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We study the interplay between measurement-induced dynamics and conditional unitary evolution in
quantum systems. We numerically and analytically investigate commuting random measurement and feed
forward (MFF) processes and find a sharp transition in their ability to generate entanglement negativity as
the number of MFF channels varies. We also establish a direct connection between these findings and
transitions induced by random dephasing from an environment with broken time-reversal symmetry. In one
variant of the problem, we employ free probability theory to rigorously prove the transition’s existence.
Furthermore, these MFF processes have dynamic circuit representations that can be experimentally
explored on current quantum computing platforms.
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The evolution of quantum systems is influenced differ-
ently by measurements versus unitary time evolution.
Understanding the dynamics of entanglement under one
or both of these two mechanisms is of interest from various
perspectives. On one hand, the interplay between these
processes can induce entanglement transitions in monitored
quantum systems (see, e.g., Refs. [1–8]). On the other hand,
incorporating measurements and adaptive operations into
unitary circuits can facilitate the generation of long-range
entangled and topologically ordered states, leveraging
faster classical communication [9–17]. Note that studies
of entanglement transitions typically focus on the system
state conditioned on measurement outcomes, while in
studies of adaptive dynamics, one deterministically pre-
pares entangled states (with a final form that is not
contingent on intermediate measurement results).
In this work, we explore a new question at the inter-

section of these two directions involving measurement-
induced dynamics and conditional unitary evolution.
Specifically, we investigate the interplay of multiple com-
muting random measurement and feed forward (MFF)
channels. In our setting, individual random MFF channels
are entangling, and as they commute, one might assume
that this continues to be true even when they are combined.
The reality is however more complex: we uncover a distinct
transition in their ability to generate entanglement, char-
acterized by negativity [18–20], as we vary the number of
MFF channels. Our work stands apart from previous
research on disordered open quantum systems, which
has primarily focused on their spectral properties [21–
23]. We instead unveil a scenario where this transition
clearly emerges as a quantum characteristic of the
dynamics.

We explore different variants of this general class of
problems. Notably, in one variant, we analytically prove the
existence of a sharp transition using tools from free
probability. Additionally, these negativity transitions
appear to be independent of local degrees of freedom
and occur in both spin and bosonic systems. Our findings
are also directly linked to a transition in the dynamics of a
system coupled to a bath with broken time-reversal
symmetry [24]. Our work represents one of the rare
instances where exact descriptions of entanglement tran-
sitions are attainable [25].
We consider a system of n qubits undergoing continuous

measurement and feed forward in the Markovian limit. As
we explain below, the unconditional system evolution
will follow a Gorini–Kossakowski–Sudarshan–Lindblad
[26,27] equation, ∂tρ̂ ¼ L½ρ̂�, where ρ̂ is the system’s state
at time t and L is the generator of the dynamics.
First, let us examine the effect of weak continuous

measurement of a Hermitian operator Âk on the system.
Let αkðtÞ ¼ hÂki þ dξ denote the stochastic continuous
measurement record, where dξ is a Wiener increment [28].
The trajectories of the system, i.e., the state conditioned on
αkðtÞ, could be entangled, as, in general, nonlocal mea-
surements can generate entanglement [29–31]. However,
this entanglement is contingent upon the outcome of the
measurements; when the record is lost, the entanglement
vanishes. Indeed, the dynamics of the unconditional state,
i.e., the system’s state averaged over the measurement
outcomes, is generated by L½ρ̂� ¼ DðÂkÞ½ρ̂�, where

DðÂkÞ½ρ̂� ¼ Âkρ̂Â
†
k −

1

2
fÂ†

kÂk; ρ̂g: ð1Þ
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In other words, the state is simply being dephased in the
measurement basis.
Next, we add a feed forward Hamiltonian that takes the

measurement signal and drives the system through
−αkðtÞB̂k, where B̂k is some Hermitian system operator.
This retains the information about the trajectories in the
system and can preserve the entanglement in the uncondi-
tional state. As the delay between the measurement and
feed forward operations approaches zero, the dynamics are
governed by L½ρ� ¼ −i½Ĥk; ρ̂� þDðÂk þ iB̂kÞ½ρ�, where
Ĥk ¼ 1

2
ðÂkB̂k þ B̂kÂkÞ [28,32,33].

