n̄ ¼ 0.05–0.1. Motional dephasing noise arises from
noise in the ion trap’s rf resonator and its electronic circuit.
Numerical simulations suggest that dephasing also leads to
significant infidelities during the reconstruction protocol,

potentially dominating the results reported in Table I.
Approximately 3%–7% of the measured characteristic
function error also results from residual spin-motion
entanglement, causing Re½χð0Þ� ≠ 1 after the pulse. This
can be mitigated by a midcircuit measurement before the
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FIG. 3. Reconstructed characteristic function of bino-
mial code words. Experimental and theoretical characte-
ristic functions of (b),(c) jþZS¼1ibin ¼ ð1= ffiffiffi

2
p Þðj0i þ j4iÞ,

(e),(f) jþZS¼2ibin ¼ 1
2
ðj0i þ ffiffiffi

3
p j6iÞ, and (h),(i) j−ZS¼2ibin ¼

1
2
ð ffiffiffi

3
p j3i þ j9iÞ. (a),(d),(g) Theoretical (unshaded, black) and

experimental (shaded, red) Fock number occupation probabil-
ities, calculated from ρ̂exp. Preparation of j−ZS¼2ibin begins with
the ancilla qubit in the j↑i state. The theoretical decoherence-free
fidelities for each state are F th ≥ 0.9999.
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reconstruction pulse; we have opted against this due to
substantial motional dephasing-induced errors during
measurement.
In summary, we have demonstrated a deterministic

protocol for generating a wide range of high-fidelity
bosonic states relevant to QEC using numerically opti-
mized and error-robust pulses. Our scheme only requires
phase modulation of first-order red- and blue-sideband
transitions, compatible with conventional experimental
techniques. This approach surpasses gate-based methods
[26,54] as pulse-level optimization enables higher theo-
retical fidelities for a given duration [34].
The protocol’s versatility, robustness to dephasing, and

the quality of the states demonstrated in this work suggest
that this method is promising for bosonic QEC. Our
achieved squeezed state only uses first-order sideband
interactions and offers an alternative to previous trapped-
ion demonstrations [55–57]. Furthermore, the distance-3
binomial code words created by our protocol demonstrate
the experimental feasibility of implementing logical codes

that can simultaneously protect against boson loss, gain,
and dephasing events [14]. Our GKP states show high
logical fidelities and squeezings and may also be useful for
quantum sensing of displacements [51], opening new
opportunities in precision measurement.
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Fréchette-Viens, R. Shillito, F. Hopfmueller, M. Tremblay,
N. E. Frattini, J. C. Lemyre, and P. St-Jean, Autonomous
quantum error correction of Gottesman-Kitaev-Preskill
states, Phys. Rev. Lett. 132, 150607 (2024).

[30] N. C. Menicucci, Fault-tolerant measurement-based quan-
tum computing with continuous-variable cluster states,
Phys. Rev. Lett. 112, 120504 (2014).

[31] K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, High-
threshold fault-tolerant quantum computation with analog
quantum error correction, Phys. Rev. X 8, 021054
(2018).

[32] H. Ball, M. J. Biercuk, A. R. R. Carvalho, J. Chen, M. Hush,
L. A. D. Castro, L. Li, P. J. Liebermann, H. J. Slatyer, C.
Edmunds, V. Frey, C. Hempel, and A. Milne, Software tools
for quantum control: Improving quantum computer perfor-
mance through noise and error suppression, Quantum Sci.
Technol. 6, 044011 (2021).

[33] D. J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B. E.
King, and D. M. Meekhof, Experimental issues in coherent
quantum-state manipulation of trapped atomic ions, J. Res.
Natl. Inst. Stand. Technol. 103, 259 (1998).

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.133.050602, which in-
cludes Refs. [35–42], for additional information about
the experimental methods, numerical optimization, and
analysis.

[35] S. Diamond and S. Boyd, CVXPY: A Python-embedded
modeling language for convex optimization, J. Mach. Learn.
Res. 17, 1 (2016), http://jmlr.org/papers/v17/15-408.html.

