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A spin filter is a device that allows only a single spin state to pass, equivalent to a polarizing filter for a
beam of light. Here, taking inspiration from shortcuts to adiabaticity, I demonstrate that the potential
landscape of a typical quantum point contact can be tuned to act as a two terminal spin filter or to generate a
spin-polarized beam. The effect presented is sufficiently robust that rough engineering yields a significant
effect, as demonstrated by experiments on asymmetrically biased quantum point contacts in InAs quantum
wells.
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Introduction—An electron spin filter or polarizer con-
verts an unpolarized beam of electrons into a spin-polarized
beam, equivalent to a polarizing filter for light. While such
a device has been a topic of research interest ever since the
discovery of spin, development of an apparatus to achieve
this for electrons is not straightforward. Leon Brillouin, for
example, proposed an electronic version of the Stern-
Gerlach experiment to separate differing spin polarizations
[1], however, as noted at the time, diffraction based
broadening would make it impossible to separate the spin
states using Brillouin’s proposal [2,3]. Much more recently,
this persistent fundamental interest in spin-filtering elec-
trons has been matched by technological drive, due to the
proposal and demonstration of a variety of information
processing devices where the information is encoded on the
spin state of the charge carrier [4–6]. In such devices, spin
polarizers and filters are critical components.
Fortunately, for spin-based information processing, cre-

ating a spin polarizer (or filter) in solid-state devices is less
vexing than doing so in free space. Two approaches
dominate. The first uses ferromagnetic contacts, where
the large internal spin-splitting in the ferromagnet allows
only one spin state to pass. The resulting current that is
injected from the ferromagnetic contact to the device is spin
polarized. The main drawback of this approach is the
difficulty in integrating ferromagnetic contacts into semi-
conducting devices, both at the level of industrial fabrica-
tion and at the level of reliable spin injection. A second
approach, which has seen an increasing interest over the
past two decades attempts to avoid these difficulties via “all
electric” spin filtering, where a combination of spin-orbit
coupling and electron-electron interactions are employed,
bypassing the need for ferromagnetic components [7,8].
These all-electric approaches have had varying success;
while the need for ferromagnetic contacts is eliminated, the
interaction induced gap is typically quite small, and the
effect challenging to reliably implement.

In this Letter, I present an alternative approach to spin
filtering and polarization, motivated by developments in
“shortcuts to adiabaticity.” As its name suggests, shortcuts
to adiabaticity aims to provide a shortcut to the otherwise
slow time evolution of a Hamiltonian required for adiabatic
evolution of states, via the addition of a driving term that
suppresses the nonadiabatic transitions that would other-
wise occur due to the rapid time evolution of the
Hamiltonian [9–11]. This approach has already been
employed extensively in quantum information science.
Herein, I show how avoided crossings between spin-up
and spin-down states of different subbands within a
widening (or narrowing) waveguide can be used to achieve
spin filtering, and how, by making use of the aforemen-
tioned design principle of shortcuts to adiabaticity, perfect
spin polarization can be achieved. The presented approach
can allow for high fidelity spin filtering and polarization.
More remarkably, even quick and dirty approaches based
on the method presented will yield a high degree of
polarization. The effect is sufficiently robust that exper-
imental groups have already inadvertently implemented
this scheme of spin filtering.
Avoided crossing in quantum point contacts—A quan-

tum point contact (QPC) is a quasi-one-dimensional con-
striction formed between two conducting reservoirs by
applying a strong confining potential. This is typically done
via a split gate, which depletes an underlying two-dimen-
sional electron gas. While the lithographic dimensions are
typically several time larger the Fermi wavelength λF, the
characteristic widthW0 of the constriction is comparable to
the Fermi wavelength λF of the two-dimensional electron
gas [12]. A schematic is presented in Fig. 1. The conduct-
ance of a QPC is characterized by a series of quantized
conductance steps [13,14]. These conductance steps cor-
respond to the reflectionless transport of electrons through
the QPC potential. If the QPC is formed in a two-
dimensional electron gas, where inversion symmetry is
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broken by an applied electric field Ez in the growth
direction of the quantum well, there will be a Rashba
spin-orbit interaction

