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We investigate the structural and dynamic properties of active Brownian particles (APs) confined within
a soft annulus-shaped channel. Depending on the strength of the confinement and the Péclet number, we
observe a novel reentrant behavior that is not present in unconfined systems. Our findings are substantiated
by numerical simulations and analytical considerations, revealing that this behavior arises from the strong
coupling between the Péclet number and the effective confining dimensionality of the APs. Our work
highlights the peculiarities of soft boundaries for APs and how clogging can be avoided under such
conditions.
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The spatial confinement of systems typically leads to
changes of their physical and chemical properties (melting
temperature, band structure, magnetic behavior, etc.) com-
pared to their bulk behavior [1–3]. This also applies to
groups of active, i.e., self-propelled, particles (APs),
which constitute the novel class of active matter [4,5].
Systems composed of APs are distinguished by an intricate
interplay between their local density and propulsion speed
which gives rise to a motility-induced phase separation
(MIPS) [6,7]. This phenomenon has been observed in
a wide range of active systems including synthetic
colloidal [8,9] and bacterial suspensions [10] and collec-
tives of ants [11], and has been studied extensively in
computer simulations [12–15].
Motivated by the fact that the natural environment of

many living APs is dominated by geometrical confine-
ments, e.g., porous media (soils) [16] or narrow blood
vessels [17], recent studies have investigated their proper-
ties near surfaces [18,19], within channels [20], and
confined to optical traps [21]. These studies demonstrate
that spatial confinement has a pronounced influence on the
behavior of APs promoting, e.g., the formation of lanes and
bands [22]. Such confinement-induced behavior is also
important in view of potential applications of synthetic
APs such as embolization [17] or drug delivery [23]. As
opposed to extensive work on APs in bulk and near hard
walls and channels, however, only few studies have
investigated the behavior of APs confined by soft bounda-
ries. In particular when APs are confined to a soft one-
dimensional channel, AP fluctuations perpendicular to the
channel will increase with increasing propulsion velocity v.
This leads to a v-dependent effective dimensionality to

which the system is confined. Because MIPS has been
demonstrated to be largely suppressed [24,25] for one-
dimensional (1D) confinements (as opposed to higher
dimensions [12,26–28]), this suggests a nontrivial phase
behavior of APs in soft confinements as a function of their
propulsion velocity.
In this Letter, we experimentally and numerically study

the clustering of APs in a narrow annular channel created
by two concentric soft repulsive barriers. By varying the
softness of these barriers and the velocity v of the APs, we
can systematically tune the effective dimensionality of the
system from one (single-file) to two spatial dimensions
(2D). Upon increasing the AP propulsion velocity or the
softness of the confinement, we find a transition from a
homogeneous to an inhomogeneous cluster phase and
eventually back to a homogeneous AP distribution within
the annulus. Such reentrant behavior is a unique feature of
soft confinements and finds no resemblance in 2D systems
where phase separation persists for all activities above the
critical point.
In our experiments, we use N active Janus particles

composed of silica spheres (diameter σ ¼ 7.8 μm) coated
with a 60 nm thick carbon layer on one hemisphere. Owing
to gravitational and hydrodynamic forces, their motion is
restricted to the lower bottom of the sample cell. When
suspended in a critical binary mixture of water and
propylene-glycol-n-propyl ether (40% m) and illuminated
with a laser beam (λ ¼ 532 nm), the carbon caps are
selectively heated. This leads to an asymmetric demixing
of the fluid around the particle [29,30]. As a result, the
particles perform an active Brownian motion whose pro-
pulsion velocity v is controlled by the laser intensity. In our
experiments we use a single laser beam which is perma-
nently scanned over all APs and focused on their carbon cap.
In the following, we use the Péclet number Pe≡ 3v=ðDRσÞ
to characterize v with the rotational diffusion coefficient
DR ≈ 0.001 25 s−1; see the Supplemental Material [31].
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To generate soft barriers for an AP, we take advantage of
its negative phototactic behavior, i.e., the fact that the APs
are effectively repelled away from a positive light intensity
gradient [33]. Technically, such a repulsive barrier can be
created by the application of an additional laser light
gradient near the edge of an AP, once its center of mass
crosses a virtually specified boundary [34,35]. This
approach allows one to generate a constant repulsive force
whose strength κ can be controlled by the magnitude of the
applied light gradient. In our experiments, the boundaries are
two concentric rings with radii R� g=2 where R ¼ 55 μm
and a gap of width g ¼ 2 μm in between [see in Fig. 1(a)]. In
total, this can be represented by an annulus shaped, linear,
confining potential VðrÞ with slopes κ and a force free gap
[Fig. 1(b)] (see the Supplemental Material [31] and below

