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For continuous-time Markov chains and open unimolecular chemical reaction networks, we prove that
any two stationary currents are linearly related upon perturbations of a single edge’s transition rates,
arbitrarily far from equilibrium. We extend the result to nonstationary currents in the frequency domain,
provide and discuss an explicit expression for the current-current susceptibility in terms of the network
topology, and discuss possible generalizations. In practical scenarios, the mutual linearity relation has
predictive power and can be used as a tool for inference or model proof testing.
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Nonequilibrium thermodynamics is usually framed as a
theory of the response of observable currents to driving
forces and is often predicated on its ability to describe
nonlinear effects far from equilibrium, i.e., in the absence
of detailed balance. It has historical roots in such results as
Einstein’s relation [1], Nyquist’s formula [2], the Green-
Kubo and the Casimir-Onsager reciprocal relations [3,4],
all derived under the assumption that the (mean) currents
are linearly related to the driving forces. Beyond the linear
regime, cornerstone results are the fluctuation relations
[5,6], which allow one to derive higher-order response and
reciprocity relations [7,8]. Nonlinearity can lead to inter-
esting phenomena such as relaxation slowdown [9] or
negative response due to the internal activity in the system
[10,11] associated with complex behavior, e.g., in biologi-
cal systems (homeostasis, bifurcations, limit cycles, etc.).
All these results regard the response of currents to a

variation of the driving forces. However, if we take currents
as the fundamental observables, it makes sense to bypass
forces and establish relations among the currents them-
selves. This is also motivated by phenomenological con-
siderations. Think, for example, of the mercury-in-glass
thermometer once in use: it is only when the fluid stops
moving that we read our body temperature, but on the other
hand the thermometer scale was set by Celsius and coevals
by stabilization with the universal phenomenon of heat
flow between the melting ice and the boiling water at sea
level [12,13]. Thus, the calibration of forces depends on
observations about currents.
A ubiquitous framework to study fluctuations in sto-

chastic phenomena in physics (especially at the intersection
with chemistry and biology) is that of continuous-time

Markov chains [14–17]. Here, possible system configura-
tions are represented as vertices in a network (or graph) G
connected by edges. Transitions between vertices along an
edge, in either direction, occur at rates due to the interaction of
the system with the environment. Network currents then
count the net number of such events, and they can be used as
building blocks for all relevant thermodynamic quantities
such as heat, work, entropy production, etc. Heat flow is
defined as a linear combination of network currents multi-
plied by the energy they displace; entropy production is a
linear combination of heat flowsmultiplied by their conjugate
thermodynamic potentials. In the long-time limit, network
currents become stationary and satisfy Kirchhoff’s current
law, which is granted conservation of some underlying
quantity (be it charges, matter, or, as in our case, probability).
This purely topological constraint implies that not all network
currents are independent. In a unicyclic network, all edges in
the cycle share the same stationary current, independently of
the rates. For multicyclic networks, Kirchhoff’s current law
alone does not constrain all of the currents, and since currents
typically dependnonlinearly on the transition rates, there is no
a priori reason to believe they should satisfy simple relations
among themselves.
In fact, in this contribution we show that all stationary

currents are linearly related with respect to variations of the
forward and backward rates along one edge.
We consider a continuous-time Markov chain over a

finite network consisting of jX j vertices x∈X connected
by jEj edges e∈ E, to which we assign an arbitrary
orientation. We denote by �e transitions along an edge
e in the direction either parallel or antiparallel to the edge’s
orientation, from source vertex sð�eÞ to target vertex
sð∓ eÞ. Transitions occur at time-independent probability
rates r�e. The only assumption we make on the rates is that
the network is irreducible, that is, that there exists a directed*Contact author: pedro.harunari@uni.lu
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path of nonvanishing probability between any two vertices.
In particular, the so-called cycle affinities [18] playing the
role of fundamental driving forces can take arbitrary values.
Let pxðtÞ be the probability to be in state x at time t.