[36] I. Strandberg, Simple, reliable, and noise-resilient continu-
ous-variable quantum state tomography with convex opti-
mization, Phys. Rev. Appl. 18, 044041 (2022).

[37] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, and K. K.
Sabapathy, Progress towards practical qubit computation
using approximate Gottesman-Kitaev-Preskill codes, Phys.
Rev. A 101, 032315 (2020).

PHYSICAL REVIEW LETTERS 133, 050602 (2024)

050602-6

https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1088/1367-2630/16/9/093045
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1038/s41586-019-0960-6
https://doi.org/10.1038/s41467-019-12290-7
https://doi.org/10.1038/s41467-019-12290-7
https://doi.org/10.1038/s41586-019-1421-y
https://doi.org/10.1038/s41586-019-1421-y
https://doi.org/10.1038/s41567-022-01776-9
https://doi.org/10.1038/s41567-022-01776-9
https://doi.org/10.1103/PRXQuantum.3.030301
https://doi.org/10.1103/PRXQuantum.3.030301
https://doi.org/10.1126/science.adk7560
https://doi.org/10.1126/science.adk7560
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1038/s41567-021-01487-7
https://doi.org/10.1038/s41586-023-05782-6
https://doi.org/10.1038/s41586-023-05782-6
https://doi.org/10.1038/s41586-023-05784-4
https://doi.org/10.1038/s41586-023-05784-4
https://doi.org/10.1103/PhysRevLett.132.150607
https://doi.org/10.1103/PhysRevLett.112.120504
https://doi.org/10.1103/PhysRevX.8.021054
https://doi.org/10.1103/PhysRevX.8.021054
https://doi.org/10.1088/2058-9565/abdca6
https://doi.org/10.1088/2058-9565/abdca6
https://doi.org/10.6028/jres.103.019
https://doi.org/10.6028/jres.103.019
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.050602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.050602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.050602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.050602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.050602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.050602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.050602
http://jmlr.org/papers/v17/15-408.html
http://jmlr.org/papers/v17/15-408.html
http://jmlr.org/papers/v17/15-408.html
https://doi.org/10.1103/PhysRevApplied.18.044041
https://doi.org/10.1103/PhysRevA.101.032315
https://doi.org/10.1103/PhysRevA.101.032315


[38] A. L. Grimsmo and S. Puri, Quantum error correction with
the Gottesman-Kitaev-Preskill code, PRX Quantum 2,
020101 (2021).

[39] S. Haroche and J.-M. Raimond, Exploring the Quantum
(Oxford University Press, New York, 2006).

[40] M. H. Shaw, A. C. Doherty, and A. L. Grimsmo, Stabilizer
subsystem decompositions for single- and multimode
Gottesman-Kitaev-Preskill codes, PRX Quantum 5,
010331 (2024).

[41] M. H. Shaw, A. C. Doherty, and A. L. Grimsmo, Logical
gates and read-out of superconducting Gottesman-Kitaev-
Preskill qubits, arXiv:2403.02396.

[42] J. Hastrup, K. Park, R. Filip, and U. L. Andersen, Uncondi-
tional preparation of squeezed vacuum from Rabi inter-
actions, Phys. Rev. Lett. 126, 153602 (2021).

[43] C. K. Law and J. H. Eberly, Arbitrary control of a quantum
electromagnetic field, Phys. Rev. Lett. 76, 1055 (1996).

[44] Q-CTRL, Boulder Opal, https://q-ctrl.com/boulder-opal
(2023).

[45] R. J. MacDonell, T. Navickas, T. F. Wohlers-Reichel, C. H.
Valahu, A. D. Rao, M. J. Millican, M. A. Currington, M. J.
Biercuk, T. R. Tan, C. Hempel, and I. Kassal, Predicting
molecular vibronic spectra using time-domain analog quan-
tum simulation, Chem. Sci. 14, 9439 (2023).

[46] C. H. Valahu, V. C. Olaya-Agudelo, R. J. MacDonell, T.
Navickas, A. D. Rao, M. J. Millican, J. B. Pérez-Sánchez, J.
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