for further details). Notably, in contrast to a topographical
confinement, this approach avoids the influence of hydro-
dynamic interactions with the boundaries.
To experimentally demonstrate the creation of adjustable

soft confinements, we determined the radial density pðrÞ
of a single AP, which quantifies the radial localization of
APs to the annular-shaped potential, as a function of Pe
and the confinement strength κ. A detailed discussion of
how κ is obtained experimentally is given below and in the
Supplemental Material [31]. The experimentally measured
data are shown in Fig. 1(c). At fixed κ and Pe ¼ 3, pðrÞ is
distributed narrowly around r ¼ R. For larger Pe the APs
are able to increasingly move toward the repulsive barriers
which leads to an increasing width of pðrÞ. In addition,
two maxima at r ≈ R� 1 μm appear. They result from the
AP accumulation at the inner and outer soft boundary,
similar to what is known for their behavior near hard
walls [18,36,37]. Moreover, as Pe grows, pðrÞ becomes
highly asymmetric with a tail toward the outer confinement.
This is due to the preference of APs to accumulate at
concave rather than convex boundaries [38,39]. A compa-
rable behavior is observed when Pe is fixed and κ is varied
(see the Supplemental Material [31]).
In addition to experiments, we also performed numerical

simulations where APs are modeled as active Brownian
particles moving in 2D. The dynamics of the position ri and
orientation ϑi of the ith AP is governed by

ṙi ¼ vui þ
DT

kBT
ð−∇VWCA þ fiÞ þ

ffiffiffiffiffiffiffiffiffi
2DT

p
ζT;i ð1Þ

ϑ̇i ¼ M
X
j∈Ωi

sin ½2ðϑj − ϑiÞ�Πðϑi; ϑjÞ þ
ffiffiffiffiffiffiffiffiffi
2DR

p
ζR;i; ð2Þ

where unit orientation vector ui ≡ ðcosϑi; sin ϑiÞT and DT
is the translational diffusion constant. The components of
ζT;i and ζR;i are obtained from a unit normal distribution
(i.e., zero mean and unit variance). The APs interact via the
repulsive short-range Weeks-Chandler-Anderson (WCA)
potential VWCA [40] modeling volume exclusion. Going
beyond the standard model of active Brownian particles,
we anticipate lubrication effects to play a major role in a
strongly confined system. Previous works on squirmers
[41,42] and Quincke rollers [43] indicate that these
interactions prompt an effective alignment between APs.
To account for this, we additionally impose an aligning
torque of strength M. We find that a choice of M ¼ 104DR
results in good agreement between simulations and experi-
ments as discussed below. The indicator function Πðϑi; ϑjÞ
is unity if the relative orientation of the two APs is between
π=2 and 3π=2 and zero otherwise. The total torque on the
ith AP is then the sum over all pairwise torques exerted
due to neighboring particles within a circular region Ω of
radius 21=6σ centered at ri. We model the confining force on
the ith AP as

FIG. 1. (a) Schematic view of APs confined to an annular-
shaped confinement, the latter providing an effective potential,
acting with respect to the center of mass of the confined APs. The
cross section is sketched in red, and the whole potential is shown
in (b). (c) Radial position probability density pðrÞ of a single AP
inside the confinement for different Pe and constant confinement
strength. pðrÞ is normalized by bin width Δr ¼ 0.25 μm and
circumference. Circles refer to experimental data, while lines
show the corresponding curves from simulations. In the simu-
lations, κ ¼ 70ðkBT=σÞ (see below) and Pe ¼ 3, 9, 27, 30. The
gray vertical lines indicate the onset of the soft confining walls
at r ¼ R� ðg=2Þ. The inset shows the same curves for the
range r − R ¼ ½−15; 15� μm.
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fi ¼

8><
>:

κer;i if jrij <
�
R − g

2

�
−κer;i if jrij >

�
Rþ g

2

�
0 otherwise;

