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Ensemble inequivalence, i.e., the possibility of observing different thermodynamic properties depending
on the statistical ensemble which describes the system, is one of the hallmarks of long-range physics, which
has been demonstrated in numerous classical systems. Here, an example of ensemble inequivalence of a
long-range quantum ferromagnet is presented. While the T ¼ 0 microcanonical quantum phase-diagram
coincides with that of the canonical ensemble, the phase diagrams of the two ensembles are different at
finite temperature. This is in contrast with the common lore of statistical mechanics of systems with short-
range interactions where thermodynamic properties are bound to coincide for macroscopic systems
described by different ensembles. The consequences of these findings in the context of atomic, molecular,
and optical setups are delineated.
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Introduction—In recent years the interest of the research
community in the equilibrium and dynamical behavior of
long-range interacting quantum systems has experienced a
unprecedented surge. Part of this enthusiasm stems from
recent developments in the control, manipulation, and
observation of atomic, molecular, and optical (AMO)
systems, where long-range interactions within the micro-
scopic components of the system are prevalent [1–8].
Conventionally, we refer to a many-body system as
long-ranged if its two-body interaction potential VðrÞ
decays as a power law of the distance r, VðrÞ ∝ r−α, with
sufficiently small and positive α.
The system’s phenomenology is heavily influenced by

the exponent α. For α > α�, with α� a universal threshold
value, the critical behavior mirrors that of systems with
short-range interactions, while for d < α < α� in d dimen-
sions the universal scaling near the phase transition is
modified by the long-range couplings [9–13]. In the strong
long-range regime (α < d), where traditional thermody-
namics does not apply, rescaling the interaction strength by
an appropriate size dependent factor, i.e., the Kac’s
rescaling, restores energy extensivity but leaves most
thermodynamic functions nonadditive. Notably, it has been
demonstrated in numerous classical systems that this
regime exhibits the appearence of quasi-stationary states
(QSSs) [14–17] and ensemble inequivalence [18], two of

the hallmarks of long-range physics. QSSs are metastable
configurations of the out-of-equilibrium dynamics, whose
lifetimes diverge with the system size [14–16], while
ensemble inequivalence results in differing properties
across thermodynamic ensembles and is the focus of the
present Letter.
The quantum statistical mechanics of strong long-range

interacting systems is to a large extent unexplored with few
notable exceptions, which have been identified following
the classical physics chart. In fact, theoretical evidence on
quantum QSSs [19–21], which recently found a unified
explanation based on the quasi-particle spectrum in strong
long-range systems [22], should be compared with ergo-
dicity breaking in classical systems, which is especially
relevant in the microcanonical ensemble [23,24]. Ensemble
inequivalence has also been discussed in the context of the
finite temperature transition of quantummechanical models
[25–27]. With the rise of quantum simulators featuring
native long-range interactions [8], it has become crucial to
understand the impact of this significant phenomenon in
the vicinity of a quantum critical point.
In this Letter, a genuine example of quantum ensemble

inequivalence is presented, where the canonical and micro-
canical phase diagrams are different. This is done by
analyzing a quantum model with long-range fully con-
nected interactions and multispin couplings, which is
known to exhibit a T ¼ 0 paramagnetic to ferromagnetic
transition [28]. The transition line is composed of first-
order and second-order segments separated by a tricritical*Contact author: ndefenu@phys.ethz.ch
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point. We show that, while the two ensembles yield the
same T ¼ 0 phase diagram, they result in different finite
temperature phase diagrams.
The relevance of this study is particularly evident

nowadays, as the AMO community is pushing the inves-
tigation of quantum many-body systems toward the control
of multibody interactions [29,30], where quantum tricritical
points naturally occur [31]. Interestingly, some experimen-
tal AMO settings [8] can be considered either as isolated
microcanonical systems, such as ensembles of dipolar
atoms and molecules [32–34], or as canonical systems in
contact with a thermal bath, such as cold atoms in cavities
[7]. The latter systems are particularly relevant to our study
since the interactions mediated by the cavity photons are
global and flat, providing the optimal platform to exper-
imentally verify our findings [21,35–37]. In fact, cavity
QED experiments were recently employed to investigate
the peculiar pre-thermalization dynamics of long-range
assemblies [38]. From a broader perspective, the realization
of fully connected quantum Hamiltonians is also relevant to
the optimization of classical combinatorial problems via
adiabatic quantum computing [39].
The model—It is convenient to discuss our findings in a

concrete example of long-range quantum system, where the
extension of the classical picture to the quantum realm can
be carried out explicitly. Therefore, we introduce the
Hamiltonian of a long-range quantum ferromagnetic
spin-1=2 chain with 4-spin interactions

