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Direct mechanical coupling is known to be critical for establishing synchronization among cilia.
However, the actual role of the connections is still elusive—partly because controlled experiments in living
samples are challenging. Here, we employ an artificial ciliary system to address this issue. Two cilia are
formed by chains of self-propelling robots and anchored to a shared base so that they are purely
mechanically coupled. The system mimics biological ciliary beating but allows fine control over the
beating dynamics. With different schemes of mechanical coupling, artificial cilia exhibit rich motility
patterns. Particularly, their synchronous beating display two distinct modes—analogous to those observed
in C. reinhardtii, the biciliated model organism for studying synchronization. Close examination suggests
that the system evolves towards the most dissipative mode. Using this guideline in both simulations and
experiments, we are able to direct the system into a desired state by altering the modes’ respective
dissipation. Our results have significant implications in understanding the synchronization of cilia.
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Synchronization is a phenomenon across scales [1]. It
means that oscillators unify their rhythm through inter-
actions. In this way, output of individual oscillators can add
up and give rise to collective behaviors on a larger scale.
Ciliary motility is an archetype of such emergence. A cilium
is an active eukaryotic organelle that bends periodically to
pump fluid. Synchrony among thousands of beating cilia
creates fluid flows on a scale (10−3–10−1 m) orders of
magnitude larger than a single cilium (10−5–10−4 m) [2,3].
Microorganisms exploit such flows to swim, and mamma-
lians use them to transport fluid [4]. The efficiency of these
flows are crucially affected by the exact mode of synchro-
nization (spatial-temporal phase dynamics) [5]. How cilia
couple to each other to synchronize and exhibit distinct
modes, is a question that has garnered decades of attention
[6–9]. In general, the coupling mechanisms fall into two
categories. While hydrodynamic interaction is sufficient for
some organisms [10–12], direct mechanical connections at
the ciliary bases are crucial for others, including the model
organism for studying ciliary synchronization, C. reinhardtii
(CR) [13–15].
So far, our understanding of how mechanical connec-

tions help cilia synchronize is still limited [16]. The

limitation arises from two fundamental challenges in
experimenting with living samples. First, cilia operate in
fluid and are closely spaced such that their hydrodynamic
interactions cannot be neglected. Secondly, biomechanical
coupling is difficult to isolate from the cell’s ongoing
physiological and biochemical processes for controlled
experiments. An example is that the cilia of CR cells
completely fail to synchronize when the cell is demem-
branated and reactivated in vitro [17].
Biomimetic systems in a fluid-free environment provide

a possibility to overcome these challenges. Recently, Zheng
et al. demonstrated that a chain of self-propelling robots
can spontaneously oscillate and two bonded chains may
even synchronize [18]. The observed oscillation resembles
the beating of a biological cilium visually. And in the
meantime, it is also overdamped like the latter, i.e.,
the inertia effects of single robots matter negligibly
on the spatial and time scale of the chains’ oscillation
[18,19].
These findings suggest the biomimetic cilia to be an ideal

platform for studying ciliary synchronization exclusively
mediated by mechanical connections. Particularly, such
systems give an opportunity to elucidate the role of ciliary
connections in the emergence of distinct modes of syn-
chrony found in ciliates [15,16,20] and their underlying
energetics, which is of fundamental importance but largely
unexplored yet.
In this Letter, we devise a biciliated robotic system with

the quintessential architecture of a CR cell: two cilia
anchored on the same base (body). The base is subjected
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to designed kinematic constraints. Meanwhile, we develop
a simulation model that captures experimental observations
accurately. In both experiments and simulations, our system
displays both in-phase (IP) and antiphase (AP) mode of
synchronous beating that are analogous to those found in
CR cells. We reveal that the emergence of and the
competition between these modes are governed by the
maximization of energy dissipation, i.e., between two
possible states, the system favors the one with stronger
energy dissipation.
Experimental and simulation systems—A robotic cilium

