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To address the outstanding task of detecting entanglement in large quantum systems, entanglement
witnesses have emerged, addressing the separable nature of a state. Yet optimizing witnesses, or accessing
them experimentally, often remains a challenge. We here introduce a family of entanglement witnesses for
open quantum systems. Based on the electric field, it does not require state tomography or single-site
addressing, but rather macroscopic measurements of the field quadratures and of the total fluorescence. Its
efficiency is demonstrated by detecting, from almost any direction, the entanglement of collective single-
photon states, such as long-lived states generated by cooperative spontaneous emission. Able to detect
entanglement in large open quantum systems, and through a single continuous measurement if operating in
the stationary regime, these electric-field-based witnesses can be used on any set of emitters described by
the Pauli group, such as atomic systems (cold atoms and trapped ions), giant atoms, color centers, and
superconducting qubits.
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Introduction—The detection of multipartite entangle-
ment remains a challenging problem due to the difficulty
of realizing state tomography and the lack of tools to
quantify it once the system state is known [1–6]. For low
dimensional systems, for instance, entanglement witnesses
such as the positive partial transpose of the density matrix
[7], the majorization criterion [8], and many other propos-
als [9–12], require state tomography. When the density
matrix is not an available resource (and this is usually the
case for quantum systems with a large Hilbert space), a
different approach to the entanglement detection problem
needs to be considered, typically relying on the direct
measurement of quantum observables Ô [13–15]. More
specifically, if ρ̂ represents a quantum state, then Ô is an
entanglement witness if and only if a violation of the
inequality TrðÔ ρ̂Þ ≥ 0 implies an entangled nature of state
ρ̂. This approach has put forward the investigation of

multipartite entanglement in many-particle states [16–
20]. In spinlike systems where the statistics (first and
second moments) of a collective spin operator can be
accessed experimentally, several sets of inequalities
detecting spin squeezing have been proposed as entangle-
ment witnesses [21–24]. These inequalities have, in turn,
stimulated the definition of “metrologically useful”
squeezed states [25,26], which enable reducing uncertain-
ties in interferometry measurements beyond the so-called
standard quantum limit [27]. To access larger classes of
entangled states in systems where local measurements are
particularly challenging, other entanglement witnesses
taking into account the distance between particles have
been proposed [28,29]. However, identifying experimen-
tally accessible or more optimal witnesses remains a largely
open challenge.
To address this problem, we introduce a continuous set

of inequalities based on the measurement of the electric
field—the quadratures, the total fluorescence, and their
fluctuations, more precisely. While they reduce to spin-
squeezing inequalities in particular geometries and obser-
vation angles, changing the direction of detection of the
field allows one to probe an infinity of entanglement
witnesses, as the optical path from the different atoms to
the detection changes. This family of witnesses is thus more
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optimal than spin-squeezing ones. It applies to large open
quantum systems, and enables entanglement detection from
macroscopic measurements of the electric field and its
fluctuations, without the need for single-site addressing.
Valid in the stationary state, where a single continuous
measurement may suffice to detect the entanglement,
the witness applies to all emitters described by the Pauli
group—from natural two-level atoms to artificial ones with
inhomogeneous broadening.
Entanglement witnesses from the electric field—Let us

consider an ensemble ofN two-level emitters, with j↑ij and
j↓ij the excited and ground states for each atom j. Without
local access to the emitters to realize state tomography,
collective information on the system state can still be
extracted from the radiated electric field. While the operator
and the study of its momenta (intensity and field fluctua-
tions) are keystones of quantum optics [30–32], we here
show that they provide precious information on the atomic
system state as well. In the far-field limit, the electric field
operator for the two-level atoms reads

Ê�
k ¼

XN

j¼1

e∓ik:rj σ̂∓j ; ð1Þ

with k the direction of observation, σ̂þj ¼ j↑ih↓jj
(σ̂−j ¼ j↓ih↑jj) the raising (lowering) Pauli operators of
atom j, and rj its position. Without loss of generality, the
prefactor in front of the electric field operator has been set
to unity. We then introduce the field quadratures X̂k and Ŷk,
and inversion population operator Ẑ,

