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There are two types of universality in measurement-based quantum computation (MBQC): strict and
computational. It is well known that the former is stronger than the latter. We present a method of
transforming from a certain type of computationally universal MBQC to a strictly universal one. Our
method simply replaces a single qubit in a resource state with a Pauli-Y eigenstate. We applied our method
to show that hypergraph states can be made strictly universal with only Pauli measurements, while only
computationally universal hypergraph states were known.
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Quantum computers solve several problems faster than
classical computers with the best known classical algorithms
[1–3]. Driven by this advantage, tremendous effort has been
devoted to developing quantum computers, and several
quantum-computingmodels were proposed such as quantum
circuit model [4], measurement-based quantum computation
(MBQC) [5,6], and adiabatic quantum computation [7].
Although these models have unique features, they are the
same in terms of computational capability (i.e., what prob-
lems can be solved in polynomial time). More concretely,
thesemodels can execute “any”quantumcomputation, hence
are called universal quantum-computing models.
There are two types of universality in quantum compu-

tation [8]. One is strict universality, which is the strongest
notion of universality. It means that any unitary operator
can be implemented with an arbitrary high accuracy; hence,
any quantum state can also be generated. However, a
restricted class of unitary operators is sufficient to generate
the output probability distribution of any quantum circuit
with an arbitrary high accuracy [8,9]. Therefore, we can
define a weaker notion of universality called computational
universality. To clarify the difference between these two
notions, let us consider the quantum circuit model with n
initialized input qubits j0ni. In this model, the universality
is determined by gate sets; fH; T;ΛðZÞg and fH;ΛðSÞg
are examples of strictly universal gate sets. Here,
H ≡ jþih0j þ j−ih1j, where j�i≡ ðj0i � j1iÞ= ffiffiffi

2
p

, is the
Hadamard gate, T ≡ j0ih0j þ eiπ=4j1ih1j is the T gate,
ΛðUÞ≡ j0ih0j ⊗ I þ j1ih1j ⊗ U is the controlled-U gate
for any single-qubit unitary operator U, I is the two-
dimensional identity gate, Z≡ T4 is the Pauli-Z gate, and
S≡ T2 is the S gate. Real unitary operators, however, are

sufficient to construct the computationally universal gate
set fH;CCZg [10], where CCZ≡ I⊗3 − 2j111ih111j is
the controlled-controlled-Z (CCZ) gate. By definition, it is
trivial that strictly universal gate sets are also computa-
tionally universal, but the opposite does not hold. The
computationally universal gate set fH;CCZg is insufficient
to generate complex quantum states, the amplitudes of
which include imaginary numbers. For example, the
n-qubit quantum state jψ ti ¼ ðj0ni þ ij1niÞ= ffiffiffi

2
p

cannot
be generated with fidelity larger than 1=2. This is because
any quantumstate generated by applyingH andCCZ gates to
j0ni is written as a real quantum state jϕri ¼

P
z∈ f0;1gn czjzi

with real numbers fczgz∈ f0;1gn satisfying
P

z∈ f0;1gn c2z ¼ 1;
hence, jhψ tjϕrij2 ¼ ðc20n þ c21nÞ=2 ≤ 1=2.
The difference between complex and real quantum states

becomes more apparent when we focus on multiparty
quantum information processing. There exists a task con-
ducted by three parties that can be achieved by using
complex quantum states but cannot by using real ones [11],
and their difference was already experimentally observed
by using photons [12] and superconducting qubits [13].
Given the importance of complex quantum states, the
resource theory of imaginarity has also been developed
[14–17]. These results would indicate the necessity of strict
universality.
As mentioned above, MBQC is a universal quantum-

computing model [5]. It proceeds by adaptively measuring
qubits of a resource state one by one. Its universality is
determined by a given resource state (and available meas-
urement bases). For both types of universality, several
resource states were proposed. Cluster states [18],
Affleck-Kennedy-Lieb-Tasaki (AKLT) states [19], and
parity-phase graph states [20], which are weighted graph
states [21,22], are common examples of strictly universal
resource states. For computational universality, several*Contact author: yuki.takeuchi@ntt.com
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hypergraph states were found, which require only Pauli
measurements [23–27]. As with the quantum circuit model,
strictly universal resource states are trivially computation-
ally universal, but the opposite is not true. Despite the
importance of understanding the hardness of developing
strictly universal quantum computers, the gap between
these two types of universality has been less explored
in MBQC.
In this Letter, we present a method of transforming to the

strictly universal MBQC from any computationally uni-
versal one that can precisely implement H and CCZ. Our
method is quite simple in that it simply replaces a qubit in
a resource state of a computationally universal MBQC with
a Pauli-Y eigenstate j þ ii≡ ðj0i þ ij1iÞ= ffiffiffi

