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Synchronization, which is caused by mutual coupling, and turnover, which is the replacement of old
components with new ones, are observed in various open systems consisting of many components.
Although these phenomena can co-occur, the interplay of coupling and turnover has been overlooked.
Here, we analyze coupled phase oscillators with turnover and reveal that two distinct transitions occur,
depending on both coupling and turnover: desynchronization and what we name stochastic oscillation
quenching. Importantly, the latter requires both the turnover and coupling to be sufficiently intense.
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Introduction—The emergence of order in open systems
comprising many interacting units is widely observed in
nature. In particular, mutual synchronization is observed
in a wide range of coupled oscillator systems [1], from
biological systems [2,3] to social [4] and artificial systems
[5,6]. Another phenomenon broadly observed in open
many-body systems is turnover owing to the addition
and removal of components. Examples include the protein
and cell turnover in biological systems [7,8]. Other exam-
ples are found in social [9,10] and bioinspired chemical
systems [11]. Further, a growing population may be
effectively modeled as a system with turnover when the
growth causes the dilution of components [12,13]. These
two phenomena, mutual synchronization and turnover, may
manifest in the same system, and their timescales are not
always clearly separated. For example, KaiC proteins in a
cyanobacterial cell exhibit a collective rhythm of phospho-
rylation and dephosphorylation with a period of approx-
imately 24 h, and their average half-life has been estimated
to be approximately 10 h [14].
Recent studies have revealed that turnover can deterio-

rate the collective oscillation; it has been shown numeri-
cally [12] and experimentally [15] that the synchronous
phosphorylation-dephosphorylation cycle of KaiC proteins
loses robustness when the turnover rate is a sufficiently
large constant. Moreover, Ref. [12] has suggested that their
collective oscillation disappears when the turnover rate is
further increased. However, little attention has been paid to
the synergistic effect of the interaction among oscillators,
which is essential for mutual synchronization, and the
turnover. In particular, these previous studies lack analyses

on how the effect of the turnover changes as the properties
of the coupling are varied.
In this regard, we study a simple model of coupled phase

oscillators with turnover and show that their collective
oscillation disappears via two distinct transitions depending
on both the coupling and turnover. For sufficiently small
coupling strengths, the collective oscillation is lost via
desynchronization [16] as the turnover rate increases, while
for stronger coupling strengths, we may observe what we
refer to in this study as stochastic oscillation quenching
(SOQ), which can be interpreted as a stochastic analog
of oscillation quenching [17]. Interestingly, SOQ may be
induced not only by increasing the turnover rate but also by
strengthening the interaction among oscillators. Thus, this
extinction of the collective oscillation is caused by a
synergistic effect of the turnover and coupling. Our model
is based on the Kuramoto model [18–21], which has been
successfully applied to investigate synchronization in
various systems [1,3,4,6,16,22,23], and incorporates the
effect of the turnover as stochastic resetting [24,25]. The
tractability of the model enables us to obtain transition
curves.
Kuramoto model with turnover—The dynamics of N

identical Kuramoto oscillators are given as follows [16,18]:

dθi
dt

¼ ωþ κ

N

XN
j¼1

sin ðθj − θiÞ; ð1Þ

where θi (i ¼ 1; 2;…; N) is the phase of the ith oscillator,
ω ≠ 0 is the natural frequency of the oscillators, and κ ≥ 0
represents the coupling strength. The Kuramoto model
exhibits mutual synchronization and has the advantage of
ease of analytical treatment [21]. However, modeling the
turnover of such oscillators in a tractable manner is a
nontrivial problem because the removal and addition of
oscillators involve changes in the number of variables
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comprising the dynamical system. We circumvent this
difficulty by constructing a model as follows.
Suppose one of the oscillators is randomly chosen and

replaced by a new oscillator. This event is equivalent to
resetting the phase of the selected oscillator to that of the
newly added oscillator. Hence, as a model for oscillators
with turnover, we adopt a system that involves phase
resetting. Specifically, we consider a population of
Kuramoto oscillators where each oscillator experiences a
reset event with probability αdt during an infinitely short
time width dt. In other words, the resetting events are such
that αN oscillators are expected to be substituted per unit
time. Such dynamics can be described by the following Itô
stochastic differential equation with jumps:

dθi ¼
�
ωþ κ

N

XN
j¼1

sin ðθj − θiÞ
�
dt

þ ð−θi þ ϕiÞdPiðϕi; αÞ; ð2Þ

where dPiðϕi; αÞ is the differential of a marked Poisson
processPiðϕi; αÞwith intensity α, describing the resets of the
ith oscillator. The number of resetting events during a period
Δt obeys the Poisson distribution with intensity αΔt, and the
value of the random variableϕi, which is called themark [26]
of the Poisson process Pi, is drawn from a distribution fðϕÞ
upon each resetting event. When a resetting event of the
ith oscillator occurs, θi changes by −θi þ ϕi. Thus, ϕi is a
random variable corresponding to the phase of the ith
oscillator just after its reset. Hereafter, we refer to α as the
turnover rate. Note that the resetting events occur independ-
ently; i.e., the counting processes fPiðϕi; αÞgNi¼1 are inde-
pendent and the values of the marks at different resetting
events are independently drawn from fðϕÞ.
Equation (2) was simulated using the Euler-Maghsoodi

method [27]. Consistent with previous work [12], the
increase in the turnover rate α in Eq. (2) causes the
extinction of the macroscopic oscillation. The snapshots
of the phase distribution in Figs. 1(a) and 1(b) indicate that
the distribution for α ¼ 0.1 has a sharp peak and changes
with time, whereas that for α ¼ 0.3 is almost uniform and

steady. In the numerical simulation, we adopted fðϕÞ with
the form of a Poisson kernel:

fðϕÞ ¼ 1

2π

1 − σ2

1 − 2σ cosϕþ σ2
; ð3Þ

where σ determines the sharpness of fðϕÞ; fðθÞ ¼ 1=ð2πÞ
for σ ¼ 0 and fðθÞ → δðθÞ as σ → 1. Similar results were
obtained for other unimodal distributions (not shown here).
Let us quantify the macroscopic oscillation by introduc-

ing the complex order parameter r, Kuramoto order
parameter R, and mean phase Θ as follows [16,20]:

rðtÞ ¼ RðtÞeiΘðtÞ ≔ 1

N

XN
j¼1

eiθjðtÞ: ð4Þ

According to this definition, R reflects the coherence of the
phases; R ¼ 0 when the phases are uniformly distributed,
and R ¼ 1 when all oscillators have the same phase.
Note that the system without turnover, Eq. (1), has a stable
synchronized oscillatory solution with RðtÞ ¼ 1 and
ΘðtÞ ¼ Θð0Þ þ ωt. The time series of ReðrÞ oscillates
for α ¼ 0.1, whereas it remains constant for α ¼ 0.3;
see Fig. 1(c).
We define the intensity of the macroscopic oscillation as

the fluctuation of r:

Q ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD
jr − hritj2

E
t

r
; ð5Þ

where hit denotes the longtime average. Note that Q ¼ 0 if
r is constant. As shown in Fig. 2, the dependence of Q on
phase resetting changes qualitatively as the coupling
strength κ varies. For sufficiently small κ, the value of Q
is hardly affected by the width σ of the distribution f and
gradually decreases as α increases. In contrast, for larger
values of κ, σ also affects Q; when σ ≃ 0, Q gradually
decreases as α increases [Fig. 2(a)], whereas Q suddenly
drops to near 0 when σ ≃ 1 [Fig. 2(c)]. For the intermediate
values of σ, the system behaves like something between