consists of a chain of Hexbug (Nano®) robots connected
end to end by 3D-printed joints. The joints are loose until
neighboring units reach an angle of Θ0. The Hexbugs
constituting one cilium are powered in parallel by an
external dc source with voltage Va. When operating, a
Hexbug generates vertical vibration at ∼100 Hz which is
converted into self-propulsion by its elastic forward-lean-
ing legs [Fig. 1(a), top panel]. When a chain of Hexbugs is
anchored to a base, it oscillates spontaneously due to
bifurcation [18,21], displaying waveforms analogous to
biological cilia. We anchor two cilia on a shared base
[Fig. 1(a) lower panel], which provides direct mechanical
coupling between the cilia. Additionally, physical con-
straints can be integrated into the base to favor either
translational or rotational motion [22], helping reveal how
basal motion mediates synchronization.
Meanwhile, weights (m ¼ 15–500 g) are loaded on the

base to tune the friction between the base and the surface of

the table, which modulates the strength of mechanical
coupling. Ciliary beating is recorded by videography at
46.5 fps from which each robot is tracked with custom
PYTHON scripts. From ciliary shapes, we compute observ-
able-independent oscillatory phases of the cilia [25]; and we
characterize synchronization by the time fraction of phase-
locked beating τ ¼ tsync=ttotal, see [22] for the method.
The artificial ciliary system is also studied by means of

Brownian dynamics simulations, where each Hexbug is
represented as an active rod (length L) with a constant self-
propelling force Fa along its long axis [Fig. 1(b)].
Meanwhile, stochastic forces ξT and torques ξR deriving
from the environment with temperature T, are exerted on
each robot but not on the base. Neighboring rods are
connected by a short harmonic spring between their ends.
The ciliary bending angle δθ is restricted within ½−Θ0;Θ0�.
The translational (rotational) friction coefficients for the
Hexbugs and the base are, respectively, denoted as η0 (η0;R)
and η (ηR). Unless otherwise stated, ηð0;ÞR=ηð0Þ ¼ L2=12 is
used in simulations [26]. This relation is obtained for a rod-
shaped particle in the absence of hydrodynamic interaction.
The simulations reproduce the experimental results accu-
rately [Fig. 1(c)]. More details including the modeling
scheme, a quantitative correspondence between simulations
and experiments, and possible effects of the self-alignment
of a single robot, can be found in [22].
The beating of a single cilium is characterized by its

cyclic configuration (waveform), frequency (f), and the
noise in oscillatory phase (Tϕ). In our system, the wave-
form is determined by the number of Hexbugs N and the
maximal bending Θ0. Under given N and Θ0, f is
controlled by Fa (Va); and Tϕ is derived solely from T.
Notably, in our system, control over waveform and fre-
quency is decoupled, i.e., varying Fa (Va) does not change
the waveform [Figs. 1(d) and 1(e) insets]. This decoupling
marks a key difference from the elastically connected
chains in Ref. [18], and probably results from the inelastic
connection scheme we use. The decoupling is practically
advantageous for exploring the parameter space of ciliary
beating. In the following, we will focus on robotic cilia
formed with N ¼ 4 robots with Θ0 ¼ 0.4π.
Modes of synchronization—Whether two coupled oscil-

lators can synchronize is primarily determined by the
competition between their mismatch in intrinsic frequen-
cies ν ¼ f1 − f2 (detuning) and their coupling strength ε
[1]. Therefore, for studying how two cilia synchronize via a
common anchoring base, we examine the system by
scanning ν and ε. Practically, we fix the frequency of
one cilium (Fa ¼ 5, Va ¼ 2.4 V) and vary that of the other
ðF0

a; V 0
aÞ to modulate ν. We scan η or m to control ε,

because ε is expected to decrease with increasing friction:
on a completely fixed ðη; m → ∞Þ base, two cilia will beat
completely independently (ε ¼ 0). Finally, in experiments,
the noise is low and invariant with the driving voltage;
while, in simulation, we set one of the cilia as noise free and