Vector pðtÞ ¼ ðpxÞx∈X evolves via the master equation
∂tpðtÞ ¼ RpðtÞ, where R is the rate matrix with non-
diagonal elements ½R�sð∓eÞ;sð�eÞ ¼ r�e. The normalized
null vector of R is the unique stationary distribution π.
The stationary currents are defined as

|e ≔ rþeπsðþeÞ − r−eπsð−eÞ: ð1Þ

We promote one particular edge i as the input edge on the
assumption it is not a bridge—an edge whose removal
disconnects the graph—and study the dependence of all
other stationary (output) currents on its transition rates
ri ¼ ðrþi; r−iÞ, while leaving all other rates unchanged.
In general, all |eðriÞ are nonlinear functions of ri (see

Fig. 1, top inset). In fact, as a spinoff result, we prove in
Sec. I of the Supplemental Material [19] that they are
upper- and lower-bounded. Here, we investigate the mutual
relations among the currents themselves. Inspired by
Ref. [20], we exploit a property of the rate matrix to obtain
the response of stationary currents to changes of rþi, r−i, or
both simultaneously. Let RsðþiÞ be defined as R with row
sðþiÞ replaced by an array of ones; then the product
RsðþiÞπ yields a vector of zeros but for value 1 at position
sðþiÞ. This owns to the normalization π · 1 ¼ 1, with 1 a
vector with all unit entries and · the Euclidean scalar
product. Since, in contrast to the rate matrix, RsðþiÞ is
invertible (see Sec. II of the Supplemental Material [19] for
an alternative proof to Refs. [20,21]), the response of
the stationary distribution can be obtained by ∂r�i

π ¼
−R−1

sðþiÞð∂r�i
RsðþiÞÞπ. This relation can be used to obtain

the responses ∂r�i
|i and ∂r�i

|e. Their full-extent expressions
can be found in Sec. III of the Supplemental Material [19],
but the relevant piece of information is that their ratio
satisfies ð∂r�i

|eÞ=ð∂r�i
|iÞ ¼ λ1e←i with λ1e←i independent of

ri. Since a gradient fixes the field up to a potential, this
yields the linear relation

|eðriÞ ¼ λ0e←i þ λ1e←i|iðriÞ; ð2Þ

with λ0e←i also independent of ri. If i is a bridge
[|iðriÞ ¼ 0 ∀ ri] the above formula does not hold, and
λ1e←i diverges.
Equation (2) is our main result: control of the rates of an

input edge causes a linear response in any stationary current
with respect to the input one. The result is illustrated in
Fig. 1. The affine coefficient λ0e←i ¼ |eð0Þ can easily be
interpreted as the current through edge e when the input
rates are set to values such that the input current vanishes, a
condition called stalling already shown to be relevant in
traditional linear-regime theory [22]. The linear coefficient

λ1e←i can be interpreted as a current-current edge suscep-
tibility (from now on, simply susceptibility); we will derive
and discuss an explicit expression later on.
As a generalization, consider macroscopic currents

supported by many edges, J E ≔
P

e∈E ce|e for constant
coefficients ce. Let Λ0

E←i ¼
P

e∈E ceλ
0
e←i and Λ1

E←i ¼P
e∈E ceλ

1
e←i. Because J EðriÞ ¼ Λ0

E←i þ Λ1
E←i|iðriÞ, we

find that any two macroscopic currents are mutually re-
lated by

J E0 ðriÞ ¼
�

Λ0
E0←i −

Λ1
E0←i

Λ1
E←i

Λ0
E←i

�

þ Λ1
E0←i

Λ1
E←i

J EðriÞ ð3Þ

provided Λ1
E←i does not vanish, which can occur when all

edges in E are bridges. Notice that it encompasses the case
of any two edge currents |e0 and |e when E and E0 have a
single element each. For a simple illustration of the results,
see the Appendix.
Mutual linearity does not extend straightforwardly to

nonstationary currents, as can be checked by simple
examples: In general, there do not exist time-dependent
parameters λ0e←iðtÞ and λ1e←iðtÞ independent of ri that would
allow one to express |eðri; tÞ as λ0e←iðtÞ þ λ1e←iðtÞ|iðri; tÞ.
To generalize to nonstationary currents we turn to the
frequency domain. The probability distribution at time t is
the solution pðtÞ ¼ expðtRÞpð0Þ to the master equation,
given an initial distribution. Defining its Laplace transform
p̂ðςÞ ¼ R∞

0 dt e−ςtpðtÞ (and similarly for other functions of
time), we arrive at the expression p̂ðςÞ ¼ ðς1 −RÞ−1pð0Þ.
Notice that both p̂ðςÞ and the resolvent ðς1 −RÞ−1 are

