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We propose a bond-percolation model intended to describe the consumption, and eventual exhaustion, of
resources in transport networks. Edges forming minimum-length paths connecting demanded origin-
destination nodes are removed if below a certain budget. As pairs of nodes are demanded and edges are
removed, the macroscopic connected component of the graph disappears, i.e., the graph undergoes a
percolation transition. Here, we study such a shortest-path-percolation transition in homogeneous random
graphs where pairs of demanded origin-destination nodes are randomly generated, and fully characterize it
by means of finite-size scaling analysis. If budget is finite, the transition is identical to the one of ordinary
percolation, where a single giant cluster shrinks as edges are removed from the graph; for infinite budget,
the transition becomes more abrupt than the one of ordinary percolation, being characterized by the sudden
fragmentation of the giant connected component into a multitude of clusters of similar size.
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Percolation theory studies the relation between the
macroscopic connectedness of a system and its micro-
scopic structure. Percolation models are fruitfully applied
to many physical systems, e.g., gelation of molecules,
diffusion in porous media, and forest fires [1]. In network
science, percolation models are traditionally used to char-
acterize the robustness of social, biological, and economic
networks [2–8]. The existence of a macroscopic connected
component in a network is interpreted as a proxy of its
overall function. The connectedness of the network may be
compromised by the deletion or failure of its microscopic
components, either nodes (site percolation) or edges (bond
percolation). The protocol used to delete the network’s
microscopic elements defines the specific percolationmodel
at hand. In the ordinary percolation model, deleted micro-
scopic elements are chosen uniformly at random [1].
Other well-known percolation models include targeted
attacks [4], k-core percolation [9], cascading failures [10],
continuous percolation with discontinuities [11], explosive
percolation [12], fractional percolation [13], and optimal
percolation [14]. These protocols can be extended to account
for multiplexity [10,15] and higher-order interactions [16].
Percolation-based approaches are popular also in the

analysis of dynamical processes occurring on infrastructural
networks, e.g., car congestion in road networks [17–21]. By
assigning a quality score to each edge (i.e., road segment)
and removing edges with quality below a given threshold,
the above-mentioned studies focus on how the emergence of
congested clusters affects the overall function of a road
network. Similar approaches are used to study road net-
works subject to flooding [22,23] and sidewalk networks in
cities during the pandemic [24].

Here, we introduce a bond-percolationmodel specifically
devised to mimic the utilization and progressive exhaustion
of a transport network’s resources. We named it as the
shortest-path-percolation (SPP) model because edges are
removed from the network whenever they form paths of
minimum length connecting pairs of nodes. A real system
that could be described by the SPP model is an airline
network where travelers select minimum-cost itineraries
connecting their desired origin-destination airports [25,26].
The SPP model is defined as follows. For t > 0, we

denote with Gt ¼ ðV; EtÞ, composed of N ¼ jVj nodes and
Et ¼ jEtj edges, the undirected and unweighted graph
available to the agent t, and with ot → dt the origin-
destination pair demanded by the agent t. If at least a path
between ot and dt exists in Gt, we denote with Qt the
length of the shortest one(s). The demand of the agent t
can be supplied only if dt is reachable from ot and
Qt ≤ C, where C > 0 is a tunable parameter of the model.
If one shortest path satisfying this condition is identified
(one path is selected at random if more than one exists),
namely ðot ¼ i1; i2;…; iQtþ1 ¼ dtÞ, all edges in the path

are removed from Gt, i.e., Et ↦ Etn ∪Qt
q¼1 ðiq; iqþ1Þ, see

Fig. 1. If no path exists between ot and dt or if Qt > C, no
edge is removed from the graph. In either case, we copy
the graph Gtþ1 ↦ Gt and then increase t ↦ tþ 1. The
process is repeated until no more demand is requested or
can be supplied.
The behavior of the SPP model depends on the structure

of the graph G1 and the demand of the agents. Here, for
simplicity, we assume that the graph G1 is an instance of the
Erdős-Rényi (ER) model with exactly E1 ¼ k̄N=2 edges,
with k̄ average degree of the graph. We further assume that*Contact author: f.radicchi@gmail.com
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the origin-destination nodes ot → dt demanded by the
agent t are chosen uniformly at random. These assumptions
are not reasonable for the study of a real infrastructure and
are made with the sole purpose of understanding the
physics of the SPP model. They in fact allow us to contrast
results obtained for the SPP model to those of other well-
studied percolation models. For C ¼ 1, the SPP model
effectively reduces to the ordinary bond-percolation model
on ER graphs displaying a smooth transition when a
fraction pc ¼ 1 − 1=k̄ of randomly selected edges is
removed from the graph. For 1 < C ≤ N, the SPP model
differentiates from the ordinary bond-percolation model as
edges in the graph are no longer deleted independently,
rather in a correlated fashion (note that C ¼ N is a limiting
case, as the inequality Qt ≤ C always holds as long as ot
and dt are in the same connected component of the graph
Gt). We explicitly refer to the infinite-C SPP model when
limN→∞C ¼ ∞; the finite-C SPP model occurs otherwise.
We fully characterize the behavior of the SPP model on