2
p

. Since the
added j þ ii works like a catalyst in chemistry, we call the
transformation with our method catalytic transformation. In
fact, j þ ii achieves a strictly universal MBQC, while it is
invariant during MBQC [see Fig. 3(b)]. An advantage of
our method is that the required measurement bases are the
same before and after the transformation. To devise our
method, we first show that j1i can be deterministically
prepared by applying H and CCZ gates to j000i. We then
show that S is deterministically applicable to any quantum
state jψi by applying H and CCZ gates to j1ij þ iijψi. As
an important point, j þ ii is not consumed when we
implement the S gate; hence, it can be repeatedly used
to apply multiple S gates. This approach can be considered
as an example of the catalytic embeddings introduced in
Ref. [28], i.e., a catalytic embedding of S over fH;CCZg.
Thus, our results would exhibit the usefulness of the
catalytic embeddings for MBQC. Another example was
given in Ref. [29], which generalizes the representation of
complex numbers used in Ref. [8]. Our approach is also
related to conversions with catalyst states [30]. In summary,
by using our method, we achieve strictly universal MBQC
that can execute any quantum computation composed
of fH; S; CCZg.
A weakness of our method is that the S gates cannot be

applied in parallel because each S requires a single j þ ii, but
the transformed resource state includes only a single j þ ii.
Toward relaxing this weakness, we also propose a technique
of duplicating j þ ii in the Supplemental Material [31]. Its
construction is inspired by the jTi-catalyzed jCCZi → 2jTi
factory (C2T factory) [33], which is a technique in
quantum error correction. Here, jTi≡ Tjþi and jCCZi≡
CCZðjþi⊗3Þ are magic states [34] for the T and CCZ gates,
respectively. The C2T factory outputs jTi⊗3 by applying
Clifford gates to jCCZijTi. In keeping with the terminol-
ogies in previous studies [35,36], the third output qubit is
called a catalyst. As an interesting point, the third output
qubit can be used as an input of the next C2T factory; hence,
we can reinterpret it as a method of generating jTi⊗2 from
jCCZi. We propose a similar technique for the magic state
j þ ii of the S gate. We generate j þ ii⊗2 by applyingH and
CCZ gates to j1ij0ij þ ii and can similarly use the second
output qubit as an input of the next duplication.

To concretely reveal the usefulness of our transformation
method, we apply it to the MBQCwith the hypergraph state
in Ref. [26]. The MBQC in Ref. [26] achieves computa-
tionally universal quantum computation with only Pauli-X
and -Z basis measurements. In any MBQCwith hypergraph
states, j þ ii can be prepared by a measurement in the
Pauli-Y basis. Therefore, our transformation shows that
there are strictly universal hypergraph states with measure-
ments in the Pauli-X, -Y, and -Z bases. To the best of our
knowledge, only computationally universal hypergraph
states have been known for Pauli measurements.
Strictly universal quantum computation with

fH; S; CCZg—As a preliminary to our main results, we
show that the gate set fH; S; CCZg is sufficient for strictly
universal quantum computation. A set G of quantum gates is
called strictly universal if there is a positive constant n0 such
that the subgroup of unitary operators generated byG is dense
in the special unitary group SUð2nÞ for any natural number
n ≥ n0 [8]. Simply speaking, by combining quantumgates in
a strictly universal gate set, any unitary operator can be
constructed with an arbitrarily high accuracy. Kitaev showed
fH;ΛðSÞg to be a strictly universal gate set withn0 ¼ 2 [37].
With this fact inmind, it is sufficient for our purpose to give a
decomposition ofΛðSÞ in terms ofH, S, andCCZ gates. We
give the decomposition in Fig. 1 (for the proof, see the
Supplemental Material [31]).
Main results—Resource states for a MBQC consist of

three sections: input section CI , body CM, and output
section CO. This division was introduced for graph states
[6], but we do not assume that the resource states are graph
states. In fact, our argument holds even for undiscovered
computationally universal states that may not be graph
states. For any natural number n, let Vn be any n-qubit
unitary operator composed of fH;CCZg. In this Letter, we
call the MBQC computationally universal if and only if for
any n ≥ n0, Vn can be applied on CO by measuring all
qubits in CI ∪ CM one by one in appropriate bases.
Let jΨni be a computationally universal resource state

with n input qubits jψ inðnÞi≡ ð⊗n
i¼1 U

ðiÞ
in Þj0ni, where the

single-qubit unitary operator UðiÞ
in is I or H for each

1 ≤ i ≤ n. Our purpose is to transform jΨni to a strictly
universal resource state that deterministically implements
any unitary operator composed of fH; S; CCZg (up to a by-
product). To this end, we first expand the size from n to
N ¼ nþ 2 regardless of the number of the S gates to be
applied. We then replace a single qubit in CI of jΨNi with
j þ ii, as shown in Fig. 2 [38]. By using this transformed

