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Dynamical descriptions and modeling of natural systems have generally focused on fixed points, with
saddles and saddle-based phase-space objects such as heteroclinic channels or cycles being central
concepts behind the emergence of quasistable long transients. Reliable and robust transient dynamics
observed for real, inherently noisy systems is, however, not met by saddle-based dynamics, as
demonstrated here. Generalizing the notion of ghost states, we provide a complementary framework
that does not rely on the precise knowledge or existence of (un)stable fixed points, but rather on slow
directed flows organized by ghost sets in ghost channels and ghost cycles. Moreover, we show that the
appearance of these novel objects is an emergent property of a broad class of models typically used for
description of natural systems.
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Living and man-made, but also ecological or climate
systems are classically described to reproduce asymptotic
behavior, implying that the observed dynamics is retained
indefinitely in absence of a perturbation. Mathematically,
such dynamics corresponds to invariant sets that represent
objects in phase space, the simplest being stable fixed
points separated by separatrixes of saddles [1,2]. However,
a growing body of empirical evidence suggests that real-
world systems are often characterized by long transients
which are not invariant, are quasistable, and the system
switches between them. The duration of the quasistable
patterns is much longer than one would expect from the
characteristic elementary processes, whereas the switching
is triggered by external signals or system autonomously,
and occurs on a timescale much shorter than the one of the
preceding dynamical pattern. Examples include dynamics
of neuronal activity [3–5], camouflaging in animals [6],
cell signaling [7–9], ecological [10,11], earth and climate
systems [12,13], replicator networks [14], semiconductor
lasers, and Josephson junctions [15]. In the context of
neuronal systems, the described dynamics is often referred
to as metastable [16–19]. From the aspect of topological
dynamics, long transients are caused by the bifurcations
(explosions) of ω-limit sets or through the occurrence of
generalized homoclinic (loop) structures [20–22]. In par-
ticular, the emergence of long transients has been concep-
tualized by trapping the system’s dynamics in thevicinity of a
saddle [10] [Fig. 1(a)], or a saddle-node “ghost” [7,8,10,22]

[Fig. 1(b)], whereas the switching is thought to occur via
saddle-based heteroclinic structures [23–27] [Fig. 1(c)].
In this Letter, we complement the topological theory

with novel structures. Generalizing the concept of ghost
states [2,15,22], we provide a theoretical framework for
generation of sequential quasistable dynamics that does not
rely on (un)stable fixed points, but on slow directed phase-
space flows guided by ghost channels and ghost cycles

FIG. 1. Schematics of phase-space objects. (a) Quasipotential
landscape of a saddle fixed point. Gray dot: unstable fixed point
localization. (b) Quasipotential landscape of a ghost state. Note
the absence of a fixed point. Inset: time course of a trajectory
with slow transition through the ghost. Schematic diagrams of
scaffolds of connected (c) saddles (Si), i.e., heteroclinic channel,
and (d) ghosts (Gi), i.e., ghost channel. Ai denotes the ghost-
attracting set of Gi, and Bi its basin. (a)–(d) Black, gray, and
magenta arrows represent (un)stable manifolds, flow direction
and example trajectories, respectively.
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[Fig. 1(d)]. We identify the criteria for their emergence, and
demonstrate that ghost-based scaffolds capture properties
of long transients in noisy systems better than traditional
models relying on invariant sets.
Properties of ghost sets—To formally define ghost

channels and cycles, we need to provide a quantitative
description of ghost sets, their boundaries, and trapping
times. Consider a conceptual 2D system of first order
differential equations ẋ ¼ FðxÞ given by

ẋ¼ αþx2; ẏ¼−y: ð1Þ

For α < 0, a stable fixed point and a dissipative saddle
coexist, whereas for α → 0þ, a ghost state or a “bottleneck”
appears [2] [Supplemental Material [28] Fig. S1(a),
numerical analysis as in Ref. [29]].
Fixed points in dynamical systems (and their surround-

ing regions of slow dynamics) can be identified using
an auxiliary scalar function qðxÞ ¼ 1