FIG. 1. Scheme of the control over the input current |i and its
linear relation to |e and |e0 in a network. Top inset: plot of the
nonlinear relation of all three currents in terms of rþi, with
r−i ¼ 1. Bottom inset: plot of the two output currents’ linear
relation with respect to the input one, with dashed lines obtained
by Eq. (2) and dots representing values of r�i ∈ ½0; 3� (see details
in Sec. VIII of the Supplemental Material [19]).
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defined for all complex numbers not in the spectrum of R.
In that domain, this allows us to obtain closed-form
expressions for the derivatives ∂r�i

|̂eðςÞ and ∂r�i
|̂iðςÞ, given

in Sec. IV of the Supplemental Material [19]. As in the
stationary case, the important property is that their ratio
½∂r�i

|̂eðςÞ�=½∂r�i
|̂iðςÞ� is a constant λ̂1e←iðςÞ independent of

ri, expressed as a ratio of cofactors of matrices related to the
resolvent. We thus obtain

|̂eðri; ςÞ ¼ λ̂0e←iðςÞ þ λ̂1e←iðςÞ|̂iðri; ςÞ: ð4Þ

This relation generalizes the stationary result Eq. (2), which
is recovered in the small ς asymptotics through λ0e←i ¼
limς→0ςλ̂

0
e←iðςÞ and λ1e←i ¼ limς→0 λ̂

1
e←iðςÞ.

Furthermore, the Laplace formalism allows us to obtain
an explicit expression for λ1e←i in terms of sums over rooted
spanning trees. We recall that in an oriented graph, a
spanning tree T x with root x is a subset of edges such that
every vertex of the network is connected to x via a unique
path and every edge along such path points toward x. It is
well-known that, up to normalization, the stationary dis-
tribution can be written as πx ∝ τx [18,23,24], where τx ¼
P

T x⊆G wðT xÞ is the spanning-tree polynomial, namely the
sum over rooted spanning trees T x of the product wðT xÞ of
the transition rates along the tree. This result is termed the
Markov chain tree theorem and is valid for arbitrary
transition rates (it has been used recently [25,26] to derive
bounds in such models). It is thus natural to use spanning-
tree ensembles to represent the susceptibility λ1e←i, but in
this case we need to expand on these concepts. In particular,
we borrow the notation n and = from the deletion-contrac-
tion paradigm of undirected graphs. We define τni ¼
P

x
P

T x⊆G;i=⊆T x
wðT xÞ as the sum over the subset of trees

T x spanning G that do not contain edge i. We also define
τ=i ¼ P

x
P

T x⊆G;i⊆T x
wðT xniÞ as the sum over the subset

of trees T x containing edge i of the product wðT xniÞ of all
rates but that of i. We say that edge i is, respectively,
deleted or contracted in the two operations. Notice that τni
and τ=i are both independent of ri. Finally, we obtain the
following for the susceptibility (see Sec. V of the
Supplemental Material [19]):

λ1e←i ¼ rþe

τ=sðþeÞ→sðþiÞ
ni;e − τ=sðþeÞ→sð−iÞ

ni;e
τni

− r−e
τ=sð−eÞ→sðþiÞ
ni;e − τ=sð−eÞ→sð−iÞ

ni;e
τni

: ð5Þ

Each term in the numerator of Eq. (5) corresponds to the
spanning-tree polynomial of a modified network built from
G by, first, removing edges i and e and, second, adding and
contracting a directed edge from sð�eÞ to sð�iÞ (see Fig. 2
of [19] for an illustration). This means that the correct

spanning-tree ensemble to compute the susceptibility is that
of the original network G deprived of both edges e and i
where one connects the vertices of the input and output
edges by adding a directed edge from sð�eÞ to sð�iÞ. This
operation of connection is nonlocal, giving rise to long-
distance interactions between currents (see Fig. 2).
The susceptibility depends on kinetic and topological

properties of the process (as is the case for the bounds for
state observables proven in Refs. [20,27–29]). The form of
Eq. (5) implies that the susceptibility is a monotonic
function of every r�e0 (with e0 ≠ i) and is invariant by a
global rescaling of the rates. Its extrema are thus reached by
setting rates to 0 or þ1, corresponding to “skeleton”
networks that maximize or minimize the influence of the
input current to the output one. In particular, notice that if i
is a bridge, τni vanishes (as there are no spanning trees not
containing edge i) and the susceptibility is ill-defined; in
fact in that case, the input current is zero independently of
ri. Interestingly, though, Eq. (5) implies that in networks
that have a bridge, the susceptibility does not vanish even
when the input and output currents are on opposite sides of
the bridge, despite the susceptibility (and the current) of the
bridge being zero. This is due to the dependency of π in all
the rates, out of equilibrium (see Fig. 2). Thus, Eq. (5)
expresses how controlling the current of edge i builds long-
distance interactions with other currents, which may be
related to the overall activity [30] of the system. An
additional result regarding bridges is that all currents are