H ¼ −
J
N

�X
l
σzl

�
2

− h
X
l

σxl −
K
N3

�X
l
σzl

�
4

; ð1Þ

where the summations are taken over all values of the index
l∈ f1;…; Ngwhich labels theN sites of the lattice. The σμl
operators are the μ ¼ x, y, z Pauli matrices at site l

σxl ¼
�
0 1

1 0

�
; σyl¼

�
0 −i
i 0

�
; σzl¼

�
1 0

0 −1

�
: ð2Þ

In the following, we restrict the discussion to the fully
ferromagnetic case J; K > 0.
Let us define the vector operator

S ¼ 1

2

X
l

σl; ð3Þ

where we use the bold face vector notation S ¼ ðSx; Sy; SzÞ
and similarly for σ. In terms of this operator, the
Hamiltonian takes the form

H ¼ −
4J
N

ðSzÞ2 − 2hSx −
16K
N3

ðSzÞ4: ð4Þ

The Hamiltonian in Eq. (1) reduces to the celebrated
Lipkin-Meshkov-Glick (LMG) model in the K → 0 limit
[40–42]. There, the system is known to possess a T ¼ 0
quantum critical point at h ¼ hc ¼ 2J, where a phase
transition occurs between a paramagnetic state, fully

aligned along x, and a ferromagnetic state with a non-
vanishing magnetization along z.
Models like in Eq. (1) have been used to study various

physical systems in both canonical and microcanonical
settings. In the canonical setting, the quantum critical point
is closely related to the Dicke model [43], observable by
coupling the motional degrees of freedom of a Bose gas
with a cavity’s standing wave-field [44,45]. The Dicke
model can be mapped onto the LMG model [46], showing
that the transition from a disordered atom cloud to a self-
organized phase is a second-order phase transition in the
same universality class as the Hamiltonian-Mean-Field
model [16,47]. Spin Hamiltonians like Eq. (1) can also
be realized by coupling the internal degrees of freedom of
atoms with the cavity field [48–51]. In contrast, systems
like coupled Bose-Einstein condensates (BECs), the Bose-
Hubbard model in a double well potential [52], spin-1
BECs [53–58], or Rydberg atoms in the blockade regime
[59–63] are better described in a microcanonical setting.
Therefore, it would be of interest to study a model like
Eq. (1) within both canonical and microcanonical settings.
An important aspect of model (1) is the inclusion of

multi-spin interactions. In fact, previous studies have been
limited to the Hamiltonian (1) in theK → 0 limit. The study
of model (1) fits well within the current experimental
endeavours that are pushing toward the quantum control of
multibody interactions [64,65]. Multispin interactions have
also been applied to model order-disorder ferroelectric
transitions [28].
Model analysis—Hamiltonian (1) commutes with the

total spin operator

S2 ¼
�
1

2

X
l
σl

�
2

: ð5Þ

As a result, the Hilbert space decomposes into a set of
subspaces, each with a fixed value of total spin
S ¼ 0;…;M, with M ¼ N=2, where for simplicity we
restricted the lattice to have an even number of sites.
The eigenvalue of the total spin operator in the S subspace
is SðSþ 1Þ. One notes that one has gðSÞ possible ways to
arrange the microscopic 1=2 spins in order to form a total
spin S, with [28]

gðSÞ ¼
�

2M

M þ S

�
−
�

2M

M þ Sþ 1

�
: ð6Þ

This formula can be verified by observing that the number
of states with Sz ¼ S is given by the first term on the right-
hand side of Eq. (6). However, some of these states belong
to higher total spin S sectors, whose number is given by the
second term in the equation above.
We proceed by calculating the free energy and the

entropy of the model. We thus define the partition function
Z and the phase space volume Ω as

Zðβ; J; h; KÞ ¼ Tr½e−βH�; ð7Þ
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ΩðE; J; h; KÞ ¼ Tr½δðE −HÞ�; ð8Þ

where δð� � �Þ is the Dirac δ function and β ¼ 1=T is the
inverse temperature. Using the Hilbert space decomposi-
tion and the degeneracy gðSÞ, the traces can be more
explicitly expressed as