This process can be represented by a dynamic quantum
circuit [36], where the system is repeatedly and weakly
coupled to an auxiliary qubit through Âk, followed by the
measurement of the auxiliary qubit with outcomes �1.
Subsequently, depending on the outcome, we apply a small
rotation around ∓ B̂k (see Fig. 1) [33,37].
In this work, we are interested in studying the simplest

possible example of MFF dynamics that demonstrates a
transition in entanglement properties of the system.
Therefore, we choose commuting Âk and B̂k that are all
diagonal in the energy eigenbasis of the system (implying
that the intrinsic system Hamiltonian plays no role). The
dynamics might seem trivial with this choice, but as we
show, this is surprisingly not the case. Moreover, to avoid
breaking reciprocity, we choose bidirectional MFF proc-
esses. That is the only symmetry that we impose on the
problem. Therefore, in addition to the weak measurement
of Âk and driving the system through −αkðtÞB̂k, we also
apply the reverse scenario: measuring B̂k and using the
resulting record to apply a drive proportional to Âk. As a
result, the dynamics become fully dissipative with no
Hamiltonian component. The directional case exhibits
similar physics (see Ref. [33]).

We aim to explore the general characteristics of entan-
glement generation with multiple MFF channels. In par-
ticular, we are interested in whether the dynamics is
entangling, i.e., if there exists some initial product state,
such that the evolved state at some future time has nonzero
entanglement negativity. Crucially, this entanglement can
be transient and is not a steady-state property. Therefore,
we consider the setup introduced earlier with m bidirec-
tional random measurement and feed forward processes,
where no additional structure is imposed beyond reciproc-
ity. We then ask if the dynamics is entangling as we vary the
system size n and the number of channels m. To keep the
single qubit dephasing rates finite as we vary m and n, we
normalize the MFF channels with system size. Speci-
fically, we choose Âk ¼ ð1= ffiffiffi

n
p ÞPj ujkẐj and B̂k ¼

ð1= ffiffiffi
n

p ÞPj vjkẐj for k ¼ 1;…; m, where Ẑj is the Pauli
σ̂z operator on qubit j and vjk and ujk are chosen
independently at random from a Gaussian distribution

vjk; ujk ∼N ð0; 1=2Þ: ð2Þ

Each channel corresponds to measuring a weighted total
spin along the z direction and applying single-qubit
rotations proportional to the measurement signal, with
different proportionality factors for each spin. The overall
evolution induced by these m channels can be expressed as

L ¼
Xm
k¼1

DðÂk þ iB̂kÞ ¼
Xm
k¼1

D
�

1ffiffiffi
n

p
Xn
j¼1

wjkẐj

�
; ð3Þ

where wjk ¼ ujk þ ivjk. We can equivalently represent the
evolution as

∂tρ̂ ¼
Xn
i;j¼1

cij

�
Ẑiρ̂Ẑj −

1

2
fẐjẐi; ρ̂g

�
; ð4Þ

where cij ¼ ð1=nÞPm
k¼1 wikw̄jk. In matrix notation, this

corresponds to C ¼ ð1=nÞWW†, where C ¼ ½cij�∈Cn×n

and W ¼ ½wij�∈Cn×m. Thus the correlation between qubit
dynamics introduced by various MFF processes can be
inferred from C. The real part of C contributes to the decay
of coherences (off-diagonal elements of ρ̂), while the
imaginary part, acting as dissipative Ising-like interactions,
results in a phase evolution [24].
To quantify the entanglement, we employ entanglement

negativity, which can be computed using the partial-trans-
pose test [18–20]. In Ref. [24], it was demonstrated that we
can assess the ability of the evolution described in Eq. (4) to
generate bipartite entanglement negativity between a sub-
system S and its complement by examining the spectrum of
C̃ obtained from transforming C using the following rule:

FIG. 1. Weak continuous measurements and feed forward of Â
and B̂ in the Z basis. These operations can be implemented by
repeated coupling to an auxiliary qubit with R̂YZ rotations
proportional to random uj, measuring the qubit, and applying
R̂Z rotations proportional to random −vj whose sign is dictated
by measurement results (�1). Here, θ is a small parameter that
determines the timescale. In the limit of small θ, repeated
applications of this procedure together with the reverse direction
uj → vj and vj → −uj realizes DðÂþ iB̂Þ (3) [33,37].
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c̃ij ¼