2
jFðxÞj2, which is also

a Lyapunov function, related to the system’s kinetic
energy [30] where j:j is the standard Euclidean norm.
Calculating the kinetic energy for system Eqs. (1) shows
thatqðx�Þ ¼ 0 if and only if x� is a fixed point, i.e., the saddle
[Fig. 2(a), top; the stable fixed point is omitted for brevity]. In
its proximity q adopts values close to 0 (qthresh ¼ 10−2),
corresponding to the upper surface of the saddle [Fig. 1(a)].
Slow dynamics with q < qthresh still occurs for α → 0þ,
spanning across an even larger phase-space area [Fig. 2(b),
top]. This area corresponds to the shallow-slope region of the
ghost state in Fig. 1(b). If the normof the dynamics is close to
zero (qthresh ¼ 10−2), local linear expansion is still valid [30].
Numerically evaluating the two local eigenvalues, λspmax and
λspmin, for every slow point ðxsp; yspÞ satisfying qðxsp; yspÞ <
qthresh using the Jacobian of Eqs. (1) shows that λspmin is
negative for α < 0 and α → 0þ in the whole slow region
[Supplemental Material [28], Sec. I, Fig. S1(b)]. λspmax,
however, remains positive around the saddle as characteristic
for unstable fixed points, while for α → 0þ the λspmax changes
from negative to positive in the slow-dynamics region
[Figs. 2(a) and 2(b), bottom]. The corresponding eigenvec-
tors thereby determine the flow direction: trajectories starting
along the stable saddle manifold are deflected along its
unstable manifold, whereas for α → 0þ the phase space flow
attracts and guides the trajectories along the low kinetic
energy area [Figs. 2(a) and 2(b), bottom, respectively]. Thus,
the system’s trajectories, although transiently attracted to the
ghost state, eventually escape. This is also contrary to a
saddle node (i.e., when saddle and stable fixed point collide at
α ¼ 0), as the trajectories coming from the left will be
trapped at the origin.
Since the trajectories in the ghost travel along phase

space region where λspmax ≈ 0, we investigated how the
trapping times, and thereby the effective quasistability of
the ghost differs to that of the saddle. For this, we divided
each trajectory into N segments, explicitly integrated
system Eqs. (1) along each segment [between initial
and final ðxin;i; yin;iÞ=ðxfin;i; yfin;iÞ points; Supplemental

Material [28], Sec. II], and determined analytically and
numerically the local trapping times τi as a function
of the local λspmax. The functional forms of the analytical
expressions,

τi;saddle ¼
1

λspmax

�
ln

���� x − λspmax=2
xþ λspmax=2

����
�����

xfin;i

xin;i

and

τi;ghost ¼
2

λspmax

�
tan−1

�
2x
λspmax

������
xfin;i

xin;i

and the corresponding numerical verification show that τi
quickly decays along positive λspmax for the saddle, whereas
for the ghost, a parabolic dependency on λspmax applies
[Supplemental Material [28] Fig. S1(d)]. Contrary to the
saddle, for which τ decreases monotonically with

FIG. 2. Characteristics of quasistable transients emerging from
saddles vs ghost states. (a) Top: Kinetic energy estimate [qðx; yÞ]
around a saddle fixed point [α ¼ −0.4 in Eq. (1)]; Bottom:
corresponding maximum eigenvalue (λspmax) in the qðxsp; yspÞ <
qthresh ¼ 0.01 region; Stable/unstable (Ws;Wu) manifold (black
arrow lines) and exemplary phase space trajectory (magenta line).
Black crosses: entry and exit points; (b) Same as in (a), but for
ghost state [α ¼ 0.01 in Eqs. (1)]. Gray arrow lines: phase space
flow. (c) Dependence of the total trapping time in the
qðxsp; yspÞ < qthresh region of the saddle (left) and the ghost
(right) for different additive noise intensities σ. Mean � s.d. from
30 repetitions are shown. See Supplemental Material [28].
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increasing σ, for the ghost, τ is robust with respect to noise
[31], remaining constant over 2 orders of magnitude of σ
and decaying to half-maximum only at σ ∼ 10−1. This
characteristic of ghost sets is preserved for different α
values [Supplemental Material [28] Fig. S1(e)].
Following the features from this example, we now define