Zðβ; J; h; KÞ ¼
X
S

gðSÞ
XS
Sz¼−S

hS; Szje−βHjS; Szi; ð9Þ

ΩðE;J;h;KÞ ¼
X
S

gðSÞ
XS
Sz¼−S

hS;SzjδðE−HÞjS;Szi: ð10Þ

Because of the mean-field nature of the interaction, the
summations in these formulas can be evaluated straight-
forwardly in the thermodynamic limit. Let us define
S ¼ Ms and note that s becomes a continuous variable
in the interval [0, 1] as M → ∞. Moreover, the energy
density is defined as ε ¼ E=N. The magnetization can be
written as a classical vector S ¼ Msm, where m≡
ðmx;my;mzÞ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is a unit vec-
tor representing the orientation of the magnetization and
sm is the magnetization vector per spin. The sums can thus
be replaced by integrals yielding [66,67]

Zðβ; J; h; KÞ ¼
Z

1

0

ds
NðNsþ 1Þ

8π
gðMsÞ

×
Z

e−Nβeðs;θ;ϕ;J;h;KÞ sin θdθdϕ; ð11Þ

Ωðε; J; h; KÞ ¼
Z

1

0

ds
NðNsþ 1Þ

8π
gðMsÞ

×
Z

δ½E − Neðs; θ;ϕ; J; h; KÞ� sin θdθdϕ;

ð12Þ
where

eðs;θ;ϕ;J;h;KÞ¼−Js2cos2θ−Ks4cos4θ−hssinθcosϕ:

ð13Þ
In the thermodynamic limit one can approximate the gðMsÞ
factor using Stirling formula, giving the entropy

SðsÞ ¼ logðgðMsÞÞ
2M

≈ −
1þ s
2

log

�
1þ s
2

�

−
1 − s
2

log

�
1 − s
2

�
: ð14Þ

The partition sum becomes

Zðβ; J; h; KÞ ¼
Z

1

0

ds
NðNsþ 1Þ

8π

×
Z

e−Nβðeðs;θ;ϕ;J;h;KÞ−SðsÞ=βÞ sin θdθdϕ:

ð15Þ

The phase-space volume Ωðε; J; h; KÞ can be calculated
using the Fourier representation of the δ function yielding

Ωðε; J; h; KÞ ¼
Z þ∞

−∞

dλ
2π

Z
1

0

ds
NðNsþ 1Þ

8π

×
Z

e−iλNðε−eðs;θ;ϕ;J;h;KÞþSðsÞ=λÞ sin θdθdϕ:

ð16Þ
As the thermodynamic limit is approached the integrals

in Eqs. (15) and (16) are dominated by the saddle points of
the arguments of the exponentials. In both cases, the value
of ϕ is unambiguously fixed at ϕ ¼ 0, leaving only one
single free parameter in the canonical ensemble
mz ¼ cos θ∈ ½−1; 1�. On the other hand, the microcanon-
ical ensemble also requires an additional extremization
with respect to the parameter λ, which results in a constraint
on the average energy of the system hĤi ¼ ε. In what
follows, we first consider the phase diagram in the ground
state and then analyze the finite-temperature phase dia-
grams in the two ensembles.
Ground-state phase-diagram—Quantum critical behav-

ior occurs at zero temperature T ¼ 0, where thermal
fluctuations do not affect quantum coherence. In this limit,
the system configuration matches the Hamiltonian’s ground
state, so both the canonical and microcanonical ensembles
yield the same phase diagram. Considering non-negative
parameters J, h, and K, the ground state of the model is
always in the s ¼ 1 subset of the spectrum, as shown by the
energy expression (13). One then needs to minimize the
energy with respect to θ. Expressing the energy (13) in
terms of mz ≡ cos θ and expanding it in powers of mz, one
obtains

εðmz; J; h; KÞ ¼ −Jm2
z − Km4

z − h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

z

q

≈ −hþ
�
h
2
− J

�
m2

z þ
�
h
8
− K

�
m4

z

þ h
16

m6
z þOðm8

zÞ: ð17Þ
This energy yields a second order critical line at
h ¼ hc ¼ 2J, separating a disordered state mz ¼ 0 from
and ordered one with nonvanishing mz. This result is valid
as long as the fourth-order term in the expansion of the
energy is positive. The transition becomes first order when
the fourth-order term changes sign at the tricritical point
given by h=J ¼ 2 and K=J ¼ 1=4. Close to this point, the
first-order transition is given by