FIG. 1. An increase in the turnover rate α quenches the collective oscillation. (a),(b) Snapshots of the phase distribution for
t ¼ 1001, t ¼ 1003, and t ¼ 1005, obtained from the numerical simulation of Eq. (2) by the Euler-Maghsoodi method [28]. These
panels share the same legend. (a) The propagation of the distinct peak of the distribution is observed for α ¼ 0.1. (b) For α ¼ 0.3, the
distribution is steady and flatter compared to that for α ¼ 0.1. (c) Time series of the real part of the complex order parameter r. The
black solid and blue dotted curves illustrate the dynamics of ReðrÞ for α ¼ 0.1 and α ¼ 0.3, respectively. The oscillation observed
for α ¼ 0.1 disappears for α ¼ 0.3. In all the simulations, the initial state is the uniform distribution. Other parameters are ω ¼ 1,
κ ¼ 0.3, σ ¼ 0.5, and N ¼ 50 000.
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these two extreme cases [Fig. 2(b)]. The choice of initial
conditions does not seem to affect the results; completely
synchronized initial conditions, θ1ð0Þ ¼ θ2ð0Þ ¼ � � � ¼
θNð0Þ ¼ 0, yielded almost the same results as in Fig. 2,
where the initial phase distribution was set to the uniform
distribution. Additionally, no hysteresis was observed when
the value of α was varied backward and forward near the
transition point (not shown here).
Mean-field approximation—To analyze the transitions to

the state withQ ≃ 0, let us reduce the system by employing
a mean-field approximation in the same manner as in [29].
First, let pðθ; tÞ and piðθi; tÞ be the probability density
function for θ ≔ ðθ1; θ2;…; θNÞ at time t and
its marginalization over all phase variables except θi,
respectively. From Eq. (2), the time evolution of piðθi; tÞ
is given by

∂pi

∂t
¼ −

∂

∂θi

�Z
Si

pðθ; tÞviðθÞdθi
�
þ αf − αpi; ð6Þ

where θi ≔ ðθ1; θ2;…; θi−1; θiþ1;…; θNÞ,
R
Si
dθi ≔R

2π
0 � � � R 2π

0 dθ1dθ2…dθi−1dθiþ1…dθN , and viðθÞ ≔
ωþ κN−1 PN

j¼1 sin ðθj − θiÞ [28]. In Eq. (6), the effect
of stochastic resetting is described by the second and third
terms on the right-hand side of the equation. Because the
stochasticity of the system arises only from jump processes,
the equation has a linear term −αpi rather than terms
with ∂

2pi=∂θ2i .
Now we invoke the mean-field approximation: we assume

piðθi; tÞpjðθj; tÞ − pi;jðθi; θj; tÞ → 0 and piðθi; tÞ −
pjðθj; tÞ → 0 as N → ∞ for any i ≠ j, where
pi;jðθi; θj; tÞ is the joint probability distribution function
for θi and θj. Then, from Eq. (6), the time evolution equation
of the phase distribution pðθ; tÞ is obtained as

∂p
∂t

¼ −
∂

∂θ
½pv� þ αf − αp; ð7Þ

v ¼ vðθ; tÞ ≔ ωþ κ

Z
2π

0

pðθ̃; tÞ sinðθ̃ − θÞdθ̃: ð8Þ

In the following, we set ω ¼ 1 without loss of generality by
normalizing t, κ, and α by ω.
Desynchronization—When α ¼ 0, Eq. (7) has the uni-

form steady solution pð0ÞðθÞ ≔ 1=ð2πÞ. This solution
corresponds to the desynchronized state in the sense that
the cohesiveness of the phases is completely lost. For
α ≠ 0, pð0ÞðθÞ is no longer a solution of Eq. (7); however,
Fig. 1(b) suggests the existence of a steady solution
obtained by slightly deforming pð0ÞðθÞ. The stabilization
of such a solution, formally analyzed below, explains the
extinction of the collective oscillation observed for small κ
and α in Fig. 2.
Let ρ be the deviation from a steady solution p̂; i.e.,

ρ ¼ p − p̂. Linearizing Eq. (7) around p̂ yields

∂ρ

∂t
≃ −

∂

∂θ
fp̂U½ρ� þ ð1þ U½p̂�Þρg − αρ≕L½ρ�; ð9Þ

where the linear functional U is defined by

U½ρ�ðθÞ ≔ κ

Z
2π

0

sin ðθ̃ − θÞρðθ̃Þdθ̃: ð10Þ

Assume further that p̂ and L are expanded as follows for
sufficiently small values of α:

p̂ðθ; α; κÞ ¼ p̂ð0ÞðθÞ þ
X∞
l¼1

αlpðlÞðθ; κÞ; ð11Þ

L ¼
X∞
l¼0

αlLðlÞ: ð12Þ

FIG. 2. Two transition curves explain the disappearance of the collective oscillation. The index Q of the intensity of the collective
oscillation, defined by Eq. (5), is averaged over 5 realizations of the Poisson processes and shown in color scale for (a) σ ¼ 0,
(b) σ ¼ 0.50, and (c) σ ¼ 0.99. When α and κ are sufficiently small, the critical coupling strengths below which Q vanishes coincide
with the desynchronization transition curve, κ ¼ κc, which is shown via a white dotted line in each panel. In contrast, when κ is
sufficiently large, the boundary of the region of collective oscillation depends on σ; in (a), the boundary depends on κ almost linearly
even for α ∼ 1, while in (c), the line κ ¼ κcðαÞ does not explain the boundary for κ ≳ 2 at all, and thus another transition curve is needed
to fully describe the boundary. The supplementary curve obtained by analyzing SOQ in the limit of σ → 1 is illustrated by a cyan solid
curve in (c). As illustrated in (b), for intermediate values of σ, the boundary lies between those of the two extreme cases. The initial
condition is set to the uniform distribution. Other parameters are ω ¼ 1 and N ¼ 2000.
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The expression for LðlÞ is obtained by inserting Eqs. (11)
and (12) into Eq. (9) and collecting the terms of OðαlÞ.
It is straightforward to find that Lð0Þuð0Þm ðθÞ ¼ λð0Þm uð0Þm ðθÞ
holds for any integer m, where uð0Þm ðθÞ ¼ eimθ and

λð0Þm ¼ −imþ ðκ=2Þδjmj;1.
Now, we define an inner product h·; ·i of smooth

2π-periodic functions z1ðθÞ and z2ðθÞ as

hz1; z2i ≔
1

2π

Z
2π

0

z1ðθÞz2ðθÞdθ; ð13Þ

where z2ðθÞ is the complex conjugate of z2ðθÞ. The adjoint
operator Lð0Þ� of Lð0Þ defined on this inner-product space

satisfies Lð0Þ�uð0Þm ¼ λð0Þ−mu
ð0Þ
m . Thus, uð0Þm ðθÞ is an eigenvec-

tor of both Lð0Þ and Lð0Þ�. This allows us to apply the
Rayleigh-Schrödinger perturbation theory [30] to evaluate
the eigenvalues of L. Specifically, we assume that the
eigenvalues and eigenvectors of L can be expanded around
those of Lð0Þ:

Lum ¼ λmum; ð14aÞ

um ¼
X∞
l¼0

αluðlÞm ; λm ¼
X∞
l¼0

αlλðlÞm : ð14bÞ

To ensure the uniqueness of the expansion, we also impose

the orthogonality condition huð0Þm ; uðlÞm i ¼ δ0;l.
Inserting Eqs. (12) and (14b) into Eq. (14a) and

extracting the terms of OðαÞ, we obtain

λð1Þm uð0Þm ¼ Lð0Þuð1Þm þ Lð1Þuð0Þm − λð0Þm uð1Þm : ð15Þ

Then, computing the inner product hλð1Þm uð0Þm ; uð0Þm i yields

λð1Þm ¼ −1. Hence, λm ¼ −imþ δjmj;1ðκ=2Þ − α to the order
of α, and the maximum of the real parts of the eigenvalues
exceeds 0 when

κ ≃ 2α≕ κc: ð16Þ

Figure 2 implies that, for small α, the boundary on whichQ
vanishes agrees with the curve κ ¼ κc, which is delineated
by the white dotted curves. Consistent with the numerical
simulation, κc depends on α but not on σ, the width of fðθÞ.
It should be noted that the stability analysis presented

here is formal but not mathematically rigorous because
(1) the validity of the perturbative calculation is assumed
without any proof and (2) the continuous and residual
spectra are ignored. Nevertheless, the agreement with
numerical simulation indicates the validity of the analysis.
Stochastic oscillation quenching—The dependence of Q