ghost attracting sets formally. A is a ghost attracting set if
(a) it is a closed bounded set that does not contain any
semitrajectories in forward time; (b) there is a closed set
BðAÞ with nonempty interior, the ghost basin of attraction,
associated with A, such that (i) for any x0 ∈BðAÞ there is a
tðx0Þ ≥ 0 such that xðt; x0Þ∈A (attraction); (ii) for
any x0 ∈A there is a tðx0Þ ≤ 0 such that xðt; x0Þ∈BðAÞ
(minimality); (iii)A is a proper subset ofBðAÞ (contraction).
Moreover,A has entrance and exit boundarieswith respect to
the flow [32].
Ghost channels and ghost cycles—We next extend the

concept of ghost sets to complex ghost structures that we
term ghost channels and ghost cycles, in analogy to hetero-
clinic structures constructed from saddles. Formally, we
define a ghost channel as follows:
Let A1;…;AN be N ghost attracting sets of the under-

lying system. We say that the sets form a ghost channel if

∂escAi ⊂ BðAiþ1Þ; i ¼ 1;…; N − 1; ð2Þ

where ∂escAi is the escape boundary of Ai with respect to
the flow. Thus, ghost channels (GChs) appear when
multiple ghosts are aligned in a sequence such that the
trajectory escaping a preceding ghost is directed by the
flow through the next ghost in the sequence [Figs. 1(d)
and 3(b); Supplemental Material [28], Sec. III. B and
Ref. [32]]. Thus, GChs, in accordance to their definition,
inherit attraction, whereas heteroclinic channels (HCh)
may not. Comparing the reproducible guidance of trajec-
tories through a GCh and a HCh [Fig. 3(a)], both
constructed geometrically [33,34] for simplicity, shows
that only the GCh uniquely funnels the flow in phase
space, even for increased σ [Fig. 3(b); Supplemental
Material [28] Figs. S2(a)–S2(d)]. In contrast, the trajecto-
ries stochastically exit along the HCh’s unstable manifold.
This shows that GChs, but not HChs, guarantee repro-
ducible quasistable sequential switching dynamics, as also
confirmed by the consistently lower Euclidean distance
between the trajectories in the GCh [Fig. 3(c)]. We find that
GChswith equivalent properties are characteristic for a broad
class of systems, including models of charge density waves
[15], climate tipping cascades [35], and unidirectionally
coupled cellular signaling model [36] [Supplemental
Material [28] Fig. S2(e), Sec. III. B].
To conceptualize the emergence of oscillatory quasi-

stable sequential dynamics, we also constructed ghost
cycles [GC; Fig. 4(e)]. Formally, if ∂escAN ⊂ BðA1Þ, we
have a GC. To compare their dynamics to heteroclinic
cycles [HC; Fig. 4(a)], we matched the trapping times

(in arbitrary units) along a single saddle and ghost to be
similar at low σ by adjusting the saddle values of a generic
noise-driven Lotka-Volterra HC model (Supplemental
Material [28] Fig. S3). The period of the HC [37],
T ∼ j ln σj=λu decreases almost exponentially as σ is
increased, following the decrease of the total trapping
time at the saddles [Figs. 4(b) and 4(d)]. Moreover, the
intervals in which the system’s dynamics spends switching
between the saddles within one HC period dominates
already for intermediate noise σ ≤ 10−3. This is also
reflected in the speed of the phase-space trajectories,
which increasingly fill in the phase-space regions distant
to the heteroclinic backbone under increased noise
[Fig. 4(c)]. In contrast, increasing σ does not affect the
mean period of GCs over a large range of noise intensity,
and the trajectories remain bounded along the cycle
[Figs. 4(f)–4(h)]. The times spent on the ghosts remain
∼ twofold larger than the transition times between them,
even for σ > 10−2. This is also reflected in the speed of the
trajectory in phase space, with a clear separation of the
timescales [Fig. 4(g)]. GCs thus uniquely provide a
dynamical basis for emergence of robust and sustained
quasistable oscillatory switching dynamics even for