8><
>:

−ReðcijÞ i∈ S and j ∉ S ðor vice versaÞ
cji i∈ S and j∈ S

cij otherwise

: ð5Þ

The presence of negative eigenvalues in C̃’s spectrum
signifies the capability of the evolution to generate entan-
glement in the system. This is because the generator of the
evolution of the partial transposed state with respect to
subsystem S has a similar form to Eq. (4) and is given by

L̃dissðρ̂TSÞ ¼ −i
�X

i;j

h̃ijẐiẐj; ρ̂TS

�

þ
X
i;j

c̃ij

�
Ẑiρ̂

TS Ẑj −
1

2
fẐiẐj; ρ̂TSg

�
; ð6Þ

where h̃ij ¼ ImðCijÞ for i∈ S and j ∉ S. In other words,
the dissipative Ising interaction ImðCijÞ in our original
master equation (4) plays the role of coherent interactions
h̃ij in the partial-transposed frame. Since the coherent and
dissipative parts commute in Eq. (6), we can treat the
evolution generated by each independently. The former
does not alter the spectrum of ρ̂TS , while the latter is not
necessarily completely positive, and a negative eigenvalue
in C̃ indicates the presence of an initially unentangled state
(ρ̂TS ⪰ 0) that becomes entangled (ρ̂TS ⪰̸ 0) under the
evolution described by Eq. (4).
The problem of deciding the entangling power of

random MFF channels then boils down to drawing random
matrices W ∈Cn×m with varying n and m from a complex
Ginibre ensemble [38], calculating C ¼ ð1=nÞWW†, find-
ing C̃ for a given bipartition, and examining λminðC̃Þ, the
smallest eigenvalue of C̃. The sign of λminðC̃Þ tells us about
the entangling power of C. We remark that although our
discussion here is focused on qubits, the results have
broader applicability; for example, they extend directly
to bosonic systems with commuting quadrature Lindblad
operators [33]. Moreover, this transition in entangling
power of C directly translates to a transition in the
negativity of product quantum states orthogonal to the
dephasing direction (e.g., jþi⊗n for qubits and vacuum for
bosons) at a fixed time that has to be short (compared to
dephasing rates) for qubits and can be arbitrarily long for
bosons. This is because for bosons, entanglement can
increase without bound as purity decreases [39]. In con-
trast, for qubits, entanglement is bounded, and below a
certain purity level, mixed state negativity vanishes [33].
We first numerically study the entanglement negativity

between one qubit and the rest of the system. Specifically,
we examine the probability p of drawing an entangling
sample [with λminðC̃Þ < 0] from the ensemble described
above as we vary r ¼ m=n [33]. For m ≪ n, we expect to
always have an entangling process (p ¼ 1) as an individual

MFF channel in isolation will in general be entangling [24],
and there is a negligible chance for different channels to
overlap with each other. However, in the opposite limit of
m ≫ n, different MFF channels start to overlap, and hence
the resulting correlations generated by these processes
average away. This leads to C ∝ I, implying that the net
evolution is equivalent to driving with uncorrelated
classical noise, which does not generate entanglement
(p ¼ 0). Therefore, we expect a crossover in p from 0
to 1 as we vary r from 0 to ∞. Surprisingly, however, we
observe that p goes through a sharp transition from 1 to 0
when r� ≈ 1.3, i.e., when the number of MFF channels
becomes comparable to system size [see Fig. 2(a)]. We also
obtain the critical exponent of ν ≈ 2, by collapsing the data
using the scaling form p ¼ f½ðr − r�Þn1=ν� [see Fig. 2(b)].
Additionally, we analyze the transition using perturba-

tion theory. Let K ¼ C − C̃, where C̃ is obtained from
Eq. (5). Therefore, the transformation to the partial-trans-
posed frame of Eq. (6) can be interpreted as adding a
perturbation K to the original coefficients C, that is

C̃ ¼ Cþ K: ð7Þ

We focus on the asymptotic regime of n → ∞. In this
limit, the spectrum of C follows the Marchenko-Pastur
distribution [40]

dμðλÞ¼max½0;ð1−rÞ�δ0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb−λÞðλ−aÞp

2πλ
1½a;b�dλ; ð8Þ

where a ¼ ð1 − ffiffiffi
r

p Þ2 and b ¼ ð1þ ffiffiffi
r

p Þ2. Additionally, K
is a rank-2 matrix with eigenvalues �κ, whose magnitude
concentrates at κ ¼ ffiffiffiffiffiffiffi

r=2
p

[33].