HR ¼ αRðp̂xσ̂z − p̂yσ̂xÞ; ð1Þ

where αR parametrizes the strength of the Rashba inter-
action, and is proportional to Ez [15–17]. In narrow band
gap semiconductor quantum wells, for instance, InAs, it
can be up to 25% of the Fermi energy, and have a
significant influence on the transport properties. Putting
all these components together yields the Hamiltonian

H ¼ p̂2

2m
þ αRðp̂xσ̂z − p̂yσ̂xÞ þ Vðx; yÞ; ð2Þ

where p̂ are the usual momentum operators and Vðx; yÞ is
the potential of the QPC. The Hamiltonian, Eq. (2) will still
display well-defined conductance steps, even for spin-orbit
interactions ∼25% of the Fermi energy [18]. These con-
ductance steps will be in usual integer multiples of 2e2=h.
So the quantum point contact is not spin resolved, and both
spin states can pass through the constriction when a
potential bias is created between the reservoirs even with
very large spin-orbit interaction.
The dispersion of the subbands in the QPC is given by

EðnÞ ¼ εn þ
p2
x

2m
� αRpx; ð3Þ

where εn is the energy of the nth subband. If the confining
potential in the y direction was parabolic, εn would
be the energy levels of the harmonic oscillator, ϵn ¼
ℏωyðnþ 1=2Þ. The dispersion for two subbands is pre-
sented in Fig. 2. At a critical momentum, px ≈ ðε2 − ε1Þ=
ð2αRÞ, the nth and nþ 1th subbands will anticross. This
feature is shown in a cartoon in Fig. 2. While this crossing
occurs at a specific value of momentum, there is no need to

tune the system to see this anticrossing. Provided the leads
contain more subbands than the top of the potential barrier,
at some point x > 0, there will be an anticrossing. So a
QPC defined between two reservoirs, tuned to the first
plateau will always have an anticrossing between subbands
with different spin states.
I will be considering the anticrossing between the 1st and

2nd subbands. Rather than dealing with the 4 × 4 basis of
the two subbands, I will consider a 2 × 2 subspace
composed of the states that anticross, the spin-up state
of the 1st subband j1;↑i, and the spin-down state of the 2nd
subband j2;↓i:

ψa ¼ j1;↑i ¼ ϕ1ðyÞ
�
0

1

�
; ð4Þ

ψb ¼ j2;↓i ¼ ϕ2ðyÞ
�
1

0

�
: ð5Þ

Here, ϕnðyÞ is the transverse wave function. This approach
has a fairly wide range of validity provided the Rashba
interaction is large, due to the lack of terms mixing different
subbands within the same spin branch; the full Hamiltonian
consists of a series of 2 × 2 blocks. Having projected into
this subspace, I am left with the following effective
Hamiltonian,

H ¼
�
p̂2
x

2m
− ϵðxÞ

�
þ ðαp̂x − ΔðxÞÞτz − αRPyτy;

εðxÞ ¼ ε2 þ ε1
2

; ΔðxÞ ¼ ε2 − ε1
2

;

Py ¼ h1j∂yj2i; ð6Þ

describing the anticrossing region. I have introduced
the energy ϵðxÞ and the gap ΔðxÞ, the matrix element

FIG. 1. Left panel: Schematic of a QPC. The regions above and
below are the two-dimensional reservoirs, while the split gates
have an applied potential VL and VR on the left and right,
respectively. Wlith is the lithographic width of the split gates.
Right panel: The potential profile of a QPC is characterized by a
smoothly varying potential width, WðxÞ. The minimum width of
the barrier is such that only the first subband can pass through,
W0 ≈ λF=2, where λF is the Fermi wavelength.