FIG. 3. Comparison of heteroclinic (HCh) and ghost (GCh)
channels’ dynamics. (a) Schematic of a HCh and exemplary
trajectories for six initial conditions and two different noise
intensities σ. (b) Same as in (a), but for a GCh. (c) Euclidean
distance between pairwise trajectories in the HCh or GCh as a
function of σ (mean �SEM from 180 trajectories: six initial
conditions with 30 repetitions; Supplemental Material [28]).
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inherently noisy systems. In models, GCs can occur when
a limit cycle terminates via a single or multiple saddle node
on invariant circle bifurcations (SNICs) [38–40]. In the
vicinity of the SNICs, the system’s dynamics is governed by
the SNs about to emerge: after being transiently trapped in
the ghost set, the trajectory escapes and is trapped by the next
one, thus continually switching between ghosts in the
sequence [Supplemental Material [28], Figs. S5(a)–S5(c)].
We demonstrate this also for a generic gene-regulatory
networkmodel proposed to underlie stem cell differentiation
[39] [Supplemental Material [28], Figs. S5(d)–S5(f)].
Conclusions and outlook—We introduced ghost chan-

nels and ghost cycles as novel objects that guide flow in
phase space and give rise to reliable quasistable dynamics
even in the presence of noise. This shows that quasistability
can emerge in systems whose dynamics is neither organ-
ized by fixed points, nor dominated by limit cycle attractors
(slow-fast systems [1,41,42]), the comparison to which we
discussed elsewhere [43]. We thus propose that ghost-based
objects provide a possible mechanistic description for the
emergence of ordered and reproducible transient behavior
across living and manmade systems [3,4,6,10,12,44,45].
Using mainly geometric models to derive the basic defi-
nitions here, we identified the dynamical characteristics
(q ∼ 0, eigenvalue gradient and escape paths), which could

be used in an algorithmic fashion to identify ghost sets in
any arbitrary-dimensional complex system.
The proposed concepts could potentially provide a

way forward in identifying mechanisms, e.g., of emergence
of complex low-dimensional manifolds [46] typical
for neuronal activity data during cognitive or behavioral
tasks [33,44,45], as it is easy to imagine hybrid structures
of ghosts and saddles giving rise to new phase-space
objects benefiting from different properties (Supplemental
Material [28], Fig. S6). Moreover, the presence of distinct
timescales emerging from the ghost scaffolds could aid
development of time-series analysis methods for detecting
quasistable patterns and corresponding transitions, e.g., via
phase-space-based metrics [47]. Our conceptual framework
therefore provides new perspectives on natural systems
where long transients are common.
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FIG. 4. Comparison of heteroclinic (HC) and ghost (GC) cycles. (a) Schematic of a HC of three saddles (S1 to S3) and (b) exemplary
time series for two noise intensities σ. (c) Corresponding phase-space trajectories, color coded by velocity. (d) Characteristic HC times
as a function of σ: HC period (red), total trapping time at the saddles (solid black) and switching time (dashed black line). Vicinity was
determined by three-dimensional spheres of radius ϵ ¼ 0.1 centered around the saddles. The mean� root mean squared error of the s.d.
over time is plotted from 30 trajectories. (e)–(g) Same as in (a)–(c), but for a GC (ghosts G1 to G4). (h) Characteristic GC times as a
function of σ. Labeling as in (d).
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