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Precision spectroscopy of hyperfine splitting (HFS) is a crucial tool for investigating the structure of
nuclei and testing quantum electrodynamics. However, accurate theoretical predictions are hindered by
two-photon exchange (TPE) effects. We propose a novel formalism that accounts for nuclear excitations
and recoil in TPE, providing a model-independent description of TPE effects on HFS in light ordinary and
muonic atoms. Combining our formalism with pionless effective field theory at next-to-next-to-leading
order, the predicted TPE effects on HFS are 41.7(4.4) kHz and 0.117(13) meV for the 1S state in deuterium
and the 2S state in muonic deuterium. These results align within 1σ and 1.3σ from recent measurements and
highlight the importance of nuclear structure effects on HFS and indicate the value of more precise
measurements in future experiments.
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Introduction—Precision laser spectroscopy of atomic
transitions informs on the structure of nuclei and tests
the accuracy of bound-state quantum electrodynamics
(QED). Measurements of Lamb shifts in light, muonic
atoms have provided nuclear charge radii at unprecedented
accuracy
[1–5]. In these experiments, a solid understanding of
nuclear structure effects is crucial [6–13].
High-precision spectroscopy measurements of hyperfine

splitting (HFS) have provided valuable insights into the
nuclear magnetic structure. These measurements have been
or will be conducted on light ordinary atoms such as 1;2H,
3He, and 6;7Li [14–19], as well as their muonic atom
counterparts [2–4,20,21]. HFS, predominantly governed by
the short-range interaction between the nuclear and lepton
magnetic moments [22–24], offers an ideal probe for
studying the elastic and inelastic structure of nucleons
and nuclei.
Accurate theoretical predictions for HFS in both ordi-

nary and muonic atoms are limited by nuclear structure
effects, entering through two-photon exchange (TPE). The
elastic TPE, encoded in the “Zemach radius” rZ, arises
from the convolution of the nuclear charge and magnetic
densities [25,26]. The inelastic TPE, namely the nuclear
polarizability, stems from nuclear virtual excitations.
For 2H and μ2H, the discrepancy between the measured

HFS and the calculated QED contribution for the 1S state of
2H is [15,24]

νexpð2HÞ − νQEDð2HÞ ¼ 45.2 kHz; ð1Þ

and for the 2S state of μ2H is [27,28]

νexpðμ2HÞ − νQEDðμ2HÞ ¼ 0.0966ð73Þ meV: ð2Þ

These discrepancies mainly arise from TPE. However, an
accurate, uncertainty-quantified, and model-independent
prediction of the TPE effect on HFS has not been achieved
yet [28–33]. For instance, the conventional Low-term
formalism inadequately accounts for nuclear excitations,
thus providing an incomplete description [30,31].
This Letter introduces a new formalism for the TPE

effect on HFS that accurately incorporates nuclear excita-
tions and recoil. Using pionless effective field theory
(=πEFT) at next-to-next-to-leading order (NNLO), we then
evaluate TPE contributions in 2H and μ2H. The formalism
offers a model-independent description of the TPE effect
with systematic uncertainty quantification, showing con-
sistency with νexp-νQED in 2H and μ2H.
Two-photon exchange theory—HFS of ns1=2 states is

dominated by contact interactions between the lepton spin
σl=2 and the nuclear spin I [22–24]

HI ¼
2παgm
3mlmN

ϕ2
nð0ÞσðlÞ · I; ð3Þ

where α is the electromagnetic fine structure constant, gm
denotes the nuclear magnetic g factor, and ml (mN) is the
lepton (nucleon) mass. ϕ2

nð0Þ ¼ ðZαÞ3m3
R=ðn3πÞ is the

wave function squared of the atomic ns1=2 state at the
origin, with mR denoting the lepton-nucleus reduced mass.*Contact author: jichen@ccnu.edu.cn
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Its contribution to HFS is at α4 and is evaluated as the
expectation on the atomic hyperfine state by

EF ¼ hðns1=2; N0IÞFMFjHIjðns1=2; N0IÞFMFi; ð4Þ

where jN0Ii is the nuclear ground state with spin I, and F
and MF denote the total angular momentum and its z
projection.
The TPE effect arises at α5, driven by doubly virtual

photon exchanges between the nucleus and the lepton, as
illustrated in Fig. 1. The corresponding operator is
expressed in Lorenz gauge as [31]

H2γ¼ ið4παÞ2ϕ2
nð0Þ

Z
d4q
ð2πÞ4

ημνðqÞTμνðq;−qÞ
ðq2þ iϵÞ2ðq2−2mlq0þ iϵÞ ;

