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Molecular crystals play a central role in a wide range of scientific fields, including pharmaceuticals and
organic semiconductor devices. However, they are challenging systems to model accurately with
computational approaches because of a delicate interplay of intermolecular interactions such as hydrogen
bonding and Van der Waals dispersion forces. Here, by exploiting recent algorithmic developments, we
report the first set of diffusion Monte Carlo lattice energies for all 23 molecular crystals in the popular and
widely used X23 dataset. Comparisons with previous state-of-the-art lattice energy predictions (on a subset
of the dataset) and a careful analysis of experimental sublimation enthalpies reveals that high-accuracy
computational methods are now at least as reliable as (computationally derived) experiments for the lattice
energies of molecular crystals. Overall, this work demonstrates the feasibility of high-level explicitly
correlated electronic structure methods for broad benchmarking studies in complex condensed phase
systems, and signposts a route towards closer agreement between experiment and simulation.
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Molecular crystals are of central importance to pharma-
ceuticals [1], organic semiconductor devices [2,3], opto-
electronics [4], andmedicine [5]. Computational approaches
play a central role in molecular crystal research, both in
aiding experimental structure determination and in predict-
ing their stability. In particular, the computation of lattice
energies is pivotal in crystal structure prediction, as often the
relative stabilities of molecular crystals are approximated
using static lattice energies rather than finite temperature
free energy calculations [6–8].
The most widely used techniques for the calculation of

molecular crystals are empirical force-fields and density
functional theory (DFT). These techniques have been very
successfully applied and have significantly advanced under-
standing [6,9–14], particularly when modern force-field
parametrization and modern DFT exchange-correlation
functionals are used. However, despite the success, the
accuracy of these methods is not always clear and careful
validation is required. Experiment and higher level elec-
tronic structure theories are the two obvious sources of
validation. However, neither is entirely straightforward as

direct like-for-like comparison with experiment is challeng-
ing (see below) and high level electronic structure references
are scarce. Indeed, so far each computation of a single lattice
energywith a highly accurate correlatedmethod represents a
tour de force study [15–21], implying a lack of extensive
high-accuracy reference values for molecular crystals and
periodic solids in general.
Addressing this challenge, recent developments in elec-

tronic structure theory enabled accurate and efficient
calculations for both surfaces and condensed phases
[18,22–24]. Among these, diffusion Monte Carlo (DMC)
is very promising for small and large molecules. DMC was
shown [18] to deliver lattice energies ofmolecular crystals at
a computational cost comparable to the random phase
approximation (RPA) but with the accuracy of the so-called
“gold standard” of quantum chemistry, coupled cluster
with single, double, and perturbative triple excitations
[CCSD(T)]. Specifically, DMC has been successfully
applied to study 6 organic molecular crystals [18,21] as
well as 13 ice polymorphs [25], providing valuable insights
into their energetics.
In this work, we consider the X23 dataset, the most used

dataset for the lattice energies of molecular crystals
comprising 23 materials. Very recent studies on X23 have
shown that near chemical accuracy (∼4 kJ=mol) can be
achieved with second order Møller-Plesset perturbation
theory (MP2) calculations [26], and that coupled-cluster
methods achieve subchemical accuracy in the computation
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of the two-body terms [27]. Here, we provide DMC
reference computational values for the entire dataset. In
addition, when comparison with previous state-of-the-art
calculations is possible, we show that different high-
accuracy computational methods agree on lattice energies
within ∼4 kJ=mol, which is better than a sometimes larger
disagreement among experiments. The feasibility and
accuracy of DMC for large molecular crystals open up
the road to lattice energies benchmarked directly against
computed high-accuracy computational values as well as
the production of reference values for more complex
condensed phase systems.
We start by elucidating the difference between lattice

energy and sublimation enthalpy, which is fundamental to
the discussion presented throughout the Letter. In assessing
the relative stability of molecular crystals, simulations
generally focus on computing the (zero temperature) lattice
energy, defined as