1 � 10
-4

1 � 10
-3

1 � 10
-2

1� 10
-1

1 � 10
0

FIG. 2. Illustration of the long-range interactions between
currents in multicyclic networks. We built the networks from
Voronoi diagram repartitions of the plane and we randomized the
rates between 1=2 and 1. The susceptibilities are computed using
Eq. (5) for every edge with respect to the input edge (thick red
edge). Here, we plot the absolute value of the susceptibilities.
Zero susceptibilities are represented with dashed lines and
correspond to bridges. Left: the perturbation crosses the bridge
and affects all the network currents. This long-range effect of
single-edge perturbation is absent in detailed-balance networks.
Right: the susceptibilities decrease at large distance but never
vanish (except for bridges leading to leaves). The susceptibilities
present a degree of heterogeneity at large distance with patches or
single edges where the response is screened. See Sec. VIII of the
Supplemental Material [19] for full details.

PHYSICAL REVIEW LETTERS 133, 047401 (2024)

047401-3



strictly linear one to another (without affine coefficient)
when they live on a different island than the input edge (see
Sec. VI of the Supplemental Material [19]).
The Markov chain network formalism is intimately

connected to the description of deterministic unimolecular
chemical reaction networks (CRNs) with mass action law
(see, e.g., [18,23,31–34]). A vertex x∈X represents a
chemical species Ax and an edge e∈ E a bidirectional
reaction AsðþeÞ ⇄ Asð−eÞ occurring at rate rþe (r−e) in the
forward (backward) direction. The vector pðtÞ of species
concentrations also evolves through ∂tpðtÞ ¼ RpðtÞ. In
such settings, which describe closed (i.e., nonchemostatted)
CRNs, the results we have described so far are translated in
a direct manner: the system reaches stationarity at large
times, and, upon controlling |i through ri, output currents
|e satisfy the linearity relation Eq. (2). The sole difference
is that,

P
x pxðtÞ being conserved, the normalization of the

stationary concentration π is fixed by its initial value pð0Þ
through π · 1 ¼ pð0Þ · 1 (assumed to be independent of
the rates).
We now show that the mutual linearity of currents can be

extended to the case of open (i.e., chemostatted) unim-
olecular CRNs. To do so, we drive the system by chemo-
statting a subset of species y∈Y ⊆ X : reservoirs create or
destroy these species through reactions O ⇄ Ay, with given
rates. As shown in [9], it is useful to represent such a drive
by adding jYj edges f∈F , each directed from a single new
vertex O to a chemostatted species y ¼ sð−fÞ. The sta-
tionary currents of the corresponding reactions are

|f ¼ rþf − r−fπsð−fÞ; ð6Þ

where rþf (r−f) is the creation (destruction) rate of species
y ¼ sð−fÞ. Importantly, such currents are affine functions
of the stationary concentration π, in contrast to Eq. (1). The
same holds for the time-dependent current, implying that
the total concentration is not preserved (the dynamics is not
conservative). However, one can obtain π by mapping the
open system to a closed linear system, as follows. We
consider a closed CRN on a graph of vertices fOg ∪ X and
edges E ∪ F , and denote by Rres its rate matrix. Its
stationary concentration is a ðjX j þ 1Þ-dimensional vector
πres solution of Rresπres ¼ 0, that we normalize by impos-
ing πres

0
¼ 1. This condition, see Eq. (6), ensures that its

stationary currents are identical to that of the open CRN
above; by unicity, we thus have πx ¼ πresx for x∈X [35].
Since the normalization πres

0
¼ 1 imposes a rates-dependent

constraint, the derivation of the mutual linearity has to be
modified [36]. We proceed as follows: defining R̄res

x by
replacing line x of Rres by δ=O ≡ ð1; 0…0Þ [placing species

0 first], the stationarity condition Rresπres ¼ 0 implies
R̄res

x πres ¼ δx (Kronecker delta vector for vertex x).
Using then the invertibility of R̄res

x (see Sec. II of the

Supplemental Material [19]), we express ∂r�i
πres using

R̄res
sðþiÞ and its inverse. As in the Markov chain case, this

yields that the ratio ð∂r�i
|eÞ=ð∂r�i

|iÞ is independent on the
rates ri, and allows one to conclude that the mutual linearity
of Eq. (2) holds for open CRNs (see Sec. III of the
Supplemental Material [19] for details). Noteworthy, a
chemostatting current |f can be the input or output current
(if two or more species are chemostatted, ensuring f is not a
bridge).
Let us now draw conclusions and discuss open questions.
We have already seen that linearity is not a simple