ð5Þ

where η and T, respectively, represent the lepton and

nuclear tensors. Only the lepton-spin-dependent part η̃μν ¼
iq0ϵ0μνiσ

ðlÞ
i þ iϵμνijσðlÞi qj of the lepton tensor contributes

to HFS. The third diagram in Fig. 1 is the nuclear seagull
tensor Bμν. The charge-current part B0m is of relativistic
order at 1=m2

N . The current-current part Bij gets canceled
due to crossing symmetry [31,34].
TPE polarizability—We find the inelastic TPE operators

by using the spin-dependent part of the lepton tensor and
incorporating a summation over nuclear excitations in the
nuclear tensor [31]

Hð0Þpol ¼
iα2ϕ2

nð0Þ
2πm2

l

Z
dω

Z
d3q
q4

hð0Þðω; jqjÞ

× σðlÞ · fq × Jð−qÞ; J0ðqÞgδðω − ωNÞ; ð6Þ

Hð1Þpol ¼
iα2ϕ2

nð0Þ
2πm2

l

Z
dω

Z
d3q
q2

hð1Þðω; jqjÞ

× σðlÞ · ½Jð−qÞ × JðqÞ�δðω − ωNÞ; ð7Þ

where ωN denotes the excitation energy of the nuclear state.

Hð0Þpol involves the charge-current transition matrix with the

two operators in anticommutation. Hð1Þpol involves the
current-current matrix with the two currents in commuta-
tion, and is 1 order higher in 1=mN . The kernels hð0;1Þ are

hð0ðω; qÞ ¼
�
2þ ω

Eq

�
E2
q þm2

l þ Eqω

ðEq þ ωÞ2 −m2
l
−
2qþ ω

qþ ω
; ð8Þ

hð1Þðω; qÞ ¼ 1

Eq

E2
q þm2

l þ Eqω

ðEq þ ωÞ2 −m2
l
−

1

qþ ω
; ð9Þ

with Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

l

q
.

To obtain the polarizability corrections Eð0;1Þpol , we replace

HI with Hð0;1Þpol in Eq. (4). Using the Wigner-Eckart
theorem, we factorize the lepton and nuclear matrix

elements in Eð0;1Þpol , expressing them as ratios to EF. We
write J0 as charge density ρ and decompose J into
convection (Jc) and magnetic (Jm) currents. This leads
to the following photo-induced nuclear sum rules:

Eð0Þpol ¼
6αmNEF

πmlgmI

Z
∞

ωth

dω
Z

∞

0

dqhð0Þðω; qÞSð0Þðω; qÞ; ð10Þ

Eð1Þpol¼−
6αmNEF

πmlgmI

Z
∞

ωth

dω
Z

∞

0

dqhð1Þðω;qÞSð1Þðω;qÞ; ð11Þ

where ωth ¼ ðγ2 þ q2=4Þ=mN is the minimum deuteron
excitation energy in the inelastic TPE. The nuclear exci-
tations in the deuteron are represented by the scattering
state jψpi. The deuteron charge-magnetic (Sð0Þ) and con-
vection-magnetic (Sð1Þ) response functions are

Sð0Þðω;qÞ¼ mNp
64π4q2

ZZ
dp̂dq̂

×ImðhN0IIjρð−qÞjψpihψpj½q×JmðqÞ�3jN0IIiÞ
ð12Þ

Sð1Þðω; qÞ ¼ mNp
64π4

ZZ
dp̂dq̂ϵ3jk

× ImðhN0IIjJc;jð−qÞjψpihψpjJm;kðqÞjN0IIiÞ;
ð13Þ

where jN0IIi denotes the nuclear ground state with spin
maximally projected in the z direction. The deuteron
excitation involves the NN scattering states at rela-
tive momentum p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNω − γ2 − q2=4

p
. The deuteron

D-wave correction to Sð0Þ is given by Sð0Þsd . Its contribution

to the polarizability effect, Eð0Þpol;sd, follows the same
weighted sum rule as in Eq. (10).
Elastic TPE—The elastic TPE contribution involves the

insertion of the momentum-boosted nuclear ground state
into the nuclear tensor Tμν, leading to

Eð0Þel ¼
2αEF

πml

Z
∞

0

dq

�
hð0Þ

�
q2

4mN
;q

�
FmdðqÞFedðqÞ−

4mlmR

q2

�
;

ð14Þ

FIG. 1. Doubly virtual two-photon exchange diagrams.
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Eð1Þel ¼ −
αEF

2πmlmN

Z
∞

0

dqq2hð1Þ
�

q2

4mN
; q

�
FmdðqÞFedðqÞ;