Elatt ¼ Ecrys − Egas; ð1Þ

where Ecrys is the total energy per molecule in the crystal
phase, and Egas is the total energy of the isolated molecule
in the gas phase. However, the physical quantity measured
in experiments is the sublimation enthalpy. Experimental
estimates of the lattice energy are then obtained by
subtracting from measured sublimation enthalpies a com-
putational vibrational term:

Eexp
latt ¼ −ΔHexp

subðTÞ þ ΔEcomp
vib ðTÞ; ð2Þ

where Eexp
latt is the experimental lattice energy, ΔHexp

sub is the
measured sublimation enthalpy at temperature T, and
ΔEcomp

vib is the computational vibrational term, comprising
both zero-point energy and thermal effects. It is important
to mention here that ΔEcomp

vib is challenging to obtain from
computation: the need for large periodic cells and the
importance of anharmonicity [11,28,29] in molecular
crystals mean that this is in general not affordable with
reference ab initio methods.
Overall, this means that reference lattice energies were so

far extrapolated from experiments rather than computed
with higher-level methods, which introduces deviations as a
result of comparing an experiment at finite temperature to a
simulated idealized model system. Moreover, our analysis
on the experimental sublimation enthalpy (see below)
shows that deviations often larger than the chemical
accuracy limit characterize the measured value of ΔHexp

sub.
This introduces a (large) uncertainty on Eexp

latt , which is
independent of the (additional) error on the vibrational
computational contribution.
In the following, as illustrated schematically in Fig. 1, we

show that consensus within chemical accuracy is achieved
on the lattice energy among explicitly correlated electronic
structure methods, in stark contrast to a sometimes larger
disagreement among experiments.
Consensus of computational methods on lattice

energies—As described in Eq. (2), the experimental esti-
mates of the lattice energy are extrapolated via a computa-
tional vibrational term. For the X23 molecular crystals, the
term ΔEcomp

vib has been previously computed with different

FIG. 1. Schematic of the relation between the sublimation enthalpyΔHsub and the lattice energy Elatt. Simulations directly compute the
lattice energy. Experimental estimates of the lattice energies Eexp

latt are obtained by subtracting a computational vibrational contribution
ΔEcomp

vib from experimentally measured sublimation enthalpies ΔHexp
sub. Lattice energies and sublimation enthalpies are reported with red

and blue bars, respectively. The left-hand side illustrates that different high-accuracy computational methods agree on the estimate of the
lattice energy within the chemical accuracy limit. This is opposed to the experimental scenario (right-hand side) that can be characterized
by larger uncertainties. The difference between the blue and red bars highlights that the lattice energy is the largest contribution (∼80%)
to the sublimation enthalpy.
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approximations in Refs. [30–32]. The most recent one,
namely, X23b [30], was obtained using the quasiharmonic
approximation, averaging over four DFT functionals and
taking into account both electronic and vibrational energy
due to thermal expansion, and is therefore used in this
work. In each of the previously reported datasets, a single
initial value for the sublimation enthalpy was chosen to
obtain reference experimental lattice energies. However, as
discussed in Ref. [30], the uncertainty on the initial value of
the sublimation enthalpy can be larger than ∼5 kJ=mol. To
conduct a careful comparison, we consider all the values of
the sublimation enthalpy ΔHexp

sub reported in the literature
(except those highlighted as unreliable [33]), corrected with
the X23b vibrational energy. The values of ΔHexp

sub as a
function of temperature were collected from Refs. [33–36]
and are plotted in the Supplemental Material [37]. The
vibrational terms ΔEcomp

vib were computed at a system
specific temperature Tcalc (listed in Table I caption and
in [37]). The values ofΔHexp

subðTcalcÞ at the temperature Tcalc

have been extrapolated according to the ideal approxima-
tion as described in [37].
The X23 lattice energies computed with DMC are

