
Optimality and Noise Resilience of Critical Quantum Sensing

U. Alushi ,1,2,* W. Górecki ,3,* S. Felicetti,2,4,† and R. Di Candia 1,5,‡
1Department of Information and Communications Engineering, Aalto University, Espoo 02150, Finland

2Institute for Complex Systems, National Research Council (ISC-CNR), Via dei Taurini 19, 00185 Rome, Italy
3INFN Sez. Pavia, via Bassi 6, I-27100 Pavia, Italy

4Physics Department, Sapienza University, P.le A. Moro 2, 00185 Rome, Italy
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We compare critical quantum sensing to passive quantum strategies to perform frequency estimation, in
the case of single-mode quadratic Hamiltonians. We show that, while in the unitary case both strategies
achieve precision scaling quadratic with the number of photons, in the presence of dissipation this is true
only for critical strategies. We also establish that working at the exceptional point or beyond threshold
provides suboptimal performance. This critical enhancement is due to the emergence of a transient regime
in the open critical dynamics, and is invariant to temperature changes. When considering both time and
system size as resources, for both strategies the precision scales linearly with the product of the total time
and the number of photons, in accordance with fundamental bounds. However, we show that critical
protocols outperform optimal passive strategies if preparation and measurement times are not negligible.
Our results are applicable to a broad variety of critical sensors whose phenomenology can be reduced to
that of a single-mode quadratic Hamiltonian, including systems described by finite-component and fully
connected models.
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Introduction—The susceptibility developed in proximity
of critical phase transitions (PTs) is a valuable resource in
metrological tasks. This concept is widely exploited in
advanced sensors such as transition-edge detectors and
bubble chambers. However, these devices make use of a
classical sensing strategy, and they are not optimal from a
quantum-metrology perspective [1,2]. The recently intro-
duced research field of critical quantum sensing (CQS)
consists of leveraging quantum PTs to design quantum-
enhanced sensors [3–14]. In the last few years, it has been
theoretically shown that it is possible to achieve quantum
advantage in sensing exploiting both static [3–11]
and dynamical [12–14] critical properties of many-body
quantum systems. The first experimental demonstrations
of quantum-enhanced sensing have been achieved with
Rydberg atoms [15] and nuclear magnetic resonance
techniques [16].
Quantum advantage in sensing is defined in terms of the

scaling of achievable precision with respect to fundamental
resources, such as system size and protocol duration time.
Despite the critical slowing down, it has been shown [17]
that CQS protocols implemented on many-body spin
systems can achieve Heisenberg scaling [18] in both time
and system size. This result has been recently extended [19]

to the class of finite-component PTs, which can take place
in quantum resonators with atomic [20–24] or Kerr [25–28]
nonlinearities. In contrast to many-body spin systems,
where criticality emerges in the limit of an infinite number
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FIG. 1. Sketch of CQS and PQS strategies. Top: in CQS, the
system, initially at the equilibrium with the environment, evolves
according to (1). The final state is a squeezed thermal state with
covariance matrix depending nontrivially on the system param-
eters. An optimal measurement is homodyne with an optimized
angle, regardless of the system parameters. Bottom: the initial
state of PQS, an optimized displaced squeezed thermal state,
acquires a phase shift φ ¼ ωt in the free time evolution. Here, to
saturate the QFI, a nonlinear measurement is needed in some
parameter regimes. In both strategies, we consider interaction
with a thermal environment as in (2).

*These authors contributed equally to this letter.
†Contact author: felicetti.simone@gmail.com
‡Contact author: rob.dicandia@gmail.com

PHYSICAL REVIEW LETTERS 133, 040801 (2024)

