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Efficient helicity transfer from Poincaré fields to electrons of hydrogenic ions is revealed for the first
time by four-dimensional relativistic simulations. The magnetic multipole class of Poincaré fields is chosen
due to its fundamental role in light-matter spin coupling, and the calculation is demonstrated for Ne9þ ion
irradiated by single and multimode x-ray pulses. Photoelectrons of both helicities emerge synchronously
from the ion ensemble, and their directionality is controllable through the radiation mode numbers. The
helicity density distributions display novel structures composed of jets, spirals, and rings, among others,
that are unique to the combination of atomic and field parameters. Our approach to generate spin-polarized
leptons using Poincaré fields may provide a new platform for helicity characterization based on advanced
numerical capabilities.
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Introduction—Spin-polarized leptons are essential for
precision tests of the standard model of particle physics,
and in going beyond to search for new particles, inter-
actions, and symmetries [1,2]. For example, in experimen-
tal searches of the smuon particle [3], the use of colliding
e� beams that are oppositely polarized is critical to
suppress background W� boson production [1]. With the
advent of multipetawatt laser technology, experimental
studies of ultra-high-intensity light-matter interaction and
nonlinear QED are also rapidly becoming available [4–10].
A variety of QED processes involve the transfer of orbital
and spin angular momentum, such as the Bethe-Heitler
process with circularly polarized photons [11–13], nuclear
[11,14] and magnetic bremsstrahlung radiation [15],
Coulomb scattering of leptons [16], and photoionization
with Bessel beams [17,18], Laguerre-Gauss modes [19–
21], and circularly polarized laser fields [9,14,22–25] (see
also Ref. [26], wherein linear polarization is treated in
laser-ion spin coupling).
In this Letter, we consider spin-resolved photoionization

due to light that is spatially structured in all respects—
intensity, phase, polarization, and orbital angular momen-
tum. This is the first semiclassical photoionization theory
(to the best of our knowledge) that considers fully struc-
tured light without any paraxial approximation. The field
states are classified as fully structured, or full-Poincaré
fields, as the union of Stokes vectors from each spatial
point covers every polarization state on the Poincaré sphere
[27–30]. A common construction of a Poincaré field is a
superposition of orthogonally polarized Laguerre-Gauss
modes, generally with a relative phase [27,31]. However, in
the case of light-matter spin coupling, a more natural choice

of basis is the electromagnetic multipole modes [32–34]
because they are simultaneous eigenfunctions of the total
angular momentum operator |̂ and its projection |̂z.
Poincaré fields of the magnetic multipole type can

synchronously produce photoelectrons of both helicities,
in contrast to the fixed helicities produced by plane,
circularly polarized waves [14,22–25] (see Ref. [35] for
a review). This is because in the near field of a Poincaré
field where a paraxial representation is not possible, an
atom experiences a complex distribution of polarization
states and angular momentum densities that define the
mode. (One may find it useful to regard this scenario as the
inverse of a typical atomic radiation problem, wherein the
multipole modes are converging toward the atom, instead
of being radiated away from it.) Consequently, the Poincaré
field determines the angular distribution of photoelectron
helicity, which for a given direction can assume an expect-
ation value anywhere between �ℏ=2. A recent investiga-
tion [34] considered only the first-order S-matrix element
describing one-photon ionization, which is the practical
limit because a Volkov state solution [36,37] for leptons
dressed by a Poincaré field does not exist. Thus, a complete
numerical integration is now necessary to advance.
In this Letter, we present the first results of a Dirac

electron irradiated by a semiclassical Poincaré field. We
accomplish this through state-of-the-art ab initio simula-
tions in full (3þ 1) dimensionality that enable the field-
dressed state to be incorporated. As a result, the calculation
goes beyond few-order S-matrix theory and into the realm
of empirical study. No approximations are made beyond the
discretization of spacetime and use of a soft-core atomic
potential [38,39]. However, the computational expense of
modeling the relativistic interaction [40] means that the
viable parameter space is presently limited to high-
frequency, few-cycle pulses.*Contact author: dan.younis@outlook.com
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We consider the high-intensity tunneling ioniza-
tion regime characterized by the Keldysh parameter