K
J
¼ h

8J
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
J
ðh=J − 2Þ

2

r
: ð18Þ

The complete ground-state phase diagram, shared by
both the canonical and microcanonical ensembles, is given
in Fig. 1. In the following, we calculate the phase diagram
at finite temperature, where we find that the two ensembles
yield different phase diagrams.
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Phase-diagram in the canonical ensemble—Let us con-
sider the free energy of the model

fðβ; J; h; KÞ ¼ e − S=β

¼ −Js2m2
z − Ks4m4

z

− hs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

z

q
þ 1

β

�
1þ s
2

ln
1þ s
2

þ 1 − s
2

ln
1 − s
2

�
: ð19Þ

In order to find the equilibrium state of the system, one
needs to minimize f with respect to s and m. Minimizing
(19) with respect to s first, we obtain an expansion of s as a
function of mz,

s ¼ s0 þ am2
z þOðm4

zÞ; ð20Þ
where

s0 ¼ tanhðβhÞ; ð21aÞ

a ¼ βð1 − s20Þ
�
2Js0 −

h
2

�
: ð21bÞ

Inserting the expansion (20) in the free energy (19), one
obtains an expansion of f in powers of m2

z :

f ¼ f0 þ b2m2
z þ b4m4

z þOðm6
zÞ; ð22Þ

with

f0 ¼ −hs0 þ
1

β
Sðs0Þ; ð23aÞ

b2 ¼
1

2
hs0 − Js20: ð23bÞ

At criticality b2 ¼ 0, yielding

s0 ¼
h
2J

; ð24Þ
and the critical line is given by

h
2J

¼ tanh βh; ð25Þ
as long as b4 > 0. At low temperature the critical line is
given, to leading order, by

h
2J

≈ 1 − 2e−2βh: ð26Þ
To proceed, we evaluate b4 and locate the tricritical point at
b2 ¼ b4 ¼ 0. We first expand the entropy in powers δs for
s ¼ s0 þ δs,

SðsÞ ≈ Sðs0Þ þ
1

2β
ln

�
1þ s0
1 − s0

�
δsþ 1

2β
ln

�
1

1 − s20

�
δs2:

ð27Þ
Using this expansion with δs ¼ am2

z , one finds that on the
critical line b2 ¼ 0 the expression for b4 is

b4 ¼ −
�
2Js0 −

1

2
h

�
a −

�
Ks40 −

1

8
hs0

�
þ 1

2β

1

1 − s20
a2:

ð28Þ
Note that, due to the fact that ∂f=∂sjs0 ¼ 0, higher order
terms in the expansion (20) of s do not contribute to b4.
Using (21b) for a, we obtain

b4 ¼ −
�
Ks40 −

h
8
s0

�
−
1

8
βh2ð1 − s20Þ; ð29Þ

where at low temperature

s0 ¼ 1 − 2e−2βh: ð30Þ
We finally arrive at the following expressions for the critical
line (b2 ¼ 0) and the tricritical point (b2 ¼ b4 ¼ 0) in the
canonical ensemble ([CE])

b2 ¼ 0∶ hc½CE� ¼ 2Jð1 − 2e−4βJÞ; ð31Þ

b4 ¼ 0∶ Ktcp½CE� ¼
J
4
− 2βJ2e−4βJ: ð32Þ

FIG. 1. The ground-state (T ¼ 0) phase diagram of the model
defined in Eq. (1) in the ðK=J; h=JÞ plane. It corresponds to
both microcanonical and canonical ensembles. The phase-
diagram displays a paramagnetic phase with mz ¼ 0 (blue
shaded area) in the high h=J region. This phase is separated
from the ferromagnetic phase where mz is nonvanishing (gray
shaded area) by a second order transition line at h=J ¼ 2 for
K=J < 1=4 (blue line). The transition becomes first-order
(red line) at the tricritical point ðK=J ¼ 1=4; h=J ¼ 2Þ. The
first-order line is given in Eq. (18).
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Phase-diagram in the microcanonical ensemble—The
microcanonical phase-diagram can be readily obtained by
minimizing the energy at constant entropy. The energy is
given by

ε ¼ −Js2m2
z − Ks4m4

z − hs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

z

q

≈ −hsþ
�
1

2
hs − Js2

�
m2

z þ
�
1

8
hs − Ks4

�
m4

z þOðm6
zÞ:

ð33Þ
The entropy SðsÞ (14) is a function of s only and thus one
has to minimize the energy ε with respect to mz at fixed s.
The resulting critical line is

1

2
hs − Js2 ¼ 0; ð34Þ

which, together with

1

8
hs − Ks4 ¼ 0; ð35Þ

yields the tricritical point. To proceed, one has to express s
in terms of the temperature. On the critical line, where
mz ¼ 0, the energy is given by ε ¼ −hs. Thus,