reported in Table I. The lattice energies are computed with
fixed-node DMC [48], using the CASINO [49] code. We use
energy-consistent correlated electron pseudopotentials [50]
(eCEPP) with the most recent determinant locality approxi-
mation [51] (DLA) and the ZSGMA [52] algorithm for the
time-step convergence. Extensive details on the setup and
the convergence of the DMC calculations are reported in
the Supplemental Material [37].
In the upper panel of Fig. 2, we plot the DMC lattice

energies for each system, highlighting the variability of the
X23 lattice energies over a relatively large energy range
going from −160 to −20 kJ=mol. The bottom panel shows
for each system the difference between the experimental
values (black dots) and the DMC lattice energies. The
DMC statistical error bars are reported in blue. Lattice
energies obtained with RPAþ GWSE (red squares) are
taken from Ref. [19]. Lattice energies computed with a
ΔCCSDðTÞ method (light green triangles), i.e., energies
computed at the complete basis set limit with MP2, and a
post-MP2 correction with CCSD(T) at a smaller basis set,
are taken from Ref. [20]. The lattice energy of benzene
computed with CCSD(T) at the complete basis set limit
[CCSD(T)/CBS] using a many body approach (dark green
triangle) is taken from Ref. [16].
The range in which the experimentally derived lattice

energies vary is often larger than ∼4 kJ=mol. In Fig. 2,
this is evidenced by gold bars—under which the number
of available measurements is reported—highlighting a
current lack of consensus on the experimental value of
the sublimation enthalpy for several molecular crystals.
On the other hand, high-accuracy electronic structure
methods generally agree within the chemical accuracy
limit. Noticeable are the cases of anthracene, benzene,

naphthalene, and urea, where computational methods agree
within ∼4 kJ=mol, as opposed to the experimental uncer-
tainties ranging from ∼10 to ∼25 kJ=mol.
Overall, the “distance” between the experimental range

(gold bar) and DMC is always within ∼4 kJ=mol (with the
only exception given by oxalic acid β, where only one
experimental measurement is available), qualitatively val-
idating the reliability of our estimates. In addition, we
notice that changes to the vibrational contribution (for
instance due to the use of a different electronic structure
method, or an account of anharmonicity or quantum
nuclear effects) would shift the value of all the experimental
lattice energies, i.e., the position of the gold bar with
respect to the DMC estimate. Including the uncertainty on
the vibrational contribution would improve the overlap
between the computational and experimental estimates, as

TABLE I. Lattice energies (kJ=mol) of the X23 molecular
crystals computed with DMC. The reported error is the DMC
statistical error bar. As discussed later in the Letter, the overall
error due to approximations involved in DMC and the DFT
geometry optimization is estimated to be ∼2 kJ=mol. The second
column reports the sublimation enthalpy (kJ=mol) at the temper-
ature Tcalc, estimated as the sum of the DMC lattice energy
computed in this work and the DFT vibrational energies
ΔEcomp

vib ðTcalcÞ computed in Ref. [30]. The temperature Tcalc is
room temperature for every system except: acetic acid
(Tcalc ¼ 290 K), ammonia (Tcalc ¼ 195 K), benzene
(Tcalc ¼ 279 K), carbon dioxide (Tcalc ¼ 207 K) and formamide
(Tcalc ¼ 276 K). As discussed in the Letter, the overall error on
the sublimation enthalpy is estimated to be ∼6 kJ=mol.