ð15Þ

where q2=ð4mNÞ is the deuteron recoil energy in the elastic
TPE process. The deuteron electric and magnetic form
factors, Fed and Fmd are normalized to 1 at q ¼ 0. The
function hð0Þ is approximated by 4mlmR=q2 when taking

mN ≫ ml, changing Eð0Þel to the pure Zemach contribution
Ezem ¼ −2αmRrZ [25,26]. The subtraction term in Eq. (14)
cancels the infrared divergence of the q integration and
prevents a double counting in the iteration of the lowest-
order single-photon exchange in the point-nucleus limit

[35]. Eð1Þel is also a convolution of nuclear magnetic and

electric densities but is suppressed by 1=mN relative to Eð0Þel .

A higher-order correction to Eð0Þel arises from the deu-
teron S-to-D-state mixing, and is given by

Eð0Þel−sd ¼
αμQEF

3πml

Z
∞

0

dqq2hð0Þ
�

q2

4mN
; q

�
FmdðqÞFQdðqÞ;

ð16Þ

where FQd denotes the deuteron quadrupole form factor,
which is normalized to 1 at q ¼ 0.
Single-nucleon TPE—Another correction to HFS arises

from TPE between the lepton and a single nucleon, and
includes the nucleon’s Zemach, recoil, and polarizability
effects. When embedded in a nucleus, the single-nucleon
TPE contributions in 2H and μ2H are [28,31]

E1N ¼ −
2αmlmNEF

gmðml þmNÞ
ðκpr̃pZ þ κnr̃nZÞ; ð17Þ

where r̃pZ and r̃nZ represent the effective proton and neutron
Zemach radii, accounting for the full single-nucleon TPE
effects [36–40].
Pionless effective field theory—=πEFT enables precise

low-energy predictions in few-nucleon systems by embed-
ding high-momentum effects using power counting, regu-
larization, and renormalization. The power counting is
guided by the ratio Q ¼ γ=mπ ≈ 0.33, with the pion mass
mπ denoting the breakdown scale and the upper limit for the
theory’s predictive power. The order-by-order Lagrangian
construction is based on the Q expansion and maintains
renormalizability at each order. It incrementally refines the
precision of low-energy predictions and ensures the
theory’s model independence. This framework has been
utilized to study the TPE effects on the Lamb shift in μ2H
[41–43].
We employ the identical Lagrangian used in Ref. [41] to

compute the two-nucleon bound and scattering states
utilizing dimensional regularization and power-divergence
subtraction renormalization. In addition, we include the

NNLO S-to-D-wave mixing operator [44–46]

Lsd ¼
CðsdÞ0

4
d†i

�
NTPj

�
∇↔i∇

↔

j −
δij
3
∇↔2

�
N

�
þ H:c:; ð18Þ

where ∇↔ ≡ ∇ − ∇!, γ denotes the deuteron binding
momentum and μ the power-divergence subtraction

renormalization scale. CðsdÞ0 ¼ −6
ffiffiffi
2
p

πηsd=½mNγ
2ðμ − γÞ�

[44–46] matches the deuteron’s asymptotic D-to-S wave
ratio ηsd ¼ 0.0252 [47].
P-wave contact interactions enter =πEFT at N3LO

[48,49]. Furthermore, the relativistic correction to the
kinetic term is suppressed by γ2=m2

N ≈Q4 [50], thus of
N4LO size. We neglect these higher-order terms in
this work.
The one-nucleon current originates from minimal

substitution in the free part of the Lagrangian and is
[48,50]

LEM;1b ¼−
e
2
N†½FesðqÞþ τ3FevðqÞ�NA0

−
ie

4mN
N†∇↔½FesðqÞþ τ3FevðqÞ�N ·A

þ e
2mN

N†½κ0FmsðqÞþ κ1τ3FmvðqÞ�σ ·BN; ð19Þ

where σ denotes the nucleon Pauli matrices. The nucleon
isoscalar and isovector anomalous magnetic factors
denoted as κ0 and κ1 are related to the magnetic factors
of the proton and neutron by κ0 ¼ ðκp þ κnÞ=2 and
κ1 ¼ ðκp − κnÞ=2. In Eq. (19), the nucleon electric
and magnetic isoscalar (isovector) form factors FesðFevÞ
and FmsðFmvÞ relate to the neutron and proton electric and
magnetic form factors by FesðevÞ ¼ Fep � Fen and
κ0ð1ÞFmsðmvÞ ¼ ðκpFmp � κnFmnÞ=2. We adopt the form
factor parametrization based on dispersion analysis of
the time and spacelike eN scattering data [51–53].
Two-nucleon currents appear at higher orders in =πEFT.