β ¼ ∂S
∂ε

¼ −
1

h
∂S
∂s

¼ 1

2h
ln
1 − s
1þ s

; ð36Þ
which gives

s ¼ tanh βh ≈ 1 − 2e−2βh: ð37Þ

Inserting expression (37) in (34), the microcanonical
([MCE]) critical line becomes

hc½MCE� ¼ 2Jð1 − 2e−4βJÞ: ð38Þ
On the critical line, Eq. (35) becomes J ¼ 4Ks2, which
yields the tricritical point at

Ktcp½MCE� ¼ J

�
1

4
þ e−4βJ

�
: ð39Þ

When compared with the canonical analysis, this result
presents an example of ensemble inequivalence. While the
two ensembles lead to the same expression for the critical
lines, (31), (38), they display distinct tricritical points. At a
given temperature, the canonical tricritical point (32) is
located at a lower value of K=J than the microcanonical
one (39), [see Fig. 2 for the ðh=J; K=JÞ phase-diagram at a
given low temperature]. In Fig. 3 we display the tricritical
coupling K=J in the two ensembles, (32) and (39), as a
function of T=J at low temperatures. While the tricritical
points coincide at T ¼ 0, the microcanonical one changes
slower with temperature. Note that at any given temperature
the magnetic field h=J at the tricritical point is the same in
the two ensembles.
Conclusions—In this Letter, we studied the phase dia-

gram of a model with long-range and multispin inter-
actions, which exhibits a paramagnetic to ferromagnetic
quantum phase transition at zero temperature. This tran-
sition has first-order and second-order branches separated
by a tricritical point. At finite temperature, we showed that
the model exhibits different phase diagrams in the canoni-
cal and microcanonical ensembles. While the two ensem-
bles yield the same phase diagram at T ¼ 0, they differ at
finite temperatures. Notably, the position of the tricritical

FIG. 2. The canonical and microcanonical ðh=J; K=JÞ phase
diagrams at a given temperature (βJ ¼ 1=2). The microcanonical
critical line coincides with the canonical one, but extends beyond
the canonical tricritical point. While the critical line (blue) is
drawn in scale, the first order lines (gray dashed lines in the
microcanonical ensemble and a gray dot-dashed line in the
canonical one) are only drawn schematically.

FIG. 3. The position of the trictitical point K=J against T=J in
the canonical and microcanonical ensembles.
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point varies between the ensembles, with the finite temper-
ature correction being larger in the canonical ensemble than
in the microcanonical ensemble. Thus, the quantum tri-
critical points of long-range systems split due to finite
temperature corrections, an effect that could not be pre-
dicted by the quantum-to-classical correspondence.
As AMO techniques continue to advance, our findings

will become crucial to describe the critical scaling region of
experimental platforms, where quantum fluctuations com-
pete with long-range interactions. Indeed, while the
Hamiltonian in Eq. (11) with K ¼ 0 has already been
employed in the description of cavity QED platforms
[35,68,69], the realization of the four body term at
K > 0 may be achieved by exploiting recent finding on
cavity-mediated pair creation [70].
On general grounds, ensemble inequivalence is expected

to occur whenever the canonical transition becomes first
order in long-range quantum systems. Future investigations
shall clarify how the phenomenon quantitatively arises in
the case the first term in Hamiltonian (1) decays as a power-
law of the distance r−α with α < 1.
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[18] J. Barré, D. Mukamel, and S. Ruffo, Inequivalence of
ensembles in a system with long-range interactions, Phys.
Rev. Lett. 87, 030601 (2001).

[19] M. Kastner, Diverging equilibration times in long-range
quantum spin models, Phys. Rev. Lett. 106, 130601
(2011).

[20] S. Schütz and G. Morigi, Prethermalization of atoms due to
photon-mediated long-range interactions, Phys. Rev. Lett.
113, 203002 (2014).

[21] S. Schütz, S. B. Jäger, and G. Morigi, Dissipation-assisted
prethermalization in long-range interacting atomic ensem-
bles, Phys. Rev. Lett. 117, 083001 (2016); T. Mori,
Prethermalization in the transverse-field Ising chain with
non-range interactions, J. Phys A: Math. Their. 52, 054001
(2019).

[22] N.Defenu,Metastability and discrete spectrumof long-range
systems, Proc. Natl. Acad. Sci. U.S.A. 118, e2101785118
(2021).