FIG. 1. Experimental and simulation systems. (a) A Hexbug
robot with 3D printed cap (upper panel) and two chains each
comprising N ¼ 4 robots anchored on a common base (lower
panel). Scale bars: 3 cm. (b) The simulation model. (c) Time-
lapsed waveform of a single robotic cilium over half a cycle.
Frequency and waveform of a single cilium vs the self-propelling
force Fa (Va) for different maximum bending angles Θ0,
obtained by simulations (d) and experiments (e). Insets: full-
cycle time-lapsed ciliary waveform under the marked conditions.
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the other one noisy (T ¼ 0.8), such that the systems display
richer phase dynamics.
We find that the basal rotation and translation promote

distinct modes of synchrony [Fig. 2(a)]. When only basal
rotation is allowed (R mode), the synchronous ciliary
beating (gait) is analogous to the freestyle swimming,
see Supplemental Material Video (SV) 1 [22]. However,
when the base is confined to move along the x axis
(X mode), the supported gait is akin to the breaststroke of
a human swimmer (SV 2). Here, the x axis is perpendicular
to the line connecting the two anchoring points on the base.
Experimentally, the R mode and X mode are realized by
integrating a fixed spin axis or a stiff track into the base, see
the 3D schematics in Fig. 2(a). Last, basal translation in y
(Y mode) hardly supports any stable synchronization, and
will not be discussed. The “freestyle” and “breaststroke”
modes resemble the antiphase and in-phase synchronization
observed in CR [15,20,27,28], respectively.
The resultant landscape of synchronization (“Arnold

tongues” diagrams) for different basal modes are presented
in Figs. 2(b)–2(c). The coupling strength ε provided by the

base of given friction can be measured by the phase
dynamics described in the Adler equation:

Δ̇ϕ ¼ 2πν − 2πε sinΔϕþ ζðtÞ: ð1Þ

Here, Δϕ ¼ ϕ1 − ϕ2 denotes the oscillators’ phase differ-
ence and ζðtÞ is the zero-mean Gaussian white noise with
hζðt0 þ tÞζðt0Þi ¼ 2TϕδðtÞ. Equation (1) shows that, in the
range of detuning ν where jνj ≤ jεj, synchronization can
establish. Thus, for a given η (m), we approximate ε by the
width in ν where there is synchronization and find
empirically that ε ∝ η−1ðm−1Þ, see [22] for quantitative
conversions. At the given η or m, we observe that εR to be
much larger than εX [dashed lines in Figs. 2(b) and 2(c)] for
both simulations and experiments. Moreover, Eq. (1) also
captures the steady-state phase difference δϕ ¼ sin−1ðν=εÞ
between synchronized cilia [22].
Although the “freestyle” (in R mode) and the “breast-

stroke” (in X mode) gaits bear distinct appearances, their
driving forces exerted by the cilia on the base (i.e., the
azimuthal component Fθ for the R mode and the x
component Fx for the X mode) actually experience the
same in-phase coordination, see Figs. 2(d) and 2(e). The
interplay between the ciliary forces sheds light on why
εR > εX. In this system, one cilium exerts force on the base
and generates basal motion that influences the beating of
the cilium on the other end. In this way, the two cilia
interact. Naturally, the larger the transmitted motion is, the
stronger the coupling will be. In the X mode, a given force
F applied at one end generates, per unit time, a displace-
ment of F=η on the other end. However, in the R mode, the
transmitted displacement is much larger (3F=η), thus
consistent with εR > εX. It bears emphasis that this analysis
is qualitative, as coupling strength is expected to be
positively associated with, but not necessarily linearly
proportional to, the transmitted displacement.
Besides the synchronous beating, when friction of the

base η is extremely low, the system in the R mode evolves
into a state of constant rotation [blue bullets in Figs. 2(b)
and 2(c)]. In this case, the system persistently rotates in a
direction at a uniform speed, with the cilia maintaining a
stable configuration. In order to explore other possible
dynamic states, we set the cilia to be 10% detuned
(F0

a ¼ 1.1Fa) and equally noisy (T ¼ 0.2), and scan Fa
and η over 3 orders of magnitude in simulations. The
system’s complete state diagrams in the R and X mode are,
respectively, displayed in Figs. 3(a) and 3(b) and they
resemble each other qualitatively. The diagrams’ left sides
are fluctuation regimes where the noise T dominates over
Fa. Here, cilia either wiggle without a well-defined
frequency (gray) or simply stagnate (dark gray). When
Fa overcomes the noise, as η decreases, two cilia evolve
from beating independently (dark purple) to beating syn-
chronously (yellow to red). Eventually, for sufficiently low
η, the R mode and X mode are, respectively, dominated by