ER graphs with a systematic numerical analysis. Our
results are based on a large number of independent
simulations for each combination of N and C values, see
Ref. [27] for details. In each realization, we first generate an
ER graph with average degree k̄ ¼ 4 and then apply the
SPP model to it. For finite C, the computational complexity
of the SPP model scales slightly superlinearly with the
system size, so we consider networks with size up to
N ¼ 227. Simulating the infinite-C SPP model is subject to
a higher computational burden, hence we analyze net-
works with size up to N ¼ 220. As for the control
parameters, we focus our attention to both the fraction
of removed edges p as well as the raw number of
demanded origin-destination pairs t. We determine the
properties of the SPP transition via finite-size scaling
(FSS) analysis relying on the conventional ensemble
where sampled configurations correspond to independent

realizations of the SPP model obtained at specific values
of the control parameters [1]. All results hold when using
the so-called event-based ensemble [29,30]. To construct
this ensemble, we still sample one configuration from each
individual realization of the SPP model; such a sampled
configuration is the one corresponding to the largest
change, caused by the deletion of a single edge, in the
size of the largest cluster during the SPP process.
Our main finding is that SPP belongs to the same

universality class as of ordinary percolation as long as C
is finite; for infinite C, the SPP transition becomes more
abrupt than ordinary percolation, being characterized by a
set of different critical exponents, see Table I and [27].
Results for the finite-C class are obtained by setting C ¼ 1,
2, and 3 (main text and [27]); for the infinite-C class, our

TABLE I. Critical properties of the shortest-path-percolation
model. From left to right, we report: the value of the input
parameter C of the SPP model, the estimate of the critical
threshold pc, the ratio of the critical exponents β=ν̄ and γ=ν̄.
Estimates reported here are obtained via finite-size scaling
analysis in the event-based ensemble.

C pc β=ν̄ γ=ν̄

1 0.750� 0.001 0.32� 0.01 0.34� 0.01
2 0.701� 0.001 0.32� 0.01 0.34� 0.01
3 0.682� 0.001 0.32� 0.01 0.34� 0.01
∞ 0.646� 0.001 0.21� 0.01 0.55� 0.01

(a) (b)

FIG. 1. The shortest-path-percolation model. (a) There are two
possible shortest paths connecting the origin-destination pair
ot → dt demanded by the agent t, denoted by orange dotted edges
and purple dashed edges, respectively. The length of such shortest
paths is Qt ¼ 4. (b) If the maximum length allowed in the SPP
model isC ≥ 4, one of the two shortest paths is selected at random,
then all of its edges are removed from the graph. Here, all purple
dashed edges are deleted, and the graph fragments into four
clusters.

(a) (b)

(c) (d)

FIG. 2. Shortest-path percolation transition in the conventional
ensemble. (a) Percolation strength P as a function of fraction of
removed edges p with different values of C. The SPP model is
applied to Erdős-Rényi (ER) graphs with size N ¼ 220. (b) Pseu-
docritical point pcðNÞ as a function ofN for different values of C.
The horizontal line denotes the estimated critical point pc for
each C. (c) Average cluster size S as a function of p for ER graphs
for different network sizes N. Here C ¼ 1. (d) Similar to (c) but
for C ¼ N.
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findings are obtained for C ¼ N (main text and [27]) as
well as for C ¼ N1=3 and C ¼ logðNÞ [27].
In Fig. 2, we report results valid under the conventional