on the turnover rate α for σ ¼ 0, shown in Fig. 2(a), does
not change qualitatively when κ is increased. However,
when σ approaches 1, the transition observed for large κ is

no longer explained by desynchronization discussed above;
see Figs. 2(b) and 2(c).
Numerical simulations indicate that the phase distribu-

tion after this transition is steady but far from uniform, as
shown in Fig. 3(a). Furthermore, the velocity field,

vðθÞ ≔ ωþ κ

Z
sinðθ̃ − θÞpðθ̃Þdθ̃; ð17Þ

is qualitatively different from that of the desynchronized
state; the transition involves the emergence of the zeros of
vðθÞ, and these continue to exist when κ or α is further
increased. See the blue dashed and green dot-dashed curves
in Fig. 3 for vðθÞ just after and far beyond the transition,
respectively. In contrast, vðθÞ in the desynchronized state,
which is indicated by the black solid curve in Fig. 3, has
no zero.
In deterministic systems, the zeros of the velocity field of

the oscillators imply oscillation quenching, the phenomenon
where individual oscillators cease their oscillation [17].
Although our system involves stochastic resetting, we can
make an analogy as follows. Consider a “test oscillator,” i.e.,
an oscillator that changes its phase according to vðθÞ but
does not affect the system nor undergo phase resetting. If we
incorporate it into the system, its phase changes toward θq, a
point at which vðθÞ ¼ 0 and dvðθÞ=dθ ≤ 0 hold, and then
becomes almost static after initial transients. Thus, the steady
distribution with which vðθÞ has zeros implies the quenching
of the test oscillator, and we refer to the realization of such a
distribution as stochastic oscillation quenching.
In the analyses of oscillation quenching, the condition

that the time derivatives of the state variables vanish is often
combined with the definition of order parameters to
develop self-consistency arguments [31,32]. However, in
the case of SOQ, such a condition cannot be used because
the phases keep changing toward θq. Therefore, we use a
condition regarding vðθÞ instead. Specifically, in the
following, a transition curve that explains numerical results

FIG. 3. SOQ occurs for sufficiently large κ. (a) Snapshots of the
histogram of the phases in the system near the transition point of
SOQ. The line colors are the same as those in Figs. 1(a) and 1(b).
The parameters are ðκ; α; σÞ ¼ ð2.5; 0.5; 0.99Þ. (b) The SOQ
transition involves the emergence of the zeros of velocity field
vðθÞ. The blue dotted and green dot-dashed curves show vðθÞ for
κ ¼ 2.2, around which the SOQ transition occurs, and for
κ ¼ 3.0, where the system is far beyond the transition point,
respectively. The black solid curve is for κ ¼ 0.3, corresponding
to the desynchronized state.
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for σ ≃ 1 is obtained by imposing the condition that vðθÞ
has exactly one zero in the limit fðθÞ → δðθÞ.
Setting ð∂p=∂tÞ ¼ 0 in Eq. (7) in this limit and imposing

vðθqÞ ¼ ðdv=dθÞðθqÞ ¼ 0 yields

∂

∂θ
fpðθÞ½1 − cosðθq − θÞ�g þ αpðθÞ − αδðθÞ ¼ 0: ð18Þ

We seek a solution pðθÞ such that pðθÞ > 0 in ½0; θqÞ and
pðθÞ ¼ 0 in ½θq; 2πÞ because the phase of a new oscillator
continues to approach from 0 to θq when SOQ occurs. This
ansatz is consistent with the phase distribution obtained by
numerical simulation for σ ¼ 0.99 ≃ 1, where most of the
oscillators are located in the range ½0; θqÞ, as shown
in Fig. 3(a). Noting that the derivative at a discontinuous
point yields Dirac’s delta function, we obtain such a
solution as follows:

pðθÞ ¼

8>><
>>:

α exp

h
α

�
1

tan
θq
2

− 1

tan
θq−θ
2

�i
1−cosðθq−θÞ ð0 ≤ θ < θqÞ

0 ðotherwiseÞ;
ð19Þ

which is continuous at θ ¼ θq but discontinuous at θ ¼ 0.
Inserting Eq. (19) into Eq. (17) and imposing

vðθqÞ ¼ ðdv=dθÞðθqÞ ¼ 0, we find that the parameters κ
and α satisfy

κ ¼ g1ðcqðαÞ; αÞ≕ κqðαÞ; ð20Þ

where

g1ðc; αÞ ≔
0
@2αe

αcffiffiffiffiffiffi
1−c2

p Z
1

c

xe−αx=
ffiffiffiffiffiffiffiffi
1−x2

p

1 − x2
dx

1
A

−1

; ð21Þ

and cq ≔ cosðθq=2Þ is a zero of the function

g2ðc; αÞ ¼
Z

1

c

ð2x2 − 1Þe−αx=
ffiffiffiffiffiffiffiffi
1−x2

p

ð1 − x2Þ3=2 dx: ð22Þ

We solve g2 ¼ 0 numerically and insert the solutions into
Eq. (20) to obtain κq, which is plotted as a cyan solid curve
in Fig. 2(c). The curve agrees with the value of α at whichQ
vanishes for large κ, supporting the assertion that the
disappearance of the collective oscillation is due to SOQ.
Conclusion—This study has investigated a model of

coupled oscillators with turnover. In contrast to a previous
study [12] that focused solely on turnover, we have high-
lighted the synergistic effect between coupling and turn-
over. As a result, the collective oscillation has been shown
to disappear via two types of transitions depending on both
the coupling strength and the turnover rate: one is desynch-
ronization and the other is a novel type of transition termed

SOQ. Importantly, SOQ cannot be induced by turnover or
coupling alone, but by their synergistic effect.
Characterizing these two distinct types of transitions has

potential implications for the control and design of the
collective behavior of oscillatory assemblies. First, it helps
avoid the unexpected disappearance of synchronous oscil-
lations. In the original Kuramoto model, increasing the
coupling strength enhances phase cohesion and promotes
the collective oscillation, so one would expect the same
to be true for oscillators with turnover. However, if the
turnover rate is sufficiently large, increasing the coupling
strength causes the collective oscillation to disappear
through SOQ. Second, the type of transition may be
exploited for designing appropriate forcing to steer the
system to a desirable state, as has been done in Ref. [33].
Previous experimental studies have proposed various

open reactors that sustain nonequilibrium chemical reac-
tions by controlling the fluxes into and out of the system
[11,34–36]. Desynchronization and SOQ may be observed
if self-sustained oscillators are incorporated into such an
apparatus and parameters are varied. A candidate system
might be constructed by combining techniques to maintain
constant protein turnover [36] with protein molecules
whose states change periodically [37,38]. Our work might
also be relevant to tissue formation in multicellular organ-
isms because proliferation and differentiation sometimes
involve phase resetting of cellular oscillators [39,40].
Desynchronization transition has been observed in vari-

ous coupled oscillator systems. In contrast, whether SOQ
occurs robustly in different oscillator systems needs to be
investigated in future studies, although we have confirmed
that it also occurs in a population of oscillators with
inhomogeneous natural frequencies (not shown here).
The investigation of other oscillator models will provide
insights into the robustness of the transition [41].

Acknowledgments—The authors thank Hiroshi Ito and
Keiko Imai for helpful discussions on protein turnover,
Ryota Kobayashi for illuminating comments on the Poisson
process, and Namiko Mitarai, Tetsuhiro Hatakeyama, and
Yuting Lou for insightful discussions on the application of
the theory. This study was supported by JSPS KAKENHI
Grant No. JP22KJ0899 to A. O. and JSPS KAKENHI
Grant No. JP21K12056 to H. K.

A. O. and H. K. conceptualized the work, and
A. O. performed analyses and wrote the manuscript with
support from H. K.

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization:
A Universal Concept in Nonlinear Sciences (Cambridge
University Press, Cambridge, England, 2001).

[2] Leon Glass, Synchronization and rhythmic processes in
physiology, Nature (London) 410, 277 (2001).

PHYSICAL REVIEW LETTERS 133, 047201 (2024)

047201-5

https://doi.org/10.1038/35065745


[3] A. T. Winfree, The Geometry of Biological Time (Springer,
New York, 2001).
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