PHYSICAL REVIEW LETTERS 133, 050403 (2024)

050403-6

https://doi.org/10.1103/RevModPhys.75.457
https://doi.org/10.1103/RevModPhys.75.457
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/nature10981
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nphys2252
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1080/00018732.2021.1969727
https://doi.org/10.1103/RevModPhys.95.035002
https://doi.org/10.1103/RevModPhys.95.035002
https://doi.org/10.1103/PhysRevE.89.062120
https://doi.org/10.1103/PhysRevE.89.062120
https://doi.org/10.1103/PhysRevE.92.052113
https://doi.org/10.1103/PhysRevE.92.052113
https://doi.org/10.1103/PhysRevB.94.224411
https://doi.org/10.1103/PhysRevB.96.104432
https://doi.org/10.1103/PhysRevB.96.104432
https://doi.org/10.1088/1751-8121/ab6a6c
https://doi.org/10.1016/j.physrep.2009.07.001
https://doi.org/10.1016/j.physrep.2013.10.001
https://doi.org/10.1103/PhysRevLett.87.030601
https://doi.org/10.1103/PhysRevLett.87.030601
https://doi.org/10.1103/PhysRevLett.106.130601
https://doi.org/10.1103/PhysRevLett.106.130601
https://doi.org/10.1103/PhysRevLett.113.203002
https://doi.org/10.1103/PhysRevLett.113.203002
https://doi.org/10.1103/PhysRevLett.117.083001
https://doi.org/10.1088/1751-8121/aaf9db
https://doi.org/10.1088/1751-8121/aaf9db
https://doi.org/10.1073/pnas.2101785118
https://doi.org/10.1073/pnas.2101785118


[23] D. Mukamel, S. Ruffo, and N. Schreiber, Breaking of
ergodicity and long relaxation times in systems with
long-range interactions, Phys. Rev. Lett. 95, 240604 (2005).

[24] F. Borgonovi, G. L. Celardo, M. Maianti, and E. Pedersoli,
Broken ergodicity in classically chaotic spin systems,
J. Stat. Phys. 116, 1435 (2004).

[25] M. Kastner, Nonequivalence of ensembles for long-range
quantum spin systems in optical lattices, Phys. Rev. Lett.
104, 240403 (2010).

[26] M. Kastner, Nonequivalence of ensembles in the Curie-
Weiss anisotropic quantum Heisenberg model, J. Stat.
Mech. (2010) P07006.

[27] A. Russomanno, M. Fava, and M. Heyl, Quantum chaos and
ensemble inequivalence of quantum long-range Ising
chains, Phys. Rev. B 104, 094309 (2021).

[28] L. Del Re, M. Fabrizio, and E. Tosatti, Nonequilibrium and
nonhomogeneous phenomena around a first-order quantum
phase transition, Phys. Rev. B 93, 125131 (2016).

[29] D. S. Petrov, Elastic multibody interactions on a lattice,
Phys. Rev. A 90, 021601(R) (2014).

[30] A. Goban, R. B. Hutson, G. E. Marti, S. L. Campbell, M. A.
Perlin, P. S. Julienne, J. P. D’Incao, A. M. Rey, and J. Ye,
Emergence of multi-body interactions in a fermionic lattice
clock, Nature (London) 563, 369 (2018).

[31] W. Zwerger, Quantum-unbinding near a zero temperature
liquid–gas transition, J. Stat. Mech. (2019) 103104.

[32] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Bose-Einstein condensation of chromium, Phys. Rev. Lett.
94, 160401 (2005).

[33] A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for
lattice-spin models with polar molecules, Nat. Phys. 2, 341
(2006).

[34] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B.
Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S.
Jin, and J. Ye, A high phase-space-density gas of polar
molecules, Science 322, 231 (2008).

[35] S. Morrison and A. S. Parkins, Dynamical quantum phase
transitions in the dissipative Lipkin-Meshkov-Glick model
with proposed realization in optical cavity QED, Phys. Rev.
Lett. 100, 040403 (2008).

[36] J. Larson, Circuit QED scheme for the realization of the
Lipkin-Meshkov-Glick model, Europhys. Lett. 90, 54001
(2010).

[37] T. Keller, V. Torggler, S. B. Jäger, S. Schütz, H. Ritsch, and
G. Morigi, Quenches across the self-organization tran-
sition in multimode cavities, New J. Phys. 20, 025004
(2018).

[38] Z. Wu, J. Fan, X. Zhang, J. Qi, and H. Wu, Signatures of
prethermalization in a quenched cavity-mediated long-range
interacting Fermi gas, Phys. Rev. Lett. 131, 243401
(2023).