FIG. 1. Decomposition of ΛðSÞ in terms of H, S, and CCZ
gates. Single ancillary qubit j0i input into the right quantum
circuit returns to j0i at the end of the quantum circuit.
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resource state, strictly universal quantum computation is
executed on the first n input qubits jψ inðnÞi with the aid of
the two ancillary qubits jψ inð1Þij þ ii.
TheMBQC on the transformed resource state proceeds as

follows. (1) Initialize jψ inðnÞijψ inð1Þij þ ii to j0nþ1ij þ ii.
This can be accomplished without the added j þ ii because
the given resource state is computationally universal, and
jψ inðnÞijψ inð1Þi is a tensor product of j0i’s and/or jþi’s.
(2) Run the quantum circuit in Fig. 3(a) on the (nþ 1)th, nth,
and (n − 1)th input qubits j000i. Therefore, the (nþ 1)th
qubit becomes j1i, which will be used to implement the S
gate in step 3 (for the proof, see the Supplemental Material
[31]). This step can also be implemented without the added

j þ ii because the given resource state is computationally
universal. (3) Depending on which quantum gate wewant to
apply on the first n qubits, carry out one of the following
procedures: (a) When H or CCZ is applied, conduct the
correspondingmeasurements in the original computationally
universal MBQC. (b) When S is applied, run the quantum
circuit in Fig. 3(b) by using (nþ 1)th and (nþ 2)th input
qubits j1ij þ ii (for the proof, see the SupplementalMaterial
[31]). Note that j1ij þ ii is invariant in step 3; hence, the S
gate can be applied at any time. In other words, j1ij þ ii can
be used recursively. (4) Finally, a desired output state is
generated on the first n qubits in CO (up to a by-product). An
advantage of our method is that the set of the required
measurement bases does not change before and after our
transformation. This is because we use only H and CCZ
gates in the above procedures.
Application to MBQC with hypergraph states—Since the

pattern of measurements depends on a resource state to
which our catalytic transformation is applied, we cannot
discuss its detail without specifying the resource state(, and
hence we give our results by using quantum circuits in the
previous section). In this section, to state our results in
terms of MBQC rather than the quantum circuit model, we
apply our transformation to a concrete hypergraph state.
Hypergraph states are generalizations of graph states [40].
Let G≡ ðV; E2; E3Þ be a triplet of the set V of m vertices,
the set E2 of edges connecting two vertices, and the set
E3 of hyperedges connecting three vertices. Note that
hyperedges connecting more than three vertices are also
generally allowed, but they are unnecessary in this section.
An m-qubit hypergraph state jGi corresponding to
the hypergraph G is defined as ðQðj;k;lÞ∈E3

CCZjklÞ
ðQðj;kÞ∈E2

ΛðZÞjkÞjþi⊗m, where the subscript represents
to which qubits the quantum gate is applied.

FIG. 2. Schematic of our transformation. Each circle represents
a qubit. Red and blue ellipses represent CI and CO, respectively.
Other qubits (not covered by an ellipse) correspond to CM. By
replacing the input qubit (i.e., jψ inð1Þi) with j þ ii in a given
computationally universal resource state jΨNi, it becomes strictly
universal. Another jψ inð1Þi will be used to prepare j1i. Note that
this transformation is applicable to any resource state that can
precisely implement H and CCZ.

(a)

(b)