ensemble. In Fig. 2(a),we plot the percolation strengthP as a
function of p. We fix the network size to N ¼ 220 and
compare results obtained for differentC values. We observe
that, as C increases, the change displayed by P becomes
more abrupt. The different behaviors of the finite- vs infinite-
C cases are apparent by looking at how the average cluster
sizeS changes as a function ofp, see Figs. 2(c) and 2(d),with
S being characterized by a peak value ScðNÞ occurring at the
pseudocritical point pcðNÞ. We observe that ScðNÞ ∼ Nγ=ν̄,
with γ=ν̄ ¼ 0.35� 0.01 ifC ¼ 1 and γ=ν̄ ¼ 0.53� 0.01 for
C ¼ ∞, see Ref. [27]. Also, we find that pc ¼ pcðNÞ þ
bN−1=ν̄ for any C value, see Fig. 2(b). Not surprisingly, the
value of the critical point pc is a decreasing function
of C, ranging from pc ¼ 0.750� 0.001 for C ¼ 1 to pc ¼
0.646� 0.001 for C ¼ ∞; however, we surprisingly find
that b > 0 and 1=ν̄ ≃ 1=3 for finite C, but b < 0 and 1=ν̄ ¼
0.18� 0.01 for infinite C. The observed difference in the
value of the critical exponent ν̄ as well as the change of the
sign of the fitting parameter b denote that a fundamentally
different type of percolation transition takes place depend-
ing on whether C is finite or infinite.
In Fig. 3, we display results for the FSS analysis under

the event-based ensemble. Specifically, we display the
collapse of the distributions of the rescaled pseudocritical
observables PcðNÞNβ=ν̄ and ScðNÞN−γ=ν̄. Both plots
appearing in Fig. 3 refer to the infinite-C case; we report
results valid for finite C in [27]. We find β=ν̄ ¼ 0.21� 0.01
and γ=ν̄ ¼ 0.55� 0.01 for C ¼ ∞. Comparable values of
the ratio β=ν̄ are obtained by monitoring the scaling of the
peak values of the kth largest clusters, for k ¼ 2, 3, 4, and 5,
see Ref. [27]. Note that these estimates are compatible with
the known hyperscaling relation 2β=ν̄þ γ=ν̄ ¼ 1. For finite
C, we recover β=ν̄ ≃ γ=ν̄ ≃ 1=ν̄ ≃ 1=3 for both the ensem-
bles, as expected for ordinary percolation [1], see Ref. [27].
The critical exponent ratios β=ν̄ and γ=ν̄ obtained via FSS
at the pseudocritical point pcðNÞ in the conventional

ensemble are compatible with those valid for the event-
based ensemble; at the critical point pc, the estimates are
different, likely because affected by finite-size effects [27].
The study of the standard observables of Figs. 2 and 3

highlights a marked difference between the finite- and
infinite-C transitions, however, does not convey an actual
physical explanation of such a finding. A clear picture
emerges from the analysis of Fig. 4, where we study the
mapping between the two natural control parameters of the
SPP model, i.e., p and t. For finite C, p and t are mapped
one to the other by a universal smooth function that is
revealed by rescaling t ↦ tN−θ. We estimate θ ¼ 2.01�
0.01 for C ¼ 1 and similar values for other finite-C cases,
see Fig. 4(e) and [27]. The scaling exponent θ ≃ 2 tells us
that the dismantling of the network requires to select a

(a) (b)

FIG. 3. Shortest-path-percolation transition in the event-
based ensemble. Here we use C ¼ N. (a) The distribution of
PcðNÞNβ=ν̄ with β=ν̄ ¼ 0.21. Different curves correspond to
different network sizes N. (b) Same as in (a) but for
ScðNÞN−γ=ν̄ with γ=ν̄ ¼ 0.55.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Control parameters in the shortest-path percolation
model. (a) The fraction of removed edges p is plotted as a
function of number of demanding agents t for different values of
C. Results are valid for Erdős-Rényi graphs with size N ¼ 220.
(b) Curve collapse for C ¼ 1 and different N values. The
abscissas values are rescaled as tN−θ, with θ ¼ 2.01, to obtain
a collapse between the various curves. (c) Same as in (b), but for
C ¼ N. The collapse is obtained by rescaling the abscissas as
tN−θ⊖ , with θ⊖ ¼ 0.86. (d) Same as in (c), but rescaling the
abscissas as tN−θ⊕ , with θ⊕ ¼ 2.07. (e) Pseudocritical threshold
tcðNÞ as a function of N for different values of C. The full black
line indicates the scaling tcðNÞ ∼ N2, whereas the dashed yellow
line stands for tcðNÞ ∼ N0.86. (f) Number of demanded pairs
required to fully dismantle the network tmaxðNÞ vs N for different
values of C. The black line indicates the scaling tmaxðNÞ ∼ N2.
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number of origin-destination pairs tmaxðNÞ that is
proportional to the total number of node pairs in the
network, see Fig. 4(f). When C is infinite, however, two
distinct scaling behaviors are visible: (i) for t ≤ tcðNÞ,
curve collapse is obtained by plotting p vs tN−θ⊖ with
θ⊖ ¼ 0.86� 0.01, Fig. 4(e) and [27]; (ii) for t > tcðNÞ,
data collapse is obtained by rescaling t ↦ tN−θ⊕ with
θ⊕ ¼ 2.07� 0.01, Fig. 4(f) and [27]. Note that the kink
point tcðNÞ is such that pðtcðNÞÞ ¼ pcðNÞ. The finding can
be interpreted as follows. When the giant cluster is present,
edges are removed with ease as a path exists between most
pairs of nodes. At the beginning, the number of removed
edges per pair is small as the shortest-path length between
pairs of randomly selected nodes is short. However, as the
graph becomes sparser, the average shortest-path length
increases, so does the number of edges removed per
demanded pair. Critical behavior corresponds to the con-
sumption of a large number of edges for a small number of
demanded pairs. In particular, the number of pairs that needs
to be demanded to reach the critical point is a vanishing
fraction of the total number of pairs of nodes in the network,
as the value of the scaling exponent θ⊖ indicates. After such
a massive consumption of edges, the network is fragmented
into multiple clusters. In this configuration, two randomly
selected nodes are unlikely to belong to the same connected
component. This leads to a dramatic slow down in the
number of edges removed per pair of demanded origin-
destination nodes. Also, individual clusters have a finite
diameter, thus each of them is dismantled by an effectively
finite-C SPP process, hence θ⊕ ≃ 2.
We assess the abruptness of the SPP transition using