FIG. 2. (a) The fraction p of entangling samples, where each
sample corresponds to a realization of m random measurement
and feed forward channels in a system of n qubits, and we
consider entanglement of one qubit with the remaining n − 1
qubits. For large n, p undergoes a sharp transition as a function of
r ¼ m=n. (b) The critical point r� and the correlation critical
exponent ν are obtained using data collapse.
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When r ≪ 1, C is a low-rank matrix with many 0
eigenvalues. Using degenerate perturbation theory [41],
we show that K splits these eigenvalues and λminðC̃Þ < 0.
Degenerate perturbation theory is valid as long as the size
of the perturbation (

ffiffiffiffiffiffiffi
r=2

p
) is smaller than the spacing

separating the degenerate subspace from the rest of the
spectrum [ð1 − ffiffiffi

r
p Þ2]. Therefore, we have p ¼ 1 whenffiffiffiffiffiffiffi

r=2
p

< ð1 − ffiffiffi
r

p Þ2, or equivalently when r ⪅ 0.2.
In the limit of r ≫ 1, the perturbation is small compared

to λminðCÞ ¼ ð1 − ffiffiffi
r

p Þ2, and therefore cannot change its
sign. Specifically, using Weyl’s inequality [42] we have

λminðCÞ þ λminðKÞ ≤ λminðC̃Þ: ð9Þ

Therefore, when ð1 − ffiffiffi
r

p Þ2 − ffiffiffiffiffiffiffi
r=2

p
> 0, or equivalently

when r⪆5.1, we have λminðC̃Þ > 0 and consequently
p ¼ 0.
The constant values of p ¼ 0 and p ¼ 1 within these

nonvanishing intervals indicate the nonanalytic behavior of
p as n → ∞. This highlights the critical nature of the
observed transition in negativity.
To go beyond the perturbative treatment and gain a

deeper understanding, we must determine the eigenvalues
of C̃ in Eq. (7). However, computing the eigenvalues of the
sum of two matrices is a highly challenging problem that
has long captivated mathematicians [43]. Finding exact
solutions to this problem is generally difficult, except in
special cases. One remarkable case is that of independent
random matrices. In our problem, however, the matrices K
and C in Eq. (7) are not independent. Nevertheless, we find
a slightly different but related physical process by modi-
fying our original problem that allows us to rigorously
understand the transition.
Specifically, we introduce K0 as a replacement for K,

where the elements of K0 have the same distribution as K
but are now independent of C. Consequently, we focus on
the alternative problem of finding the smallest eigenvalue
of C̃0 ¼ Cþ K0. While this may seem arbitrary and
disconnected from the original problem, the assumption
of independence has an intriguing physical interpretation: it
corresponds to a scenario where, in addition to the
dissipative evolution given by Eq. (4), there is an Ising
ZZ Hamiltonian [see Fig. 3(a)] whose coefficients are
correlated with the dissipation, given by

ĤZZ ¼
X
j

½k01j − Imðc1jÞ�Ẑ1Ẑj: ð10Þ

This Hamiltonian is entangling. Hence, we expect it to shift
the critical point to the right as now there is an additional
process contributing to the entanglement generation. This
observation is supported by numerical experiments and the
following analytical treatment [see Fig. 3(b)].