FIG. 2. Right panel: The dispersion of the one dimensional
states for the lowest (n ¼ 1) and second lowest (n ¼ 2) subbands
of the QPC, according to Eq. (3). Red (blue) indicates forward
(backward) propagating states. At a particular kx, j1;↑i and j2;↓i
cross, highlighted in the boxed section. Only the forward
propagating states (in blue) are relevant, due to current flowing
in one direction. Left panel: Enlargement of the avoided crossing
region. Thin lines indicate the crossing of the levels defined by
the subband dispersion, Eq. (3).
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Py ¼ h1j∂yj2i over the spatial components of the subspace,
along with the effective spin τi, which acts on the ðψa;ψbÞT
subspace. The position dependence of the energy and gap
arises from the spatial dependence of the confining poten-
tial Vðx; yÞ. If the effective width of the well varies in a
sufficiently slow manner, the energy and gap can be treated
as effective potentials [13].
The most informative way to look at Eq. (6) is as the sum

of a kinetic and Zeeman term

H ¼ Kþ B · τ; ð7Þ

where K denotes the kinetic terms, and B the effective field
giving a Zeeman terms, and τ is the effective spin
composed of j1;↑i and j2;↓i. These two terms can be
considered separately, since the kinetic term is large and
positive, while the effective field Zeeman term is small in
the region about which Bz vanishes. This makes it
amenable to a semiclassical perturbative approach using
the WKB wave functions. The semiclassical momentum is
then

pðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðε − εðxÞÞ

p
; ð8Þ

which then yields the following effective magnetic field,

B ¼ ð0;−αRPy; αRpðxÞ − ΔðxÞÞ: ð9Þ

The passage through the anticrossing region shown in
Fig. 2 is represented by a rotation of this effective magnetic
field. To make this more concrete, I take the unitary
transform into the corotating frame,

U ¼ exp

�
iθ̃τx
2

�
; ð10Þ

H0 ¼ UHU† þ i
dU
dt

U†; ð11Þ

where θ̃ is the angle of the effective field B and is a function
of the position x. As the electron moves through the
constriction of the QPC, it sees a rotation of this effective
magnetic field, the rate of which is determined by the shape
of the QPC. The second term added to the Hamiltonian
comes from the time derivative of Uψ . This term drives
nonadiabatic transitions between the lower and upper
states.
Making this term small requires a long, smooth QPC

in conjunction with a very large spin-orbit interaction
[18–21]. Obviously this is not ideal, as we would like to
be able to shrink this term without onerous device require-
ments, and the purpose of the remainder of this Letter is to
develop a method using the recently developed approach of
shortcuts to adiabaticity red [9,11], by which the device can

be tuned to act as a spin filter, without making it overly
long, or the spin-orbit interaction unreasonably large.
Adiabatic engineering—Within the split-gate geometry

of a QPC, applying an additional potential transverse to the
channel of the QPC is fairly straightforward. The gates,
rather than being symmetrically biased are biased at
different voltages, V1, V2. This introduces a transverse
electric field, and breaks the inversion symmetry in the y
direction. Laterally biased QPCs have been fabricated and
tested many times, so such biasing does not constitute a
significant technological challenge [7].
The effect of an applied transverse voltage is threefold.

First, the resulting transverse electric field introduces an
additional spin-orbit interaction. This has the form

Hsol ¼ αLðσypxÞ ð12Þ

and results in a canting of the spin within the QPC channel.
Here αL denotes the strength of the transverse spin-orbit
interaction. [22] Within the literature is referred to as
“lateral spin-orbit” coupling [7,23]. To account for addi-
tional spin-orbit terms, the unitary transformation is chosen
to have an angle φ ¼ tan−1ðαL=αRÞ, while effective field Bz

now has a spin-orbit parameter, α̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2L þ α2R

p
. Second,

the asymmetric confinement also suppresses the gap term,
ΔðxÞ. To illustrate this point, I will consider the case of an
additional potential created by a constant applied electric
field, δVðyÞ ¼ eEyy. The resulting change to the gap in
second order perturbation theory is

δΔ ¼ δε2 − δε1
2

≈ −
jh1jeEyyj2ij2

Δ
: ð13Þ

The combination of these two effects leads to a new Bz, and
moves the crossing region to smaller values of the effective
momentum, pðxÞ. Since the rate of evolution of the angle of
the effective field θ̃ depends on the velocity with which the
electron passes through the crossing region, the suppression
of pðxÞ reduces the diabatic term in Eq. (11). Third, the
matrix element Py ¼ h1j∂yj2i is enhanced. Again, in
second order perturbation theory,