X̂k ¼ Êþ
k þ Ê−

k; ð2aÞ

Ŷk ¼ iðÊþ
k − Ê−

kÞ; ð2bÞ

Ẑ ¼
XN

j¼1

σ̂zj; ð2cÞ

with σ̂zj ¼ j↑ih↑jj − j↓ih↓jj the inversion population oper-
ator for atom j. Field quadratures can be measured, for
example, using homodyne detection [33], whereas the
population can be monitored using ancilla states [34] or
an integrating sphere.
Any arbitrary separable state ofN particles can bewritten

as ρ̂ ¼ P
L
l¼1 plρ̂

ðlÞ
1 ⊗ ρ̂ðlÞ2 ⊗ � � � ⊗ ρ̂ðlÞN with

P
L
l¼1 pl ¼ 1

[35], where the superscript (l) denotes a local state of the
statistical mixture. If the state cannot be written in this form,
there is thus entanglement between at least two particles.
Following this statement, we now introduce our electric-
field-based witness for entanglement [36].
Theorem—If there exists a wave vector k for which a

quantum state ρ̂ satisfies the inequality

Wk ¼ min
n
w1;k; w2;k; w

α;β;γ
3;k ; wα;β;γ

4;k

o
< 0; ð3Þ

then ρ̂ is an entangled state.
The witness Wk encompasses the following series of

entanglement witnesses:

w1;k ¼ Nð2þ NÞ − hX̂2
ki − hŶ2

ki − hẐ2i; ð4aÞ

w2;k ¼ ðΔX̂kÞ2 þ ðΔŶkÞ2 þ ðΔẐÞ2 − 2N; ð4bÞ

wÂ;B̂;Ĉ
3;k ¼ 2N þ ðN − 1ÞðΔÂÞ2 − hB̂2i − hĈ2i; ð4cÞ

wÂ;B̂;Ĉ
4;k ¼ ðN − 1Þ�ðΔÂÞ2 þ ðΔB̂Þ2� − hĈ2i − NðN − 2Þ;

ð4dÞ

where ðΔ•Þ2 ¼ h•2i − h•i2 corresponds to the variance, and
superscript fÂ; B̂; Ĉg to the cyclic permutations over the
set fX̂k; Ŷk; Ẑg.
The derivation of the witness relies on showing that all

separable states fulfill the inequalities wn;k ≥ 0 for n ¼
1…4 (using a concavity argument [36]). Hence, a state
satisfyingWk < 0 violates at least one of these inequalities
and is thus entangled. This theorem overcomes the chal-
lenge of single-site addressing and quantum state tomog-
raphy, since it only relies on macroscopic measurements of
the outgoing electric field. The witness applies to open
quantum systems, and takes advantage of the scattered light
to characterize the particles’ entanglement.
While the argument is similar to the one used to derive

spin-squeezing inequalities, we point out that our electric-
field witnesses represent a much broader family of wit-
nesses. More specifically, the original inequality proposed
by Sørensen et al. [21] was generalized to a finite set of
inequalities by Tóth et al. [23,24] to account for the
different components of the collective spin operators.
The relation between (4) and the spin-squeezing inequal-
ities of Refs. [21,23,24] is obtained by setting k ¼ 0, so
they are hereafter denoted by W0. Differently, the present
family of inequalities (4) is infinite, and one can span the
witnesses by changing the direction of detection of the
light. Changing the light wave number k also provides a
broader class of witness [28,29]. We here focus on close-to-
resonance witnesses. Indeed, far from resonance, one enters
the fully dispersive regime, often used for quantum non-
demolition measurements [37,38]. Nevertheless, this limit
is beyond the scope of this work.
Three-atom case—Let us now illustrate the advantage of

electric-field-based inequalities by considering the light
scattered by a linear arrangement of three atoms along the x̂
axis, prepared in the following state:

jψi ¼ 1ffiffiffi
3

p ðj↑↑↓i þ eiΛj↓↑↑i þ ei2Λj↓↓↑iÞ; ð5Þ
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equally spaced by d ¼ 0.3=k and a relative phase Λ ¼ π=3.
Figure 1 exhibits the behavior of the entanglement witness
Wk for this system along different directions of observation
k, based on the measurement of the field operators (2) and
their fluctuations. In this particular one-dimensional con-
figuration, the spin-squeezing inequalityW0 can be directly
probed with the electric field in directions orthogonal to the
chain (dashed circumference on the yz plane in Fig. 1),
since the optical path until the detector is the same for all
atoms [k · ðrj − rmÞ≡ 0]. Note that W0 > 0, meaning that
spin-squeezing inequalities do not detect the entanglement
of this state. Differently, the statistics of the scattered light
can capture it in some directions of observation. The
colored area corresponds to the directions where the field
measurement allows for the detection of entanglement, and
the gray-colored one to directions where Wk ≥ 0, so the
entanglement is not detected by witness (3). This demon-
strates how the degree of freedom of the phase terms in the
electric field allows for a more optimal entanglement
detection.
Single-excitation states—We now consider an N-atom

single-excitation Dicke state

jDNi ¼
1ffiffiffiffi
N

p
XN

n¼1

eiϕn j↑ni; ð6Þ

where j↑ni represents a state where atom n is excited and
all the others are in the ground state. These states are
detected by electric field witnesses in almost all directions.
Indeed, one can show that, for these states [36],

w2;k ¼ −wẐ;Ŷk;X̂k
3;k ¼ Sk; ð7Þ

with Sk≡ð4=NÞPN
j¼1

P
N
s≠jcos½ϕs−ϕjþk ·ðrj−rsÞ�. A

negative Sk violates inequality (4b), while a positive Sk
violates inequality (4c). Hence, only the directions of
observation k that satisfy Sk ¼ 0 are inadequate to detect
the entanglement from the field fluctuations: it is a set of
measure zero.
Let us illustrate this feature by considering a regular chain

of N ¼ 100 atoms, again along the x̂ axis, with spacing
d ¼ π=2k. Taking into account the rotational symmetry
around the x̂ axis, the light is monitored in the xy plane,
using the polar angle θ, with k ¼ kðcos θ; sin θ; 0Þ. At an
angle θ ¼ π=2, the double sum Sk simplifies into
S0 ¼

P
N
j¼1

P
N
s≠j cos ðϕs − ϕjÞ. ForS0 ¼ 0, spin-squeezing

inequalities do not capture entanglement. Focusing on states
with phases ϕn ¼ nδ, this condition is reached when δ is a
solution ofTNðcos δÞ − N cos δþ ðN − 1Þ ¼ 0, withTN the
Chebyshev polynomial of the first kind [36]. The angular
dependence of the witness Wk for such a case is shown in
Fig. 2(a): the witness is negative for any direction of
observation, thus detecting entanglement, except for θ ¼
π=2 where spin-squeezing witness W0 is measured. We
point out that the detection of these single-excitation states
by the electric field witness is valid for arbitrary particle
numbers.
Dynamical generation of entanglement—Beyond the

issue of entanglement detection, let us now discuss the
generation of entanglement via collective spontaneous
emission. We consider two-level atoms, whose interaction
through the vacuum modes results in an effective dipole-
dipole interaction between them. In three dimensions, this
interaction can be described by the following master
equation [39,40]:

dρ̂
dt

¼
XN

j;m≠j
iΔjm½σ̂þj σ̂−m; ρ̂� þ Lðρ̂Þ; ð8Þ

where we have set ℏ≡ 1. The first part represents the
coherent component of the dipole-dipole interaction, while
the second term corresponds to the dissipative part, ruled by
the Lindbladian Lðρ̂Þ ¼ P

N
j;m Γjmðσ̂−j ρ̂σ̂þm − 1

2
fσ̂þmσ̂−j ; ρ̂gÞ.