FIG. 3. Quantum circuits used to implement the S gate. It is
important that necessary quantum gates are only H and CCZ
gates. (a) Bit flip on j0i can be implemented using only H and
CCZ gates. “CZ12 gate” means that the quantum circuit enclosed
by a blue line is equivalent to ΛðZÞ ⊗ I. (b) S can be applied to
any single-qubit state jψi by using j1ij þ ii as a catalyst. j þ ii is
given as an input qubit due to our transformation, and j1i is
prepared with a quantum circuit in (a).
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The hypergraph state in Ref. [26] was shown to be
computationally universal and prepared by applying the
controlled-Z (CZ) gates to the Θðn4dÞ jþi’s and Θðn3dÞ
small hypergraph states shown in Fig. 4(a), wheren andd are
the number of input qubits and depth under the gate set
fH;CCZg, respectively. From our argument in the previous
sections, the above hypergraph state [26] can bemade strictly
universal by replacing an input qubit with a single j þ ii.
Such replacement can be accomplished by modifying one of
the small hypergraph states such as that in Fig. 4(b). By
measuring the addedqubit in the Pauli-Y basis, the third input
state becomes j þ ii (up to a by-product) due to the gate
teleportation. Since the original hypergraph state [26]
requires only Pauli-X and -Z basis measurements for
computational universality, the transformed hypergraph state
achieves strict universality by using a single Pauli-Y basis
measurement in addition to those Pauli measurements (see
also the Supplemental Material [31]). Under the assumption
that quantum computers are more powerful than classical
computers, this Pauli universality cannot be obtained by
using graph states because Pauli measurements on graph

states can be efficiently simulated with a classical computer.
Note that the combination of the hypergraph states in
Ref. [26] and Pauli-X and -Z basis measurements cannot
achieve the strict universality, i.e., cannot implement the S
gate. This is because these states and measurements are real
quantum states and operations, respectively. Therefore, our
transformation surely makes a nonstrictly universal MBQC
to a strictly universal one.
Our strictly universal hypergraph state should be useful

for distributed quantum computation [41], which is quan-
tum computation conducted on quantum internet [42]. It is
a promising approach to realize a universal quantum
computer because it only requires small or intermediate-
scale quantum computers to build a large-scale quantum
computer. To construct quantum internet, it would be
important to convert from an entangled state to another
one (e.g., from a graph state to the tensor product of Bell
pairs [51]). Our hypergraph state can be used to prepare any
entangled state (up to a by-product) by just performing Pauli
measurements in each quantum computer. Furthermore, it is
compatible with several quantum communication protocols
such as quantum key distribution [52] and one-time pro-
grams [53] in the sense that they can also be implemented
with Pauli measurements. In the SupplementalMaterial [31],
to evaluate the practicality of this application, we discuss the
required number of qubits.
Conclusion and discussion—We have presented a

method of transforming from a computationally universal
to strictly universal MBQC by simply replacing a single
input qubit with a catalyst j þ ii [54]. We believe our
results will facilitate the discovery of novel strictly uni-
versal resource states. By applying our transformation to
the hypergraph state [26], we have constructed a strictly
universal hypergraph state. Our results in Fig. 4 should
indicate that the gap between the computational and strict
universalities is smaller than expected thus far. In fact, our
constructed strictly universal hypergraph state has the same
amount of magic (i.e., nonstabilizerness) with the computa-
tionally universal hypergraph state [26] when we quantify it
by using the stabilizer rank [56]. It would be interesting to
extensively explore the gap between computationally uni-
versal and strictly universal MBQCs with Pauli measure-
ments from the viewpoint of magic (see, e.g., Ref. [57]).
In Ref. [20], the strict universality of weighted graph

states with Pauli-X and -Z basis measurements was shown.
Our hypergraph state also requires a Pauli-Y basis meas-
urement to achieve strict universality. Although our results
reduce the gap between them, weighted graph states are still
slightly superior to hypergraph states. However, with
respect to verifiability (i.e., how easily the fidelity between
the ideal state and an actual state can be estimated),
hypergraph states are conversely superior to weighted
graph states. Although only Pauli-X and -Z basis measure-
ments are sufficient for hypergraph states [58,59], non-
Pauli measurements are required for weighted graph

(a)

(b)

FIG. 4. Transformation of a computationally universal hyper-
graph state to a strictly universal one. Each vertex and edge
represent jþi and the CZ gate, respectively. Each green rectangle
represents CCZ. (a) The hypergraph state jG1

3i in Ref. [26] with
n ¼ 3 input qubits and depth d ¼ 1. Any 1-depth quantum circuit
composed of fH;CCZg can be run on jþi⊗3 by measuring it in
Pauli-X and -Z bases. By entangling a number of jG1

3i’s and jþi’s
using CZ gates, the computationally universal hypergraph state
[26] is generated. (b) Transformed hypergraph state. Difference
from (a) is that an additional single jþi is entangled with the third
input qubit by using the CZ gate. By measuring it in the Pauli-Y
basis, the third input qubit becomes Sjþi ¼ j þ ii (up to a by-
product) due to gate teleportation.

PHYSICAL REVIEW LETTERS 133, 050601 (2024)

050601-4



states [60]. It would be interesting to investigate differences
between them, which are two different generalizations of
graph states, more deeply. As another future work, it will be
interesting to generalize our results to other nonstrictly
universal gate sets.
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