consequence of Kirchhoff’s current law. Neither it is a
straightforward consequence of the spanning-tree expres-
sion for the stationary distribution, by replacement of
πsð�eÞ in Eq. (1). We will explore in a forthcoming contri-
bution some more spanning-tree combinatorics related to
our main result.
The main strength of our result is that, from an opera-

tional perspective, two measurements of two currents
suffice to determine Λ0

E←i and Λ1
E←i, so further measure-

ments have predictive power. Furthermore, the result holds
in networks with more than one edge between a pair of
states, and in networks with unidirectional transitions
(absolute irreversibility) that typically pose a thermody-
namic conundrum [37,38]. When applied to (open) resistor
networks, where rþe ¼ r−e is the resistance of edge e, our
result retrieves the “principle of superposition” of linear
electric networks (see, e.g., Chap. 5 of [39]).
Although the main limitation of our result is the

assumption that only the forward and backward rates of
one specific transition are varied, this is met in several
Markov-based biophysical models of molecular motors
[40–42], conformational dynamics [43–45], DNA tran-
scription [46], kinetic proofreading [47,48], and other
processes [49,50], where rates along a single edge might
be controlled by changing the concentration of a reactant
chemical species (e.g., an enzyme, on the assumption of
enzyme specificity). More concretely, consider an estab-
lished model for the molecular motor Myosin-V [51];
perturbations in the concentration of inorganic phosphate
yield a linear relation between adenosine triphosphate
(ATP) consumption and the motor velocity, with affine
coefficient reflecting the consumption of ATP when the
motor stalls. See the Appendix for more details.
Another area of future investigation is whether the result

eventually extends to population dynamics, e.g., stochastic
chemical reaction networks and shot-noise electronic devi-
ces [52] where the network is potentially unbounded and
the same parameter affects an infinite number of network
transitions. As regards open networks of interacting units,
the concept of susceptibility in interacting transport (e.g.,
vehicular) systems has been studied in Ref. [53].
In some physical systems, transition rates are para-

metrized according to local detailed balance [54,55],
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e.g., rþi=r−i ¼ expfβi½ϵsðþiÞ − ϵsð−iÞ�g with βi the inverse
temperature of a reservoir and ϵx the energy of state x. Our
results apply for instance when varying βi on a single edge.
In fact, it was found that perturbing the energy of a single
vertex (thus modifying the rates of all of its outward
transitions) leads to a constant ratio between any currents
]56 ]. Another example of edge perturbation is the change of

a kinetic barrier between two states.
An interesting area of overlap and future inspection is the

interplay of our result with recently proposed frameworks
for the composition of nonlinear chemical reaction net-
works [57] or of generic thermodynamic devices [58],
extending concepts from linear electrical circuit theory
such as that of the conductance matrix. Interestingly,
however, we could not find any immediate connection of
our result to the usual machinery of response theory or of
large deviations, fluctuation relations, and the like. This
could be an interesting area of inspection, in particular as it
comes to figures of merit such as efficiency and the quality
factor, which relate input and output currents to benchmark
performance and allow exploration of regimes and limits of
operation.
Another possibility is to use our results to make

inferences about the topology and rates of the underlying
network. For example, detecting nonequilibrium from
available observables is relevant in many fields, in par-
ticular biophysics [59–64]. As proven in Sec. VII of the
Supplemental Material [19], if the signs of susceptibilities
are nonreciprocal upon swapping input and output edges,
λ1e←i=λ

1
i←e < 0, the network is out of equilibrium (nonre-

ciprocal edge perturbations thus require dissipation).
Similarly, networks satisfying detailed balance will have
zero susceptibility in all edges separated from the input by a
bridge (see Sec. VI of the Supplemental Material [19]). The
coefficients λ0 and λ1 can be empirically obtained and
compared to theoretical predictions of a candidate model
using Eq. (5) (or alternatively Eqs. (13) and (29) of [19]).
Further inference schemes might arise from inspecting how
susceptibilities change along cycles or decay with a notion
of distance.