Crystal
(DMC)

Lattice energy
(DMCþ DFT)

Sublimation enthalpy

1,4-cyclohexanedione −88.3� 1.0 79.4
Acetic acid −71.7� 0.6 65.7
Adamantane −61.0� 2.3 50.7
Ammonia −38.2� 0.1 30.7
Anthracene −100.2� 0.5 91.7
Benzene −49.8� 0.2 39.9
CO2 −29.4� 0.2 26.1
Cyanamide −83.6� 0.4 77.6
Cytosine −156.2� 1.0 149.0
Ethyl carbamate −84.2� 1.3 74.7
Formamide −81.0� 1.0 71.4
Imidazole −88.2� 0.8 79.3
Naphthalene −75.5� 0.5 66.7
Oxalic acid α −102.6� 1.4 97.6
Oxalic acid β −102.3� 0.6 99.0
Pyrazine −61.1� 1.1 53.2
Pyrazole −77.3� 0.5 70.9
Triazine −60.5� 0.6 53.6
Trioxane −62.1� 1.9 53.7
Uracil −134.3� 0.7 127.3
Urea −108.5� 0.3 100.2
Hexamine −86.2� 0.6 76.9
Succinic acid −125.2� 0.5 118.2
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it is clear from the analysis on the sublimation enthalpies
reported later in Fig. 3. Considering the spread in the
experimental values of the lattice energy and the additional
uncertainty on the necessary vibrational term (discussed
below), we suggest that directly computed high-accuracy
computational lattice energies have become at least as
reliable as experimental ones, and could play a more
significant role in benchmarking empirical and ab initio
methods.
Comparable uncertainties in experiments and simula-

tions on sublimation enthalpies—So far we have focused
on the performance of experiments and computation on the
lattice energy. However, experimental estimates of the
lattice energy involve the subtraction of a computational

term. Therefore, we now address the accuracy of experi-
ments and state-of-the-art simulations for sublimation
enthalpies.
The experimental sublimation enthalpy, ΔHexp

subðTÞ, is
directly measured in experiments. Following the same
procedure mentioned before and described in the
Supplemental Material [37], to allow for comparison with
simulations, we extrapolatedΔHexp

sub to the temperature Tcalc

at which the vibrational contribution was available [30].
We obtain the computational sublimation enthalpy,

ΔHcomp
sub , as

ΔHcomp
sub ðTcalcÞ ¼ −EDMC

latt þ ΔEDFT
vib ðTcalcÞ; ð3Þ

FIG. 2. Performance of computations and experiments on the X23 lattice energies. (Top panel) DMC values of the electronic lattice
energy for each system (the dashed line is to guide the eye). DMC has predictive accuracy in a large energy range going from −160 to
−20 kJ=mol. (Bottom panel) Difference between experimentally derived lattice energy (black dots) and DMC. The DMC statistical
error bar is reported in blue. Experimental lattice energies are obtained by correcting experimental sublimation enthalpies with the most
recent vibrational term (X23b), according to Eq. (2). The gold bar highlights the range of existing experimental measurements. The
number of available experimental values is reported below each bar. Lattice energies obtained with RPAþ GWSE (red squares) are
taken from Ref. [19]. Lattice energies computed with the ΔCCSDðTÞmethod (light green triangles) are taken from Ref. [20]. The lattice
energy of benzene computed with CCSDðTÞ=CBS (dark green triangle) is taken from Ref. [16].
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where EDMC
latt is the DMC lattice energy and ΔEDFT

vib
is the DFT vibrational thermal contribution computed
in Ref. [30]. The values of ΔHcomp

sub are reported in
Table I.
The errors on the experimental sublimation enthalpy are

due to (1) the spread in the reported measurement; and
(2) the correction needed to extrapolate ΔHexp

sub to the target
temperature. The range of variation of the computational
sublimation enthalpy is due to (1) errors in the computation
of the lattice energy and (2) errors in the computation of the
vibrational term. The uncertainty on the DMC lattice
energy is due to methods limitations (statistical error-bar,
nodal surface, finite-size effect) and the considered
geometry (optimized with DFT in Refs. [19,32]). We
estimate the total error to be ∼2 kJ=mol, as discussed in
the Supplemental Material [37]. Sources of errors on the
vibrational contribution are due to the inaccuracy of the
DFT potential energy surface (PES) and the considered
approximations (anharmonicity). Overall, an uncertainty of
the order of ∼4 kJ=mol on ΔEDFT

vib has to be taken into
account when comparing to experiments [30–32]. Finally,
we get the total uncertainty by adding the system specific
error on ΔEDFT

vib reported in Ref. [30].