To find the spectrum of C̃0 in the large n limit, we use the
results of Ref. [44] regarding the eigenvalues of low-rank
perturbations to large random matrices. The rotational
invariance of the eigenvectors of C allows us to find a
simple expression for the eigenvalues of Cþ K̃0. In
particular, we find that for r > 2ð3þ 2

ffiffiffi
2

p Þ the spectrum
of C and C̃0 coincide and the perturbation K̃0 does not affect
the minimal eigenvalue [ð1 − ffiffiffi

r
p Þ2], which is consistent

with our perturbative analysis [33]. However, for 1 < r <
2ð3þ 2

ffiffiffi
2

p Þ the perturbation modifies the spectrum of C.
In this regime, the minimal eigenvalue of C̃0 is instead
given by

λminðC̃0Þ¼G−1
�

−1ffiffiffiffiffiffiffi
r=2

p
�
¼ r−

3ffiffiffi
2

p ffiffiffi
r

p
−

4ffiffiffiffiffi
2r

p þ2
þ2; ð11Þ

where GðzÞ ¼ R
R 1=ðz − tÞdμðtÞ is the Cauchy transform

of the measure μ [45]. Consequently, we can see that
λminðC̃0Þ < 0 for 1 < r < 2, and is non-negative for r ≥ 2.
Hence, r� ¼ 2 is the transition point for the entanglement
generation in this model [see Figs. 3(b) and 3(c)] [33].
Moreover, using numerical simulations we find that in the
modified model ν ¼ 1.9 consistent with the original model
[33]. While we considered the entanglement negativity of 1
and n − 1 qubit subsystems here, this analysis can be
carried to other finite bipartitions.
The correlated dephasing process in the original model

of Eq. (4) has several interpretations. So far, we have been
interpreting it as the dynamics generated by MFF channels.
Alternatively, it could correspond to a general dephasing
environment with broken time-reversal symmetry (TRS)
[24]. Therefore, the question of the entangling power of
random MFF channels can be rephrased as a quantum-to-
classical transition: can a random structureless quantum
bath with broken TRS generate entanglement, or does it fail

FIG. 3. (a) Circuit realization of our modified dynamics, where
an additional Ising interaction Hamiltonian ĤZZ is combined with
the MFF channels of the original setup. ĤZZ is random but in a
way that is correlated with the MFF channels. This problem has
an analytically proven transition. (b) Numerical simulation shows
that the transition point is shifted to r� ¼ 2. (c) Analytical
calculations of λminðC̃0Þ show that its sign changes (and hence
the transition happens) at r� ¼ 2.
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to generate entanglement and, in turn, appear as a classical
environment from the system’s perspective? To answer the
question about the nature of the environment, we need to
check the entangling power for all bipartitions. As we
change the size of two partitions from 1 and n − 1 to n=2
and n=2 the critical point shifts to the right, i.e., the
entanglement is more robust for the half-system bipartition.
We repeat the numerical analysis for this case and observe
that the sharp transition persists although with shifted
r� ≈ 2 and ν ≈ 1.5; see Fig. 4.
The observation that r� remains a constant near 1, even

as the partitions become extensive with the system size,
suggests that when the number of dephasing channels in the
environment becomes comparable to the system size, the
system effectively perceives the environment as classical.
Thus, even though individual environment channels may
possess quantum characteristics, their collective impact
does not have any discernible quantum effect on the
system. This phenomenon exemplifies a quantum-to-
classical transition, where the increasing size of the
environment leads to an effective classical behavior.
Incorporating feed forward into measurement dynamics
unveils an intriguing feature in the average postmeasure-
ment state of the system, allowing it to retain entanglement
generated by measurements. As more MFF channels are
introduced, the entangling power of this evolution under-
goes a sharp transition. This transition can also be seen as a
transition in the nature of the environment as perceived by
the system. Remarkably, the existence of this transition is
not limited to spin systems, but is, in fact, independent of
local degrees of freedom; for example, we observe an
analogous transition in bosonic systems with similar kinds
of dynamics [33].
The MFF channels we discuss in this work can be

represented by circuits that are practical for implementation
in currently available quantum computers [46–48].

Quantum simulations of this entangling transition can shed
light on the dynamic interplay between these engineered
MFF channels and the inherent noise within the quantum
device.
While our study primarily focused on a specific class of

random commuting MFF channels, exploring more general
cases involving noncommuting MFF channels could yield
interesting insights. Additionally, investigating the scaling
of entanglement in scenarioswith local or sparse interactions
(in contrast to the all-to-all connectivity considered in this
work) represents a promising avenue for future research.
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