[39] T. Albash and D. A. Lidar, Adiabatic quantum computation,
Rev. Mod. Phys. 90, 015002 (2018).

[40] H. J. Lipkin, N. Meshkov, and A. J. Glick, Validity of many-
body approximation methods for a solvable model, Nucl.
Phys. 62, 188 (1965).

[41] N. Meshkov, A. J. Glick, and H. J. Lipkin, Validity of
many-body approximation methods for a solvable
model. (II). Linearization procedures, Nucl. Phys. 62,
199 (1965).

[42] A. J. Glick, H. J. Lipkin, and N. Meshkov, Validity of many-
body approximation methods for a solvable model. (III).
Diagram summations, Nucl. Phys. 62, 211 (1965).

[43] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[44] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Dicke quantum phase transition with a superfluid gas in an
optical cavity, Nature (London) 464, 1301 (2010).

[45] R. Landig, F. Brennecke, R. Mottl, T. Donner, and T.
Esslinger, Measuring the dynamic structure factor of a
quantum gas undergoing a structural phase transition,
Nat. Commun. 6, 7046 (2015).

[46] J. Reslen, L. Quiroga, and N. F. Johnson, Direct equivalence
between quantum phase transition phenomena in radiation-
matter and magnetic systems: Scaling of entanglement,
Europhys. Lett. 69, 8 (2005).

[47] S. Schütz, S. B. Jäger, and G. Morigi, Thermodynamics and
dynamics of atomic self-organization in an optical cavity,
Phys. Rev. A 92, 063808 (2015).

[48] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Imple-
mentation of cavity squeezing of a collective atomic spin,
Phys. Rev. Lett. 104, 073602 (2010).

[49] G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi,
X. Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman,
Integrable and chaotic dynamics of spins coupled to an
optical cavity, Phys. Rev. X 9, 041011 (2019).

[50] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and
M. H. Schleier-Smith, Photon-mediated spin-exchange dy-
namics of spin-1 atoms, Phys. Rev. Lett. 122, 010405
(2019).

[51] E. J. Davis, A. Periwal, E. S. Cooper, G. Bentsen, S. J.
Evered, K. Van Kirk, and M. H. Schleier-Smith, Protecting
spin coherence in a tunable Heisenberg model, Phys. Rev.
Lett. 125, 060402 (2020).

[52] A. Gallemí, G. Queraltó, M. Guilleumas, R. Mayol,
and A. Sanpera, Quantum spin models with mesoscopic
Bose-Einstein condensates, Phys. Rev. A 94, 063626
(2016).

[53] T.-L. Ho, Spinor bose condensates in optical traps, Phys.
Rev. Lett. 81, 742 (1998).

[54] T. Ohmi and K. Machida, Bose-Einstein condensation with
internal degrees of freedom in alkali atom gases, J. Phys.
Soc. Jpn. 67, 1822 (1998).

[55] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. J. Miesner,
A. P. Chikkatur, and W. Ketterle, Spin domains in ground-
state Bose-Einstein condensates, Nature (London) 396, 345
(1998).

[56] M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer,
K. M. Fortier, W. Zhang, L. You, and M. S. Chapman,
Observation of spinor dynamics in optically trapped 87Rb
Bose-Einstein condensates, Phys. Rev. Lett. 92, 140403
(2004).

[57] H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S.
van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K.
Sengstock, Dynamics of f ¼ 2 spinor Bose-Einstein con-
densates, Phys. Rev. Lett. 92, 040402 (2004).

[58] T. M. Hoang, M. Anquez, B. A. Robbins, X. Y. Yang, B. J.
Land, C. D. Hamley, and M. S. Chapman, Parametric
excitation and squeezing in a many-body spinor condensate,
Nat. Commun. 7, 11233 (2016).

PHYSICAL REVIEW LETTERS 133, 050403 (2024)