FIG. 3. Cartoons of the avoided crossing region, showing the
effect of the asymmetric biasing of the QPC gates. The avoided
crossing with symmetrically biased QPC gates (left panel) has a
larger Landau-Zener velocity compared to asymmetrically biased
QPC gates (right panel).
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δPy ≈ Py
jh1jeEyyj2ij2

Δ2
: ð14Þ

In terms of effective fields, this enhances By. Taking all of
these effects together, the new effective field is

B ¼ ð0; αRðPy þ δPyÞ; α̃pðxÞ − ðΔþ δΔÞÞ: ð15Þ

These three effects form the static effects of the potential
biasing of the QPC.
The applied electric field arises from the splits gates of

the QPC being asymmetrically biased. Because of the
strong screening of the in-plane components of the electric
field by the reservoirs on either side of the split gates, the
electric field resulting from the asymmetrical biasing will
vanish near the edge of the QPC, much like the QPC
potential itself. A simple estimate of the electric field is

Ey ¼
VR − VL

WðxÞ ð16Þ

with WðxÞ being the effective width of the QPC channel.
The result of this varying electric field is a variation in the
effective spin-orbit parameter, α̃. On the other hand, δΔ
varies only weakly with respect to the variation in the
electric field, due to the approximate cancellation of the
width dependence, as can be seen in Eq. (13).
Finally, using the values of the field from Eq. (15), I

obtain the following value for the diabatic term in Eq. (11)
at the level crossing, where Bz vanishes:

i
dU
dt

U† ≈
τx
By

dx
dt

�
dpðxÞ
dx

α̃ðxÞ þ dα̃ðxÞ
dx

pðxÞ þ dΔ
dx

�
: ð17Þ

And since α̃ðxÞ and ΔðxÞ are decreasing functions, the sign
of the derivatives are negative. By increasing the transverse
electric field, the diabatic term can be tuned to vanish
provided the gradient of the variation in α̃ðxÞ is sufficiently
large. A cartoon of the avoided crossing region, showing
the effect of this asymmetrical biasing is presented in
Fig. 3. However, the QPC has a finite length, and to
maintain the position of the crossing within the channel of
the QPC, αL < αR. Nonetheless, the fact that the degree of
adiabaticity can be tuned means that we can enhance or
suppress the spin polarization via an applied transverse
potential.
Counterdiabatic engineering—In the general scheme of

shortcuts to adiabaticity (STA), an additional term is
engineered to cancel the diabatic term in Eq. (11). For
many systems finding an approximate counterdiabatic
control procedure is difficult, due to limited knowledge
of the spectrum. Here, the difficulty is not working out
what the appropriate control term is as the Hamiltonian is
very simple. Rather the difficulty lies in finding an
implementation in the QPC without unreasonable device

complications. From Eq. (11), the required additional term
must be proportional to τx,

i
dU
dt

U† ¼ −
τx
2

dx
dt

dθ̃
dx

: ð18Þ

Fortunately, a τx term arises naturally from the QPC
potential Vðx; yÞ.
The spin-orbit interaction due to the QPC potential

landscape variation in the x direction, that is, along the
channel of the QPC, is

HSOP ¼ −γ
∂Vðx; yÞ

∂x
py

�
αR
α̃
σy þ

αZ
α̃
σz

�
ð19Þ

where I have introduced the spin-orbit parameter (SOP) γ,
which is material dependent. The additional factors of αR,
αZ, and α̃ arise due to the canting of the spin from the
applied transverse potential, and the resulting rotation of
the spin-quantization axis in the QPC channel. While there
is a term proportional to pz, I am considering a quantum
well, where the z confinement is very strong. Thus
hpzi ¼ 0. The combination of σy and py results in the
following effective field term in the reduced basis given by
Eq. (5),