ϒ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ip=a20me

q
≪ 1 [41,42], where Ip=me ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

p
is the ionization potential and a0 ¼

jejE0=ωme is the normalized field amplitude. Note that
a0 also gives the energy absorbed by a free electron over
one Compton wavelength ƛc ¼ m−1

e ≈ 3.86 × 10−11 cm in
units of the field frequency ω, and that a0 ≫ 1 results in
ultrarelativistic free-electron motion. Here, e < 0 and me
are the electron charge and mass, Z is the nuclear charge,
and α is the fine-structure constant. Natural units are used
(ℏ ¼ c ¼ 1) except where otherwise indicated.
We present calculations of the momentum-space

helicity distribution for hydrogenic neon ion Ne9þ

(Ip=me ≈ 2.67 × 10−3) irradiated by single and multimode
Poincaré fields of the magnetic multipole type, having
amplitude a0 ¼ 10 (I0 ≈ 1.14 × 1029 W=cm2) and fre-
quency ω ¼ 0.07me ≈ 36 keV (λ ≈ 0.0347 nm, x-ray). In
this case, the Keldysh parameter ϒ ≈ 7.3 × 10−3 is well
within the regime of tunneling ionization.
A semiclassical description of the field is justified by the

value of a0, which implies a large photon number of
Oð107Þ per λ3 volume. The intensity and wavelength are
chosen to induce a non-negligible degree of ionization. The
intensity considered here is approximately half of the
Schwinger value. The wavelength should be comparable
to the characteristic atomic length, because the spherical
multipole modes create an intensity null at the point of
convergence that will inhibit ionization if λ ≫ ƛc. We note
that the wavelength employed here is slightly shorter than
that producible by modern-day free-electron lasers (e.g.,
the European XFEL [43]).
For illustration, Fig. 1 shows the Ne9þ electron charge

density before and after irradiation by a 2-cycle magnetic
quadrupole field. The first panel corresponds to time zero,
when the field is converging toward the nucleus, and the
second panel is postinteraction when the field is diverging

and the photoelectron waves are scattering out. The
objective lies in analyzing the helicity content of the
ionized wave packets to understand how different
Poincaré field modes imprint their spin angular momentum
characteristics.
Atomic and field potentials—The starting point of the

calculation is the time-dependent Dirac equation,

½γμðp̂μ þ jejAμÞ −me�jψi ¼ 0: ð1Þ

It is numerically integrated using an explicit finite-
difference scheme implemented in the TURBOWAVE code,
the details of which can be found in Refs. [44–46]. Here,
jψi is the bispinor wave function, γμ are the Dirac matrices
in standard representation, p̂μ ¼ i∂μ is the four-momentum
operator, and Aμ ¼ ðA0;AÞ is the four-potential.
The system consists of a hydrogenic ion, i.e., an atom for

which all but the innermost electron have been predetached.
It is modeled by a softened Coulombic potential of the form
A0ðrÞ ¼ −Zα=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrj2 þ δr2

p
, where δr is the screening

radius [39]. A nonzero value for δr removes the 1=r
singularity, and it also determines the model eigenenergy
spectrum and ionization potential. In three dimensions, the
energy levels approach the exact atomic values as δr → 0
[47]. Thus, δr should be chosen numerically small but still
greater than the spatial resolution, which itself must be less
than the Compton wavelength. In all cases, the wave
function is initialized in the electron spin-up ground state
(total angular momentum j ¼ lþms ¼ 1=2).
The incident radiation field is spherical in nature,

belonging to the magnetic multipole class of Poincaré
fields. The vector potential is initialized in the far field with
Fourier components [32,33]

Ajmðk; tÞ ¼ ℜA0Φjmðϑk̂;φk̂Þδðjkj − ωÞe−iωt ð2Þ

and the TURBOWAVE electromagnetic field solver computes
the near-field potential automatically. In Eq. (2), ℜ denotes
the real component of the entire quantity, k̂ ¼ k=ω is the
unit wave vector, Φjmðϑk̂;φk̂Þ ¼ k̂ × ∇k̂Yjmðϑk̂;φk̂Þ are
vector spherical harmonic functions, and ðj; mÞ enumerate
the total and projected angular momentum mode numbers,
j ≥ 1 and jmj < j − 1. Exact functional forms of Ajmðr; tÞ
are provided in the Supplemental Material [48]. In the
calculation results that follow, the vector potential is
modulated by a Gaussian-like polynomial to produce a
two-cycle pulse. We will consider situations in which the
field converges symmetrically upon the atom, as depicted
in Fig. 1, in addition to the case of imperfect (off-center)
focusing, which is more realistic from an experimental
standpoint.
Calculation of helicity—Following interaction with the

field, the wave function separates spatially into bound and
free (photoionized) components, jψi ¼ jψbi þ jψ̃i. In
practice, the bound part hrjψbi is filtered by applying to