Introducing covariant derivatives in the np spin-triplet
interaction gives rise to a two-nucleon convection current
at NLO, whose interaction Lagrangian is

L2;C ¼
ieC2

4
FevðqÞd†i ðNT∇↔Piτ3NÞ · Aþ H:c:; ð20Þ

where C2 represents the known coefficient of the two-
nucleon NLO interaction [50]. L2;C does not contribute to
nuclear electric form factors but affects nuclear polariza-
tion. Furthermore, the two-nucleon magnetic current,
which couples with the np spin-triplet interaction, emerges
at NLO but not through minimal substitution,

L2;B ¼ −ieL2FmsðqÞϵijkd†i djBk þ H:c:; ð21Þ
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with L2 ¼ ðgm − 2κ0Þπ=½2mNγðμ − γÞ2� determined by
matching to the measured magnetic g factor. The two-
nucleon magnetic current causes the np spin-singlet-to-
triplet transition to emerge at NLO but does not contribute
to TPE in HFS due to spin-parity selection rules. Other two-
nucleon currents are beyond NNLO [48,50].
The transition matrices necessary for calculating the

response functions in Eqs. (12) and (13) are determined
using a similar approach as in Ref. [41]. The detailed
expressions can be found in the Supplemental Material [54].
Results—The TPE correction to HFS consists of the

elastic, polarizability, and single-nucleon contributions

EHFS
TPE ¼ Eel þ Epol þ E1p þ E1n: ð22Þ

The response functions in Eqs. (12) and (13) are numerically
evaluated in the =πEFT framework. The results are indepen-
dent of ultraviolet cutoffs. This affirms that the prediction is
insensitive to the short-range characteristics of the under-
lying theory, and thus ensures its model independence.
Figure 2 displays the charge-magnetic response function

Sð0Þ, its S-D mixing correction Sð0Þsd , and the convection-
magnetic oneSð1Þ, as functions of the excitation energyω at a
fixed transfer momentum q ¼ 50 MeV. Sð0Þ, which domi-
nates in the polarizability effect, is calculated at NNLO,
while Sð1Þ, whose contribution is suppressed by γ=mN ≈Q2,
is evaluated at NLO. Following Refs. [41,55,56], Sð0;1Þ are
Zd-improved for better accuracy by accounting for the

remaining effective range correction in the deuteron asymp-
totic normalization constant. A relative uncertainty ofQ3 ≈
3.5% (Q2 ≈ 11%) is roughly estimated for Sð0Þ [Sð1Þ], due to
omitted N3LO (NNLO) corrections. Sð0Þsd , expected at
NNLO, carries a relative uncertainty of Q ≈ 33% due to
its omitted subleading correction. Inserting the response
functions in Eqs. (10) and (11) leads to the polarizability

effects Epol ¼ Eð0Þpol þ Eð1Þpol þ Eð0Þpol;sd.
With the deuteron form factors evaluated in =πEFT, the

elastic TPE is a summation of contributions in Eqs. (14)–
(16), Eel ¼ Eð0Þel þ Eð1Þel þ Eð0Þel;sd. It is different from the
Zemach contribution Ezem due to the additional recoil
corrections in Eel. The prediction of rZ from =πEFT is
mainly determined by the deuteron S wave, with a 3.2%
correction due to S-D mixing,

rDZ;th ¼ 2.691 fm − 0.086 fm ¼ 2.605ð91Þ fm: ð23Þ

The prediction has a Q3 ¼ 3.5% uncertainty from N3LO
corrections. The result is consistent with the calculation
using the chiral EFT potential [57], and agrees with the
experimental value rZ;exp ¼ 2.593ð16Þ fm within 1σ.
The single-nucleon TPE contributions from Eq. (17)

need inputs for r̃p;nZ , which accounts for the Zemach, recoil,
and polarizability effects from proton and neutron. The
proton TPE contributions to HFS in H and μH were
determined with high accuracy by using constraints from
HFS spectroscopy measurements [38,58], while the neu-
tron TPE effects were determined using a dispersive
calculation [36,37]. These nucleon TPE effects are trans-
formed as follows into r̃p;nZ for ordinary and muonic atoms
using a scaling approach [28]:

r̃p;eZ ¼ 0.883ð2Þ fm; r̃p;μZ ¼ 0.906ð2Þ fm;