In Fig. 3 we plot the estimated range for the X23
sublimation enthalpies in both experiments (gold) and
computation (cyan). Different from the lattice energy, it
can be seen that state-of-the-art experimental and computa-
tional uncertainties for molecular crystals sublimation
enthalpies are comparable. Moreover, they are overall
larger than the sought after chemical accuracy limit. This
poses an interesting question on whether the criterion
usually considered to assess the quality of computational
approaches is meaningful for current methods. Overall, this
work shows that to understand the accuracy of high-level
computational methods on sublimation enthalpies, we
would need both (1) additional and accurate experimental
measurements and (2) to push the application of high-
accuracy methods to the computation of fully anharmonic
vibrational properties.
Summary—This work has focused on lattice energies of

molecular crystals. This quantity is not directly measured in
experiments and corrections are needed for a direct
comparison to simulations. On the other hand, high-
accuracy explicitly correlated wave-function methods were
so far only applied to a few systems due to the demanding
computational cost. Building on recent developments that

FIG. 3. Comparison of uncertainties for experimental (gold) and state-of-the-art computational (cyan) sublimation enthalpies. The
gold bar is due to the spread in the literature sublimation enthalpies, extrapolated to the temperature Tcalc for which the computational
vibrational contribution is available [30]. The number of available experimental values is reported below each bar. The cyan bar is due to
geometry and methodological approximations used in the computation of electronic lattice energies and vibrational thermal
contributions.
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enabled accurate and efficient diffusion Monte Carlo for
large periodic unit cells, we computed the lattice energies of
the X23 molecular crystals with DMC. The analysis of the
performance of experiments and state-of-the-art simula-
tions shows that, where direct comparison is possible,
different high-accuracy computational methods have now
reached consensus on the lattice energies within chemical
accuracy. Larger uncertainties characterize instead experi-
mental estimates. Currently no other explicitly correlated
method estimates of the lattice energy are available for
approximately 50% of the dataset. Therefore, this work
provides valuable reference lattice energies for 23molecular
crystals and represents a crucial step toward the calculation
of sublimation enthalpies with beyond DFT accuracy.
In fact, we note that routine calculations of molecular

crystals with DMC, or beyond DFT methods in general,
still require large computational resources. In our case,
approximately 1000 CPU hours on the Cambridge Service
for Data Driven Discovery (CSD3) are necessary to
compute the lattice energy of a solid system with 504
electrons with a statistical error bar of ∼0.5 kJ=mol (with a
time step 0.01 au). The feasibility of the DMC calculations
of this work comes indeed with the almost perfect scaling
of DMC on modern supercomputers [49]. However, look-
ing forward we note that (i) major hardware improvement is
expected with the advent of exascale computing; (ii) con-
sensus within chemical accuracy among explicitly corre-
lated methods has been recently achieved also for surface
chemistry [24,53–55]; and (iii) important progress has
already been made towards training machine learning
potentials at “beyond DFT” accuracy [56–59], as well as
the development of foundational models for material
chemistry [60,61] potentially requiring minimal data to
fine-tune to a higher level of accuracy than the initial
training. This suggests that finite temperature simulations
with the accuracy of explicitly correlated methods could
soon become routine. Overall, this highlights an exciting
time for future application of high-accuracy computational
methods to complex condensed phase systems. Finally, we
have also shown that uncertainties of experimental and
state-of-the-art computational sublimation enthalpies are
currently comparable in magnitude. Our analysis suggests
that the overall accuracy of sublimation enthalpy estimates
could benefit from additional experiments as well as the
application of higher-accuracy techniques to vibrational
properties.
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