ð3Þ

with er;i ≡ ðcosφi; sinφiÞT the normal vector.
When several APs are placed in such a soft annular

channel, the interplay of confinement and self-propulsion
determines the phase behavior of the APs. Representative
snapshots of the steady state for constant barrier strength κ
and increasing Pe are shown in Figs. 2(a)–2(c) and are
obtained for N ¼ 30. To quantify the particle density, we
introduce the filling fraction ϕ≡ Nσ=ð2πRÞ, which yields
for our experimental conditions ϕ ≃ 0.68. At Pe ¼ 3, APs
are effectively confined to 1D (single file conditions) with
only little radial fluctuations. Particles organize into chains
which permanently break up into fragments and reform (see
the Supplemental Material, Videos 1 and 2). Such behavior
is in good agreement with previous studies that confirm the
absence of macroscopic phase separation of APs in 1D
channels [24]. Upon increasing Pe to Pe ¼ 27, APs are able
to pass each other and form multilayered, dense dynamical
clusters which coexist with a surrounding gas phase (see
the Supplemental Material, Video 3). For the conditions
shown here, these clusters are comprised of typically more
than half of the APs, and they are stable over timescales of
several D−1

R ). Such behavior is comparable to MIPS in 2D
systems. Note, however, that phase separation in our
experiments is observed for Pe values below the critical
speed Pe≳ 40 of 2D bulk systems [26]. At the largest Pe
achieved in our study (Pe ¼ 33), the radial fluctuations of
APs further increase which reduces their effective density
(see the Supplemental Material, Video 4). Similar to 2D
systems where MIPS is absent at low densities, also in our

case the clusters disappear and the system becomes more
homogeneous in the angular direction.
To quantify the Pe-dependent changes of the AP behav-

ior, we perform a Voronoi tessellation. We restrict the
evaluation to an annulus-shaped area whose inner (Ri)
and outer (Ra) radii have been chosen to be sufficiently
large to include all APs independent of Pe (here, L ¼
Ra − Ri ¼ 9.6σ). Figures 2(d)–2(f) show the corresponding
Voronoi cells to Figs. 2(a)–2(c) where the Voronoi areas A
are colored according to their values. The time-averaged
(each measurement was averaged over ≈36D−1

R ) proba-
bility distribution pðAÞ is shown in Fig. 3. For Pe ¼ 3
and 9, pðAÞ is rather narrow which indicates that APs are
homogeneously spread in the angular direction within the
annulus. With increasing Pe ¼ 27, this peak gradually
disappears at the expense of a maximum which develops
at small A exhibiting a long tail toward larger values. Such
behavior indicates the presence of an AP cluster. At the
largest Pe ¼ 33 the maximum shrinks, leading to a rather
more uniform pðAÞ. This corresponds to a random dis-
tribution [44] of APs within the annulus [Fig. 2(f)].
Comparable results are also obtained from our numerical

simulations. The presence of a lubrication-induced torque
(M ≠ 0) is crucial to enable the escape of APs in the lateral
direction upon direct collisions. This promotes the for-
mation of multilayer clusters in agreement with our experi-
ments. To determine the value of the confinement strength

FIG. 2. Representative microscopy images for (a) Pe ¼ 3,
(b) 27, (c) 33. The scale bar represents 20 μm. The dashed lines
indicate the channel. (e)–(f) Show the corresponding Voronoi
tessellations. Colors denote the area A of the Voronoi cells.

FIG. 3. Probability distribution pðAÞ of Voronoi cell areas for
different Pe and κ ¼ 110kBT=σ, N ¼ 30. Lines represent simu-
lated data, while circles denote experimental data.
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in our experiment, we have varied κ in the numerical
simulations until best agreement with the Voronoi area
distributions of the experimental data has been achieved
(see Fig. 3, and see the Supplemental Material [31] for
details on the comparison procedure.) As a confirmation
of this approach, we have calculated the radial particle
distribution pðrÞ for the conditions shown in Fig. 1(c).
Using the κ value obtained with the above procedure yields
good agreement with the experiments.
In Fig. 4, we show the phase diagram of APs in an

annular confinement as a function of κ and Pe as obtained
from experimentally measured data and numerical simu-
lations. As an order parameter to characterize the presence
of clusters, we have measured the fraction hND=Ni of
APs having a Voronoi area below a threshold value [16].
In our case this threshold was set to be a bit larger than
the corresponding value for a 2D random close packing
(ARCP ≈ 1.02σ2 [45]) to accommodate its distribution
width. This led us to A < 0.2σL ≈ 2σ2. Clearly, cluster
formation is limited to a diagonal region in the κ-Pe space
which suggests a reentrant behavior along both axes.
A similar behavior was also found for N ¼ 46 (ϕ ≃ 1.04),
i.e., slightly overcrowded systems (see the Supplemental
Material [31]).
We can rationalize the phase diagram in Fig. 4 from

simple geometric considerations. To focus on the essential
ingredients, we consider a flat channel confined by constant
perpendicular forces with strength κ. Mathematically, this
problem can be mapped to the sedimentation of active
particles, which has been studied extensively [46–48].
We exploit that for constant force, the density decays
exponentially to very good approximation with sedimen-
tation length