FIG. 2. Synchronization through different basal motion. (a) Ex-
perimental schemes (3D) and typical ciliary shapes and synchro-
nous waveforms (boxed) supported by basal rotation (left) and
translation in x (middle). Arnold tongue diagrams for the two
modes obtained from simulations (b) and experiments (c). Empty
points in the background are measurements where τ < 0.1.
Dashed lines: boundaries of the synchronization region. Median
force waveform over Oð102Þ synchronized cycles at ∼0 detuning
in R mode (d) and X mode (e). Shadings represent interquartile
ranges and insets show how cilia can cooperate to maximize basal
motion in each mode.
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constant rotation and constant translation (blue). Please see
Supplemental Material, SV 3–SV 5 for the mentioned
states and [22] for how they are quantitatively labeled.
Energetics—Such rich state diagrams naturally raise a

question: energetically, what determines the stability of
these states and their intertransitions? Inspired by previous
studies [9,29] that revealed a positive association between
oscillators’ coupling strength and energy dissipation, we
examine how dissipation is involved in the system’s
evolution. We find that, between two possible states, the
system will evolve into the more dissipative one, as
demonstrated below.
The system’s dissipation is computed asP¼hPiðFi ·viþ

MiωiÞi [30]. The subscript i ranges over all robot units and
the base; v and ω denote velocity and angular velocity,
respectively. For details see [22]. Representative traces
of P underlying the transition from oscillation to constant
motion are displayed in Fig. 3(c) [corresponding to the
vertical dashed lines in Fig. 3(b)]. Overlaid on the system’s
actual dissipation P are the estimated dissipation of ciliary
oscillations Posci and that of constant motion Pcm [22].
Clearly, when constant motion becomes more dissipative
(Pcm > Posci), it replaces synchronous oscillation as the
dominant state. In R mode, the picture is qualitatively the
same and we can compare simulation data (left inset) with
experimental results [right inset Fig. 3(c)]. The experimen-
tal evolving trend of dissipation is accurately captured by
simulations.
The results so far show that, between two possible states,

the system favors the one with stronger dissipation. In this
light, beating cilia coupled through a freely moving base,
which supports breaststroke and freestyle synchrony at the

FIG. 3. Dynamic phases of two coupled cilia. Phase diagrams
of (a) the R mode and (b) X mode obtained from simulations.
Vertical dashed lines correspond to the data shown in (c).
(c) Typical dissipative power P as a function of η in the X mode
(Fa ≈ 3.5). Pcm and Posci are dissipation computed by ciliary
shapes displayed in the constant motion and in the oscillation
states. P for R mode is displayed in left (simulation) and right
inset (experiments, Va ≈ 2.0 V).

FIG. 4. Competition between the modes of synchrony. (a),(e) Schematic of the setup for two testing conditions. Drawing to the right of
(e) displays how the elastic string modulates basal translation and rotation differently. (b),(f) Typical time series of ciliary phase
difference Δϕ (folded to ½0; π�), demonstrating the transition from the freestyle (Δϕ ≈ π, red shaded) to the breaststroke gait (Δϕ ≈ 0,
blue shaded). (c),(g) The systems’ total time fraction of synchrony τ. Background colors indicate the dominant gait. Dots: single
measurements; brown line and shading: median and interquartile. The insets are the predictions by the same generalized Adler equation,
Eq. (2), with only different levels of noise to reproduce the observations in simulations and experiments. (d),(h) The systems’ total
dissipative power when the base is free (circles), or geometrically constrained (R and X mode). Inset of (h): corresponding experimental
data. Error bars: 1 std. Pfix: dissipation on a fixed base.
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same time, could be directed into either mode by tuning the
modes’ relative dissipation. We now test this scenario with
coupled cilia anchored on a free base [Figs. 4(a) and 4(e)].
In simulations, we fix η and hence keep the dissipation of