Note added—A comprehensive tutorial covering the main
ideas and codes to generate the figures is available in the
public repository [65].
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End Matter

Appendix: Encompassing example of a simple
molecular motor—To illustrate our results, we consider a
Markov model that describes how the Myosin-V protein
moves along an actin filament fueled by the consumption
of ATP [51,56]; see Fig. 3. Each state represents a
configuration of the two protein heads according to their
attachment to the filament. Some transitions consume/
release ATP, adenosine diphosphate, or inorganic
phosphate (Pi), which is often undetected by experiments,
while the flux along states 1 and 2 represents the
mechanical movement. In this model, the main cycle
(12345) represents the net movement of the motor, while
cycle (2346) represents the futile consumption of ATP
that occurs when the front head detaches and reattaches
to the filament without displacement.
An analysis using Kirchhoff’s current law reveals that

the stationary consumption rate of ATP J ATP ≡ |5→1 þ
|6→2 equals both the stationary release rate of adenosine
diphosphate, |4→5 þ |4→6, and of Pi, |Pi ≡ |3→4. The net
movement of the protein is given by |m ≡ |1→2 and, again
due to Kirchhoff, satisfies

J ATP ¼ |6→2 þ |m: ðA1Þ

These relations hold regardless of any perturbations since
they are topological constraints. We now consider changes
in the environment availability of inorganic phosphate, Pi,

whose concentration enters as r4→3 ∝ ½Pi�. Varying [Pi]
thus represents a single rate perturbation that yields a
nonlinear change in all fluxes. Using our main result
Eq. (2), |m is found to be linearly related to the flux of
Pi, |m ¼ λ0m←Pi þ λ1m←Pi|Pi, where we adopt the notation
that λ0;1m←Pi are the coefficients related to the perturbation of
[Pi] that can be obtained empirically or using their
analytical expressions. A similar result holds for the
ATP consumption in the main cycle |5→1 and in the futile
cycle |6→2.
Now, using the generalization for “macroscopic” cur-

rents Eq. (3), we find that J ATP and |m satisfy themselves a
linear relation regardless of the futile consumption |6→2

upon perturbations of [Pi]:

J ATP¼ λ0ð5→1Þ←Piþλ0ð6→2Þ←Pi−
λ1ð5→1Þ←Piþλ1ð6→2Þ←Pi

λ1m←Pi

λ0m←Pi

þ
λ1ð5→1Þ←Piþλ1ð6→2Þ←Pi

λ1m←Pi

|m; ðA2Þ

where, importantly, none of the coefficients depend on the
concentration of Pi; see Fig. 3. Hence, results of the present
Letter allow one to derive a relation between ATP and
mechanical currents which, instead of depending on an
unknown current |6→2 (see Eq. (A1), is affine with
coefficients that, interestingly, are independent of [Pi]. It
establishes a direct relationship, robust to perturbations of
[Pi]. The affine coefficient in Eq. (A2) represents the
consumption of ATP when the motor stalls, which is

FIG. 3. Dots represent the current of ATP consumption and
mechanical movement for perturbed values of [Pi], the dashed
gray line is obtained from Eq. (A2). Inset: network of the Myosin-
V model. Further details in Sec. VIII of the Supplemental
Material [19].

FIG. 4. Evaluation of τ=5→4

nfð5−1Þ;Pig. Solid arrows represent the
transition rates multiplied to form the polynomial of each tree,
and the dashed arrows represent the contracted edge that is not
included in the polynomial.
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nonzero in our settings. Also, notice that the velocity of the
motor is |m times the step size, and is also linear with the
total ATP consumption.
In this contribution, we provide more than one approach

to obtain the susceptibilities involved in Eq. (A2): (i) empir-
ically (collecting two data points of current vs current),
(ii) from determinants [see Eqs. (13) and (29) of the
Supplemental Material [19] ], or (iii) using spanning trees
[Eq. (5)]. To illustrate the latter, consider the susceptibility
λ1ð5→1Þ←Pi. From Eq. (5), we need to evaluate the poly-
nomials of rooted spanning trees of modified networks, one
of them is τ=5→4

nð5−1Þ;Pi, which corresponds to the spanning

trees of the original network deprived of the input edge
Pi ¼ ð3 − 4Þ and from the output edge ð5 − 1Þ, and
including the connecting edge 5 → 4. All the rooted
spanning trees of this network with the contraction
of 5 → 4 are represented in Fig. 4.
An analysis of the coefficients’ numerical values is also

informative. Using the experimentally motivated transition
rates described in [56], we find that the affine part of
Eq. (A2) is 8 × 10−11, while the susceptibility is 1.005. It
tells that the rates were selected so that the futile con-
sumption of ATP is small and most ATP consumption is
directly transformed into movement.
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