FIG. 1. Snapshots of a magnetic quadrupole ðj; mÞ ¼ ð2; 0Þ
Poincaré field irradiating Ne9þ ion. Orange color map: charge
density log10 jρj. Red-blue color map: vector potential component
Ayðr; tÞ. Subpanels: cross-sectional views for y ¼ 0.
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each of the bispinor components a masking function of the
form MμðrÞ ¼ 1 − expð−jrj4=μ4Þ, μ ¼ 20ƛc. The wave
function is subsequently Fourier-transformed hrjψ̃i →
hpjψ̃i≡ ψ̃ðpÞ and a momentum-space filter MμðpÞ with
μ ¼ 0.05mec is applied to mask low-energy photoelectrons
from view [48]. The helicity density is given by the
expectation value

ζðpÞ ¼ hψ̃ðpÞj�n · 1
2
Σ
�jψ̃ðpÞi; ð3Þ

wherein the inner product is over bispinor components,
n≡ p=jpj is the momentum direction, and Σ ¼ σ1̂ with σ
the Pauli matrices. In evaluating ζðpÞ, it is important that
the wave function and field components have negligible
spatial overlap in order that jψ̃i obeys a quasifree
Hamiltonian wherein p is the kinetic momentum. Note
that the plane-wave helicity eigenstates satisfyR
d3pζðpÞ ¼ �1=2 (Supplemental Material) [33].
Single-mode ionization—We present in Fig. 2 the

momentum-helicity distribution ζðpÞ for 12 individual
cases, corresponding to irradiation by single-mode mag-
netic multipoles with ðj; m ≥ 0Þ up to the (5, 1) mode, as
labeled. These distributions are produced at the final
simulation time step, at which point the field has outrun
the wave function. The panel for ðj; mÞ ¼ ð2; 0Þ (quadru-
pole mode) corresponds to the simulation time sequence
presented in Fig. 1.
A number of interesting features appear in the helicity

distributions. Photoelectrons with momenta pz > 0 pre-
dominantly carry helicities ζðpÞ > 0, and vice versa for
pz; ζðpÞ < 0. However, in some cases the pz hemispheres
contain a mixture of positive and negative helicity expect-
ation values, as in the (3, 2) and (4, 3) mode cases. In
addition, the helicity sign along the pz poles is that of the
corresponding hemisphere. Moreover, we observe that
irradiation by single-mode photons can produce nonazi-
muthally symmetric helicity distributions. This appears
most prominently in the jetlike structures in the (4, 1)

and (4, 3) mode cases of Fig. 2, or the helicity spirals in the
(2, 1) and (3, 2) cases. These more intricate, off-pz-axis
features in the helicity density, which are of comparatively
smaller magnitude, may be contained in the higher-order
S-matrix terms that are difficult to calculate without a
Poincaré-Volkov state solution of the Dirac equation.
The momentum-helicity distributions also display a

variety of symmetries worth noting. In all cases, the
integrated value

R
d3pζðpÞ is negligible, indicating nearly

equal production of positive and negative helicity photo-
electrons. Additionally, if the Dirac bispinor is initialized in
the e− spin-down state, the ζðpÞ of Fig. 2 will appear
π-rotated through the py axis. For irradiation by modes
with m < 0, the features are similarly mirrored. In par-
ticular, the ð2;−1Þ, ð3;−1Þ, and ð5;−1Þ modes produce
helicity spirals that are rotating in the opposite sense as
theirm > 0 counterparts. In the Supplemental Material, the
m < 0 mode distributions are provided.
Multimode ionization—Consider a field that is an even

superposition of two multipole modes ðj1; m1Þ þ ðj2; m2Þ
with all other parameters unchanged. Figure 3 shows the
photoelectron helicity distribution ζðpÞ due to various
multimode field combinations. In this case, a key distinc-
tion that arises is a nonvanishing net polarization,R
d3pζðpÞ ≠ 0. For instance, in the ðj; mÞ ¼ ð1; 0Þ þ

ð2; 0Þ panel, we observe a large, negative helicity-density
value for momenta pz < 0. Based on the mode numbers
alone, it is not intuitive why this jetlike structure should
appear. One must instead analyze how interference between
the modes of the composite field results in asymmetrical
illumination of the Ne9þ wave function. The ð1; 0Þ þ ð2; 0Þ
mode superposition, in particular, ejects a dense wave
packet traveling in the −z direction, endowed mostly with
negative helicity.
Similar relativistic helicity jets appear in the ð4; 1Þ þ