breaststroke gait (PX) constant. Meanwhile, ηR, the friction
coefficient for basal rotation, is decoupled from η and
varied to modulate dissipation of freestyle gait (PR). Under
given ηR, PR and PX is measured by putting the system in R
mode and X mode, respectively. Then, we free the base
from any hard constraints, i.e., it can now simultaneously
rotate and translate [Fig. 4(a)]. The system’s actual dis-
sipation with the free base is measured as Pfree.
From left to right, Fig. 4(b) shows the breaststroke (blue)

overtaking the freestyle (red) as the system’s dominant gait
under increasing ηR (nondimensionalized by ηL2). Near the
transition point, ciliary synchronization becomes less stable
—as marked by the drop in total synchronized time fraction
τ [Fig. 4(c)]. Since ηR does not vary detuning, the
destabilization must result from a decreased coupling
strength, i.e., the presence of two possible gaits weakens
the total coupling. This effect is captured by including the
in-phase (IP) and antiphase (AP) coupling simultaneously
into Eq. (1):

Δ̇ϕ ¼ 2πν − 2πεX sinΔϕ − 2πεR sinðΔϕ − πÞ þ ζðtÞ; ð2Þ

with εX and εR (both> 0) the IP and AP coupling strengths,
respectively. In this way, a free base provides an effective
coupling of εX − εR, i.e., synchrony emerges when
jεX − εRj > jνj. The equation reproduces the evolving trend
of τ (εX ¼ 2.5ν, Tϕ ¼ 0.9), see Fig. 4(c) inset. Finally, we
benchmark the system’s actual dissipation Pfree against
those under constraints, PR and PX [Fig. 4(d)]. Clearly,
maximal dissipation is the underlying basis of gait
competition.
Experimentally, it is challenging to decouple ηR from η

and we thus employ another approach to modulate PR. A
prestressed elastic string is integrated into the base. In
effect, the string’s stress Σ limits basal rotation but not
translation because translation does not induce further
stretch while rotation does, see Fig. 4(e), SV 6 and [22].
Similar to increasing ηR, raising Σ also makes breaststroke
the dominant gait [Fig. 4(f)]. We denote the critical stress
where gait dominance changes as Σc and scale Σ with it.
Near the transition, τ drops more sharply than in Fig. 4(c),
which attributes to a lower noise in experiments
(Tϕ ¼ 0.06), see Fig. 4(g) and inset. With such a low
noise, the system is rarely found to switch between gaits
near the transition point. In simulations, systems with
similar recovery torques also favor the more dissipative
mode, see Fig. 4(h) main figure. The corresponding
experimental data are displayed in the inset, aligning with
the simulation trend.
Discussion—In overdamped systems, heat dissipation is

related to the entropy production of the medium, which

corresponds to total entropy production in the stationary
state [30,31]. Therefore, our finding, that the more dis-
sipative state dominates, is in line with the maximum
entropy production principle found in some other non-
equilibrium dissipative systems [32]; and the present setup
opens a new avenue for exploring the governing principle
of nonequilibrium systems’ evolution.
This study also has important implications for under-

standing the phase dynamics of biological biciliates. For
example, our results provide a possible explanation to why
wild-type CR only beats stably in breaststroke but not in
freestyle: its ciliary basal connections may form a mesh that
favors translation over rotation. Meanwhile, regarding the
pending question why the CR mutant ptx1 beats bistably in
both breaststroke and freestyle gaits [15,28,33,34], we
show that sufficient noise is needed. This aligns with
recent observations [15] and advances our understanding
of the role of noise in biological ciliary synchronization.
Last, our finding provides an energetic perspective for
understanding mode competition in biological ciliary
synchronization in more complex scenarios.
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