r̃n;eZ ¼ 0.347ð38Þ fm; r̃n;μZ ¼ 0.102ð39Þ fm: ð24Þ

Table I summarizes the elastic, polarizability, and single-
nucleon TPE effects to HFS in 2H and μ2H, comparing our
predictions with measurements and other theoretical pre-
dictions. The uncertainty analysis for Eel, Epol, and Enucl ¼
Eel þ Epol is detailed in the Supplemental Material [54].
The sources of uncertainty are categorized into the follow-
ing five contributions: (i) The primary uncertainty is due to
=πEFT truncation at NNLO. It is analyzed with a systematic
method [42], which has been shown to correspond to the
Bayesian analysis [59,60]. (ii) The uncertainty from using
different nucleon form factor parametrizations [51–53,61]
in calculating Enucl is at least 4 times smaller. (iii) The
numerical uncertainty from integrations over q and ω for
Eel and Epol is 100 times less than the EFT truncation error.
The total uncertainties for Eel, Epol, and Enucl are the
quadrature sum of the three aforementioned uncorrelated
sources. (iv) Single-nucleon TPE uncertainties are derived

FIG. 2. The response functions Sð0Þ (top panel), Sð1Þ (middle

panel), and Sð0Þsd (bottom panel) are shown as functions of ω for a
fixed q ¼ 50 MeV. The leading, subleading, sub-subleading, and
Zd-improved results are represented by the red dashed, green dot-
dashed, black dotted, and blue solid lines, respectively. The
light-blue band represents the uncertainty error from omitted
higher-order corrections.
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by combining Eqs. (17) and (24). (v) We also include the
uncertainty from omitted three-photon nuclear effects, Δ3γ ,
as detailed in [54]. The uncertainty for each contribution
and the total uncertainty for ETPE (in a quadrature sum) are
shown in Table I. Our calculated TPE contribution to the 2H
1S HFS is 41.7(4.4) kHz, aligning with the experimental-
QED discrepancy νexp − νQED (1) within 1σ of the com-
bined theory-experiment uncertainty. The predicted TPE
contribution to the μ2H 2S HFS is 0.117(13) meV, which
exceeds νexp − νQED (2) by 17% but remains compatible
within 1.3σ.
In comparison, the TPE effect on HFS in 2H was initially

calculated using the zero-range approximation [32,33],
showing agreement within 5% with νexp − νQED (1). This
formalism was revisited in Ref. [29] to include higher-order
elastic recoil corrections and was extended to estimate
polarizability effects on HFS in μ2H [27,62]. This approach
introduces a 33% discrepancy in the deuteron’s asymptotic
behavior and an unquantified model-dependent uncertainty
through an arbitrary energy-integration cutoff. Thus, their
agreement with experiments may be accidental.
Alternatively, the Low-term formalism takes the heavy-

nucleon-mass limit and evaluates Eel þ Epol in closure
approximation without explicitly treating nuclear excita-
tions. However, the approximation becomes inaccurate
when the momentum scale of nuclear excitations is

comparable to ml or γ, changing the infrared q dependence
in Eq. (5). Their predicted TPE effect in 2H was 46 kHz,
whose agreement with νexp − νQED (1) is accidental due to
the omission of single-nucleon recoil and polarizability
effects. Adding these corrections, the modified TPE pre-
diction becomes EHFS

TPEð2HÞ ¼ 64 kHz, disagreeing with
νexp − νQED by 43%. Kalinowski et al. expanded the
Low-term formalism with higher-order polarizability cor-
rections to probe the TPE effect in μ2H, and obtained
EHFS
TPEðμ2HÞ ¼ 0.38 meV [28], accounting for only 40% of

νexp − νQED (2). However, their perturbative expansion on
the transition energy may overemphasize high-energy
contributions to polarizability corrections, yielding a large
cancellation with the Low term and possibly causing the
difference with our results.
Conclusion—The N3LO corrections in =πEFT limit the

accuracy of our prediction for the TPE effect on HFS. As
another limiting factor, the uncertainty from the single-
nucleon TPE effect may be underestimated due to the 1
order of magnitude discrepancy between the proton polar-
izability effects to HFS from χPT [38–40] and from
dispersion analysis [36,37]. This dispute also raises ques-
tions about the predicted neutron polarizability. A reso-
lution to the single-nucleon TPE discrepancy requires
higher-order χPT calculations and future HFS measure-
ments of the 1S state in μH [63–65]. Alternatively, one can
pin down the single-nucleon effects from HFS in 2H and
μ2H, where it will be crucial to improve the accuracy of
calculations of the nuclear-structure part of TPE with =πEFT
beyond NNLO or with χEFT, and to measure HFS in 2H
and μ2H with higher precision. Furthermore, the formalism
developed in this work can also be applied to future
investigations of TPE effects on HFS in other light atomic
systems.
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