the same procedure as in Refs. [12,31], and measure the
width of the transition window as Δp ¼ p1 − p2 or
Δt̃ ¼ ðt1 − t2ÞN−2, where p2 and t2 are the highest values
of the control parameters for which P > 0.5, whereas p1

and t1 are the highest values of the control parameters for
which P > 1=

ffiffiffiffi

N
p

. The width of the transition in terms of
origin-destination pairs of nodes is further normalized. As
the results of Fig. 5 show, we find that Δp ∼ N−α. The
value of the scaling exponent is almost zero for finite C,
e.g., α ¼ 0.02� 0.01 for C ¼ 1, denoting that the tran-
sition is continuous; for C ¼ N, we find α ¼ 0.13� 0.01,
meaning that the transition is weakly discontinuous [31].
In the latter case, the exponent value is smaller than the
one observed for the explosive percolation transition,
thus indicating a less abrupt change of phases. The
weakly discontinuous nature of the infinite-C SPP tran-
sition becomes very apparent by looking at the scaling
Δt̃ ∼ N−α0 , where we find α0 ¼ 0.88� 0.01. We find
instead α0 ≃ 0 for finite C, e.g., α0 ¼ 0.03� 0.01 for
C ¼ 1, once more denoting a continuous transition.
To sum up, we introduce the shortest-path-percolation

model aimed at mimicking the utilization, and eventual
exhaustion, of a network’s resources by agents demanding
minimum-cost itineraries below a certain budget. The main
finding of our systematic analysis about the application of the
SPP model to Erdős-Rényi graphs is that, if budget is finite,
then exhaustion occurs like in an ordinary percolation
process; however, if budget is unbounded, then the network’s
resources are consumed abruptly, in a similar fashion as for
the of explosive percolation model [12]. However, the
abruptness of the SPP transition is not the result of a
competitive selection criterion that takes advantage of knowl-
edge about the cluster structure of the graph as in the
explosive percolation model [31], rather caused by topo-
logical correlations among groups of deleted edges. Our
findings underscore that not only dynamical processes, but
also fundamental structural transitions such as percolation
are radically altered by framing them in terms of path-based
rather than edge-based models [32]. Also, they provide
further evidence about the plausibility of range-dependent
universality classes in network percolation [33–35].
The SPP model can be easily adapted to deal with

arbitrary forms of demand and cost functions. Also, it can
be naturally extended to directed, weighted, time-stamped
graphs. All these generalizations are necessary to make the
model useful for the development of computational frame-
works aimed at analyzing and optimizing real-world infra-
structural networks.
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(a) (b)

FIG. 5. Abruptness of the shortest-path-percolation transition.
(a) We plot Δp vs N for different C values. Displayed lines
represent the best fits of the scaling Δp ∼ N−α. We get α ¼
0.02� 0.01 for C ¼ 1, α ¼ 0.03� 0.01 for C ¼ 2, α ¼ 0.03�
0.01 for C ¼ 3, and α ¼ 0.13� 0.01 for C ¼ N. (b) Δt̃ vs N.
Lines stand for best fits of the scaling Δt̃ ∼ N−α0 . We find α0 ¼
0.03� 0.01 for C ¼ 1, α0 ¼ 0.03� 0.01 for C ¼ 2, α0 ¼ 0.04�
0.01 for C ¼ 3, and α0 ¼ 0.88� 0.01 for C ¼ N.
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