ξ ¼ kBT
κ

�
1þ v2

2DRDT

�
: ð4Þ

This length is reduced as the confining force is increased,
whereas APs with larger speed are able to move against the
force and to explore a larger area implying larger ξ. We
model the density distribution as equal to ρ0 within a stripe
of width g (the force-free region) and to decay as ρðyÞ ¼
ρ0e−ðjyj−g=2Þ=ξ outside. Normalizing the density leads to a
dimensionless filling fraction ϕ0¼ρ0σ

2¼ϕðg=σþ2ξ=σÞ−1
within the force-free gap.
Even though in strict 1D only finite clusters form and

complete phase separation is preempted [49,50], we posit
that the dynamical instability underlying motility-induced
phase separation persists. To expose the basic mechanism
without striving for quantitative agreement, we employ the
mean-field form [51] of the coexisting filling fractions
ϕ� ¼ ϕc � χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v2c

p
with critical fraction ϕc, critical

speed vc, and shape coefficient χ. Figure 5(a) shows the
binodal ϕ� bounding the coexistence region together with
ϕ0 as a function of the sedimentation length ξ. In this
representation, ϕ0 is invariant, but the binodal ϕ� moves to
the left as the confining force κ is increased (ξc ∼ 1=κ).
Clusters start forming when ϕ0 crosses ϕþ and enters the
MIPS coexistence region. Increasing the speed further, APs
overcome the confining force and thus effectively reduce

FIG. 4. Phase diagram showing the fraction of APs in a dense
surrounding hND=Ni for different κ and Pe. Here N ¼ 30.
The rectangles are simulation data, and the circles represent
experiments.

FIG. 5. Prediction from mean-field theory for a straight con-
fined channel of width g ¼ σ. (a) Filling fraction ϕ0 (blue line) as
a function of sedimentation length ξ. Also shown is the binodal
(black line) bounding the coexistence region (shaded area) within
which dense clusters coexist with a dilute gas. The force strength
is κ ¼ 75kBT=σ. The blue dots indicate the range of filling
fractions of the force-free region for which the channel exhibits
coexistence, which we map to (b) the theoretical phase diagram in
the same representation as Fig. 4. The solid line delineates the
inhomogeneous cluster regime (C) from single-file behavior (SF)
at small speeds and large forces and the weakly confined
homogeneous gas (G). The top axis shows the Péclet number
estimated using the experimentally measured diffusion coeffi-
cients (see the Supplemental Material [31]). Parameters are
vc ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DRDT

p
, ϕc ¼ 0.55ϕ, and χ ¼ 0.015

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DRDT

p
ϕ.
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ϕ0 below ϕ−, returning the system to the active gas phase
[cf. Fig. 2(c)]. The resulting phase diagram in Fig. 5(b)
reproduces the salient features of the experiments and
simulations, cf. Fig. 4. In particular, there is a range of
confining forces κ for which it predicts reentrant behavior
as the speed v is increased in agreement with the experi-
ments. This demonstrates that such reentrance is a unique
property of soft confinements but not found for hard
confinements where the accessible area is independent of
activity [19,52,53]. While mean-field theory predicts a
sharp binodal, the experiments and simulations in Fig. 4
show a more gradual separation due to finite-size effects in
the rather small systems. However, we emphasize that
experimental measurements are performed above the criti-
cal speed and that such finite-size effects do not change the
proposed mechanism.
In summary, we have experimentally studied the cluster-

ing of self-propelled colloids in a soft annular-shaped
confinement. In agreement with numerical simulations of
a minimal model we find that cluster formation is only
present in a narrow regime of the confinement strength and
the Péclet number; otherwise particles are randomly dis-
tributed. This behavior results from a strong coupling of the
Péclet number to the radial AP motion which leads to a
Pe-dependent change of the effective dimension of the
confinement. At low Pe where the APs move in single-file
manner, the 1D confinement prevents clustering. At large
Pe the increasing radial AP motion reduces the effective
particle density which also suppresses clustering (similar to
MIPS in two-dimensional systems). Because APs hold
great promise as a platform for nanorobotic systems, we
hope that our study contributes to the view of how such
systems can be operated within soft confinements to
promote or suppress clogging [17,23].
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