ð4; 2Þ and ð3;−1Þ þ ð4;−1Þ mode cases. In the py ¼ 0

plane of the ð3;−2Þ þ ð4;−2Þ case, there is a trident-
shaped distribution formed by one negative-helicity jet that

FIG. 2. Single-mode ionization case. Helicity density distributions ζðpÞ of hydrogenic neon ion Ne9þ following irradiation by
magnetic multipole fields of mode numbers ðj; m ≥ 0Þ as labeled. Orange (blue) represents a positive (negative) helicity expectation
value. Subpanels: cross-sectional views for py ¼ 0.
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is parallel to the px axis, and two that are along
the px ¼ �pz diagonals. Some combinations produce
complex distributions with little regularity and high asym-
metry, as with the ð3; 2Þ þ ð4; 2Þ and ð4;−1Þ þ ð4;−2Þ
superpositions.
Evidently, each combination of modes has a unique

photoelectron helicity signature. This suggests that a
measurement of the helicity density may serve as a method
of characterizing the angular momentum content of a
given radiation field. A more exhaustive search in param-
eter space would be needed to understand the field
conditions that produce specific structures in the helicity
distribution.
Effect of focal-point misalignment—Experimentally, it

would be difficult to align an atom with wavelength-scale
precision in order that a spherical Poincaré wave converges
upon it with perfect symmetry. Nevertheless, if the focal
point is slightly misaligned with the ion, photoelectrons
with structured polarization attributes may still be pro-
duced. Returning to the ðj; mÞ ¼ ð1; 0Þ (dipole) mode case,
the calculation is repeated with the field now focusing to

the point rf ¼ ð0; 0;−10Þƛc and the Ne9þ ionic potential
centered at the origin as before [51].
In the first three panels of Fig. 4, snapshots of the

simulation time sequence are shown. Here, around the time
that the field has reached its focus (t ≈ 200ƛc=c, Panel 2),
we observe a “pinching” of the charge density that releases
a higher density photoelectron wave traveling in the
forward (þz) direction than in the backward (−z) direction.
The resultant helicity distribution (Panel 4) displays similar
relativistic jet and ring structures as before (compare to the
(1,0) mode centered-focus case of Fig. 2), but now the
positive helicity signal for pz > 0 has been enhanced (and
conversely, the negative helicity signal has been sup-
pressed), and there is a net positive integrated value.
Note the ζðpÞ distribution of the (1, 0) mode in Fig. 2
attains a maximum value of jζjmax ≈ 19.35, whereas in this
case it is jζjmax ≈ 64.28.
In practice, it may be possible to exploit misalignment in

the focus to obtain relative control over the directionality,
structure, and degree of photoelectron polarization.

FIG. 3. Multimode ionization case. Helicity density distributions ζðpÞ of hydrogenic neon ion Ne9þ following irradiation by
superpositions of magnetic multipole fields with mode numbers ðj1; m1Þ þ ðj2; m2Þ as labeled. Orange (blue) represents a positive
(negative) helicity expectation value. Subpanels: cross-sectional views for py ¼ 0. The top row consists solely of m1, m2 ≥ 0 modes,
whereas the bottom row has some m1, m2 < 0 modes.

FIG. 4. Illustration of the effect of focal-point misalignment with the ion. Panels (1)–(3): snapshots in time of an offset magnetic dipole
field ðj; mÞ ¼ ð1; 0Þ irradiating Ne9þ ion. Panel (4): the resultant helicity density distribution (compare with that of Fig. 2). Sub-panels:
cross-sectional views for y; py ¼ 0.
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An alignment tolerance at the Compton scale still presents
challenges. For this scenario to be practical, it may be
necessary to consider novel targets that behave like an atom
yet are much larger [52,53].
Summary and outlook—The complex distribution of

polarization states and angular momentum densities that
define a Poincaré field state can be utilized, through
photoionization, to produce structured electron helicity
distributions of both positive and negative expectation
values. This has been demonstrated numerically using an
ab initio approach based on the time-dependent Dirac
equation, specifically for the Ne9þ hydrogenic ion irradi-
ated by single and multimode x-ray Poincaré fields. The
numerical approach supersedes what is possible through
S-matrix calculations, which are severely limited without
an analytic solution to the Dirac equation describing a
Poincaré-dressed Volkov state. In contrast, an ab initio
numerical approach facilitates a more realistic semiclassical
treatment in the tunneling ionization regime, and so
provides a new avenue for characterization and control
of photoelectron helicity.
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