The excitation-exchange term Δjm and crossed decay
rates Γjm are given by the Green’s tensor, Δjm≡
−ϵ̂�j · RefGðrjmÞg · ϵ̂m and Γjm ≡ ϵ̂�j · ImfGðrjmÞg · ϵ̂m,
with ϵ̂l is the polarization of the lth dipole, and rjm ¼
rj − rm the relative position of atoms j and m. In free
space, the tensor for dipoles with transition frequency ω ¼
kc ¼ 2πc=λ and linewidth Γ is given by GðrjmÞ ¼
ð3Γ=4Þ½eikrjm=ðkrjmÞ3�½ðk2r2jm þ ikrjm − 1Þ13 − ðk2r2jm þ
i3krjm − 3Þð⃗rjm ⃗rTjm=r2jmÞ� for j≠m, andGðrjjÞ¼iðΓ=2Þ13.
The superradiant cascade from interacting dipoles pre-

pared in an initially fully excited state was first explored by

FIG. 1. System of three atoms in free space, prepared in the
entangled state (5). The sphere depicts the values of the
entanglement witnessWk from Eq. (4), monitored along different
directions k through measurement of the field operators and their
second moments. The colored area stands for directions where
entanglement is detected [Wk < 0, here since either (4b) or (4c) is
violated, such as in direction A], whereas the gray one corre-
sponds to directions where it is not detected (Wk ≥ 0, e.g.,
position B). The dashed circumference on the sphere indicates the
observation directions (orthogonal to the atomic chain) along
which Wk ¼ W0.
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Dicke [41] using collective states with a given photon
number, which are therefore entangled. Yet, later studies
showed that a semiclassical approach described properly
the accelerated radiance [42–44], and entanglement is not
generated in that process [45]. Differently, the long-lived
(subradiant) modes that eventually emerge [46] become
very close to mixtures of ground and collective single-
excitation states, and thus entangled [47]. While the fully
excited state decays mostly toward the symmetric (super-
radiant) states, subradiant states are most efficiently gen-
erated by sending the system to a statistical mixture
[47,48]. This scenario is confirmed in our simulations by
analyzing the electric field and its fluctuations. As illus-
trated in Fig. 2(b) for the regular chain, entanglement is
detected at a later time for an initially fully excited system
(Γt ≈ 3), as compared to an initially maximally mixed state
ρ̂ ¼ 1=2N (Γt ≈ 1): this observation is consistent with
entanglement being generated more efficiently from a
statistical mixture than from a fully excited state and only
at late times [47,48], with a lifetime corresponding to that
of single-excitation subradiant states [46].
As an alternate probe for the presence of entanglement,

let us now monitor the global (pairwise) concurrence,
defined as Cglob ¼

P
j;s≠j Cðρ̂jsÞ=NðN − 1Þ, where Cðρ̂jsÞ

corresponds to the pairwise concurrence for the pair ðj; sÞ,
derived from its reduced density matrix ρ̂js [2,3]. As
observed in Fig. 2(b), the concurrence becomes finite at
a later time than the entanglement detected through the field
fluctuations. The electric-field-based detection may thus be
a particularly promising tool to study critical systems,
where concurrence and geometric entanglement have been
used to detect phase transitions [49–53].
Three-dimensional clouds—While the one-dimensional

chain offers access to a direct measurement of spin
squeezing W0 through the electric field in directions
orthogonal to the chain, three-dimensional clouds do not

possess a symmetry that allows for this feature. Let us now
demonstrate how the family of witnesses based on the
electric field extends the detection of entanglement for
these systems as well. We now consider a disordered cloud
of N ¼ 8 two-level atoms in three dimensions, prepared in
the antisymmetric product state jAi ¼ jþ −þ −þ −þ−i,
where we have introduced the single-atom state
j�i ¼ ðj↑i � j↓iÞ= ffiffiffi

2
p

. Note that while the atoms, and
thus the antisymmetric state, are ordered by positions in the
linear chain, for the three-dimensional cloud the ordering in
jAi is arbitrary. The evolution of the witnessWk during the
decay dynamics is presented in Fig. 2(c): similar features
for the 3D (gray curve) and 1D (purple curve) configura-
tions are observed, with entanglement being detected at an
early time (Γt ≈ 10−1) in both cases. This suggests that the
electric field witness is equally efficient to probe entangle-
ment in arbitrary geometries.
The emergence of entanglement on this short (super-

radiant) timescale can be understood as follows: the
antisymmetric separable state jAi has a strong projection
on both superradiant and subradiant entangled states.
Because of the short distance between the atomic dipoles,
the strong Hamiltonian interactions are responsible for
shifting their relative phases on a short timescale, thus
sending the system toward an entangled state. This is akin
to the case of emitters with different energies [54–57], but
here with a shift induced by dipole-dipole interactions.
Resorting to collective observables is all the more critical

when the size of the quantum system increases, since
tomography, even if local measurements are available
[58,59], is no longer possible due to the size of the
Hilbert space. The ability of such observables to capture
the entanglement may nonetheless be affected by the
system size since the number of remote, weakly interacting
pairs of particles will be relatively larger. To investigate
how the entanglement detection scales with the system size,