HSOP ¼ Bxτx ¼ −γ
∂Vðx; yÞ

∂x
Pyτx

αR
α̃ðxÞ ; ð20Þ

where Py is given by Eq. (14). Because of the smaller size
of the QPC confinement potential, the strength of HSOP is
less than that of the Rashba interaction. For a square well,
based on the relative size of the confinement potential, this
term can be up to 10% of the Rashba interaction [24]. By
tuning the potential landscape Vðx; yÞ, an exact cancella-
tion of Eqs. (20) and (18) is possible. Achieving such
cancellation is easier said than done. Small variations in the
potential landscape Vðx; yÞ would add additional minor
spin-orbit terms, and mix more distant subbands, making
such global tuning extremely difficult in real devices.
On the other hand, local cancellation is considerably

more straightforward. In this approach, cancellation is only
between Eqs. (20) and (17). By tuning the transverse
potential applied to the gates, Eq. (17) can be tuned without
requiring any careful engineering of the potential landscape
beyond that of a typical device. The sacrifice of this simpler
approach is the degree of polarization attainable.
Nonetheless, the effect is sufficiently robust that the
polarization can easily be perfect with respect to exper-
imental resolution, as is the case for QPCs formed in InAs
quantum wells.
Experimental verification—A QPC normally displays

quantized steps in conductance of G ¼ 2e2=h, e2=h being
the quantum of conductance; the factor of 2 from the two
spin species. The usual experimental signature of spin
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polarization in QPCs is a half step of G ¼ e2=h, half
because only one spin makes it through the constriction.
Numerous studies of spin polarization in QPCs have used
this feature as a signature of spin polarization [7,8].
Unfortunately, this particular method of detecting spin
polarization does not work for the aforementioned mecha-
nism. Both spin states can pass through the constriction of
the QPC, and the polarization occurs after this. Even when
tuned to yield perfect polarization via this mechanism, a
QPC will still display conductance steps ofG ¼ 2e2=h. Far
from being a drawback, with the appropriate detection
setup this feature is beneficial, as it allows for a unique
fingerprint of this particular mechanism of spin polariza-
tion. The key requirement is a method that is sensitive to the
spin polarization of the emitted electrons. When the QPC is
tuned to a conductance of G ¼ 2e2=h, the electron beam
emitted by the QPC will still be spin-polarized, a feature
that, in conjunction with the conductance steps, can only be
explained by this mechanism.
One method for detecting the polarization of the QPC is

transverse magnetic focusing, where the Rashba spin-orbit
interaction required for the presence this mechanism of spin
polarization also results in the spatial separation of the spin
states [25,26]. The spatial separation then results in two
peaks in the focusing spectrum, with the spin-polarization
of the QPC resulting in the modulation of the relative height
of the spin-split peaks [27]. In this setup, a QPC displaying
the aforementioned mechanism will record a single trans-
verse magnetic focusing peak even when the conductance
of the source of QPC is G ¼ 2e2=h [21].
Remarkably, there are already transverse magnetic

focusing experiments that present this characteristic sig-
nature. In particular, transverse magnetic focusing has been
used in InGaAs quantum wells featuring large spin orbit
interactions, laterally biased QPCs as discussed in the
previous section, and the characteristic spatial separation of
the two spin-states [23,28]. At conductances of G ≤ 2e2=h,
one of the spin-split focusing peaks is almost completely
suppressed, with the double peak structure of an unpolar-
ized source QPC restored only for G > 3e2=h, the char-
acteristic signature of this mechanism of spin filtering.
Recaptulation—I have presented a method, motivated by

shortcuts to adiabaticity to tune a quantum point contact to
act as a two terminal spin polarizer. In principle, exact
engineering of the potential landscape can be used to
achieve perfect spin polarization. A more immediately
feasible approach is local engineering. This quick and
dirty approach can still result in substantial spin polariza-
tion, and, moreover, seems to have been implemented
incidentally in asymmetrically biased QPCs defined in
InGaAs quantum wells, with a unique experimental
signature in the transverse magnetic focusing spectrum.
Most of all, the presented method of spin-filtering illus-
trates the value of shortcuts to adiabaticity in areas beyond
quantum information science.
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