050403-7

https://doi.org/10.1103/PhysRevLett.95.240604
https://doi.org/10.1023/B:JOSS.0000041745.62340.00
https://doi.org/10.1103/PhysRevLett.104.240403
https://doi.org/10.1103/PhysRevLett.104.240403
https://doi.org/10.1088/1742-5468/2010/07/P07006
https://doi.org/10.1088/1742-5468/2010/07/P07006
https://doi.org/10.1103/PhysRevB.104.094309
https://doi.org/10.1103/PhysRevB.93.125131
https://doi.org/10.1103/PhysRevA.90.021601
https://doi.org/10.1038/s41586-018-0661-6
https://doi.org/10.1088/1742-5468/ab3ccc
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1038/nphys287
https://doi.org/10.1038/nphys287
https://doi.org/10.1126/science.1163861
https://doi.org/10.1103/PhysRevLett.100.040403
https://doi.org/10.1103/PhysRevLett.100.040403
https://doi.org/10.1209/0295-5075/90/54001
https://doi.org/10.1209/0295-5075/90/54001
https://doi.org/10.1088/1367-2630/aaa161
https://doi.org/10.1088/1367-2630/aaa161
https://doi.org/10.1103/PhysRevLett.131.243401
https://doi.org/10.1103/PhysRevLett.131.243401
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/ncomms8046
https://doi.org/10.1209/epl/i2004-10313-4
https://doi.org/10.1103/PhysRevA.92.063808
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1103/PhysRevX.9.041011
https://doi.org/10.1103/PhysRevLett.122.010405
https://doi.org/10.1103/PhysRevLett.122.010405
https://doi.org/10.1103/PhysRevLett.125.060402
https://doi.org/10.1103/PhysRevLett.125.060402
https://doi.org/10.1103/PhysRevA.94.063626
https://doi.org/10.1103/PhysRevA.94.063626
https://doi.org/10.1103/PhysRevLett.81.742
https://doi.org/10.1103/PhysRevLett.81.742
https://doi.org/10.1143/JPSJ.67.1822
https://doi.org/10.1143/JPSJ.67.1822
https://doi.org/10.1038/24567
https://doi.org/10.1038/24567
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1103/PhysRevLett.92.040402
https://doi.org/10.1038/ncomms11233


[59] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[60] N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton
excitations and supersolid formation in Rydberg-excited
Bose-Einstein condensates, Phys. Rev. Lett. 104, 195302
(2010).

[61] L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and
T. Pohl, Spin squeezing in a Rydberg lattice clock, Phys.
Rev. Lett. 112, 103601 (2014).

[62] J. Zeiher, P. Schauß, S. Hild, T. Macrì, I. Bloch, and C.
Gross, Microscopic characterization of scalable coherent
Rydberg superatoms, Phys. Rev. X 5, 031015 (2015).

[63] Y. Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and
G.W. Biedermann, Entangling atomic spins with a Ryd-
berg-dressed spin-flip blockade, Nat. Phys. 12, 71 (2016).

[64] S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S.
Lühmann, and I. Bloch, Time-resolved observation of
coherent multi-body interactions in quantum phase revivals,
Nature (London) 465, 197 (2010).

[65] H. P. Büchler, A. Micheli, and P. Zoller, Three-body
interactions with cold polar molecules, Nat. Phys. 3, 726
(2007).

[66] E. H. Lieb, The classical limit of quantum spin systems,
Commun. Math. Phys. 31, 327 (1973).

[67] E. Granet, Exact mean-field solution of a spin chain with
short-range and long-range interactions, SciPost Phys. 14,
133 (2023).

[68] S. Morrison and A. S. Parkins, Collective spin systems in
dispersive optical cavity QED: Quantum phase transitions
and entanglement, Phys. Rev. A 77, 043810 (2008).

[69] J. G. Cosme, J. Skulte, and L. Mathey, Bridging closed and
dissipative discrete time crystals in spin systems with
infinite-range interactions, Phys. Rev. B 108, 024302
(2023).

[70] F. Finger, R. Rosa-Medina, N. Reiter, P. Christodoulou, T.
Donner, and T. Esslinger, Spin- and momentum-correlated
atom pairs mediated by photon exchange and seeded
by vacuum fluctuations, Phys. Rev. Lett. 132, 093402
(2024).

PHYSICAL REVIEW LETTERS 133, 050403 (2024)

050403-8

https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.112.103601
https://doi.org/10.1103/PhysRevLett.112.103601
https://doi.org/10.1103/PhysRevX.5.031015
https://doi.org/10.1038/nphys3487
https://doi.org/10.1038/nature09036
https://doi.org/10.1038/nphys678
https://doi.org/10.1038/nphys678
https://doi.org/10.1007/BF01646493
https://doi.org/10.21468/SciPostPhys.14.5.133
https://doi.org/10.21468/SciPostPhys.14.5.133
https://doi.org/10.1103/PhysRevA.77.043810
https://doi.org/10.1103/PhysRevB.108.024302
https://doi.org/10.1103/PhysRevB.108.024302
https://doi.org/10.1103/PhysRevLett.132.093402
https://doi.org/10.1103/PhysRevLett.132.093402