FIG. 2. (a) WitnessWk along different directions, for a chain of N ¼ 100 atoms in the single-excitation Dicke state (6), with phases of
the form ϕn ¼ n arccos δ (δ ≈ 0.997 is chosen so the spin-squeezing inequality is not violated, see text). Because of the one-dimensional
nature of the system, the witness possesses a rotational symmetry around that axis. (b) Evolution of the witnessWk (in blue) and of the
concurrence Cglob (in green) during the decay dynamics when the system starts either in the fully excited state j↑i⊗8 (plain curves) or in
the fully classical mixed state ρ̂0 ¼ 1=28 (dashed curves). (c) Dynamics of the entanglement witness for a regular chain with spacing
d ¼ 0.3=k (gray curve) and a disordered three-dimensional spherical cloud of radius 2=k (blue curve) of N ¼ 8 atoms, initially in the
separable, antisymmetric state jAi. The entanglement witness exhibits similar behavior in the two cases. (d) Time tent at which
entanglement is first detected at an observation angle of 0.45π from the chain axis, as a function of the number of particles N and lattice
spacing kd. The witness Wk is calculated using a second-order cumulant expansion, with the system initially in state jAi.
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we resort to the second-order cumulant approximation [60]
—this approximation is expected to capture properly the
entanglement dynamics at the short times explored here,
before higher-order correlations develop. The regular
atomic chain is initially in state jAi, from which it evolves
in the presence of dipole-dipole interactions. The evolution
of Wk reveals that entanglement is detected at earlier times
as the lattice spacing is reduced, and as the system size N is
increased; see Fig. 2(d). While the former effect is quite
intuitive, since the interactions become stronger at shorter
interparticle distances, the latter is rather a signature of
long-range interactions. But this observation also demon-
strates the ability of the field-based witness to detect
entanglement efficiently in large quantum systems.
Conclusion—In this Letter, we have discussed how

measuring the electric field quadratures, the total fluores-
cence, and their fluctuations can serve to detect entangle-
ment between the quantum emitters. To this end, we used a
witness related to spin squeezing that incorporates the
phases present in the electric field. This witness captures, in
particular, single-excitation collective states, in almost any
direction of observation. Derived for systems of qubits
described by the Pauli group, the witness is thus also valid
for ensembles with inhomogeneous broadening, a common
case for artificial qubits such as nitrogen-vacancy centers
[61]. An interesting prospect is to generalize these electric-
field-based inequalities to quantum emitters with arbitrary
spin [62], offering tools to probe multilevel entanglement in
systems with qudits [63].
The electric field operators in different directions

actually correspond to specific relative phases between
the atomic operators, set by the term k in Eq. (1). While this
corresponds to an already infinite family of witnesses since
k spans the 4π solid angles, a much broader family of
collective operators and associated witnesses can be intro-
duced, by setting arbitrary relative phases between the
atomic operators. This ensemble of witnesses, which would
span a parameter space ½0; 2π�N−1 (one of the phases can be
set arbitrarily), is much broader than the one based on the
electric field operators, yet accessing it may bring back the
requirement of challenging local measurements.
Thus, while finding an optimal witness remains an

outstanding challenge [64], the proposed family of wit-
nesses presents the strong advantage of not relying on state
tomography, but rather on measuring collective observables
that will be particularly practical in some experiments. In
particular, while the entanglement may be more accurately
determined in small systems with a full tomography, for
example using the positive partial transpose criterion for
two-qubit systems, field measurements now provide a
scalable witness for large systems through macroscopic
measurements.
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