0031-9007=24=133(4)=040801(7) 040801-1 © 2024 American Physical Society

https://orcid.org/0009-0000-6888-0532
https://orcid.org/0000-0001-9912-9186
https://orcid.org/0000-0001-9087-2125
https://ror.org/020hwjq30
https://ror.org/05rcgef49
https://ror.org/01st30669
https://ror.org/02be6w209
https://ror.org/00s6t1f81
https://ror.org/00s6t1f81
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.040801&domain=pdf&date_stamp=2024-07-22
https://doi.org/10.1103/PhysRevLett.133.040801
https://doi.org/10.1103/PhysRevLett.133.040801
https://doi.org/10.1103/PhysRevLett.133.040801
https://doi.org/10.1103/PhysRevLett.133.040801


of atoms, in finite-component models this thermodynamic
limit is replaced with a rescaling of the physical para-
meters. While many-body spin systems become critical
in the thermodynamic limit (infinite number of atoms),
finite-component PTs are formally defined by a parameter-
rescaling limit [21,26] applied to a nonlinear bosonic
system (infinite number of photons).
On the one hand, finite-component PTs make it possible

to implement CQS protocols with small-scale devices, such
as parametric resonators [29–32], single trapped ions [33],
optomechanical [34,35] or magnomechanical [36] devices,
spin impurities [37], and Rabi-like systems [38–40]. On the
other hand, finite-component PTs, as well as fully con-
nected systems [41–43], can be effectively described with
minimal models, and so they provide a compelling theo-
retical framework to analyze CQS protocols with analytical
or semianalytical methods [19,30,41,44–49]. Recent theo-
retical efforts have been dedicated to the identification and
design of optimal CQS protocols. It has been shown that the
dynamical approach has a constant-factor advantage over
static protocols [41,45]. An apparent super-Heisenberg
scaling can be achieved when focusing on a specific
resource such as system size [46,47] or time [48]. CQS
protocols achieve quantum advantage also for global sensing
using adaptive strategies [50,51] in the driven-dissipative
case with continuous measurements [52,53] and in the
multiparameter case [8,37,54]. Beyond the analysis of
specific applicable protocols, in recent years, fundamental
bounds on the quantum Fisher information (QFI) [1] have
been derived [55–59]. Not only do they allow quick
identification of which systems can benefit from quantum
metrology, but they also clarify what should be considered a
resource in metrology.
In this Letter, we fill several knowledge gaps in the

understanding of criticality-enhanced protocols, by putting
them in a general quantum metrology framework. We
compare the performances of CQS and the standard
quantum metrology approach, i.e., passive quantum sens-
ing (PQS), in the frequency estimation task. We first
consider only the system size as a resource. In the noiseless
case, we find that, despite both strategies achieving
Heisenberg scaling, optimal PQS outperforms CQS pro-
tocols by a constant factor. However, in the more realistic
case of parameter estimation in dissipative dynamics, only
CQS shows a quadratic scaling of the single-shot QFI in
the number of photons. This critical enhancement appears
with the emergence of a transient regime from the unitary to
the steady-state dynamics, where the QFI grows. Such a
regime can be arbitrarily long, and is not present in the
absence of dissipation. Then, we consider both time and
system size as resources, and we frame our results within
the context of ultimate precision bounds. Here, there is a
critical enhancement if preparation and/or measurement
times are non-negligible. Finally, we show that our results
stand also in the presence of thermal noise.

Throughout the Letter, we heavily use Gaussian quantum
information methods for the solution of dynamics and for
the computation of quantum and classical Fisher informa-
tion [60–62]. To provide meaningful discussion, we may
use approximations in the relevant regimes. However, all
calculations are analytical, and their details are in the
Supplemental Material [63]. See Sec. I of the Supplemental
Material for a summary of the tools used.
Critical quantum sensing—We consider an idealized

setting where the phenomenology of interest for CQS is
described by the squeezing Hamiltonian,

H ¼ ωa†aþ ϵ

2
ða2 þ a†2Þ; ð1Þ

where ϵ is the squeezing parameter and ω ¼ ω0 þ δω is the
sum of a known frequency ω0 and an unknown, small,
frequency shift δω to be estimated. This minimal model can
effectively describe [41] the low-energy physics of a broad
variety of criticalities emerging in (i) finite-component
systems such as the quantum Rabi model [21,64], driven
Kerr resonators [25,65,66], ultrastrongly coupled resona-
tors [26] and (ii) fully connected models, such as the Dicke
[42] and the Lipkin-Meshkov-Glick [43]. This system can
be thought of as a Kerr resonator in the Gaussian approxi-
mation, i.e., in the limit of small Kerr nonlinearity. In this
limit, the system undergoes a second-order phase transition
at the critical value ϵ ¼ ϵc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Γ2

p
[30]. The effect of

higher-order nonlinearities can be neglected until the photon
number is sufficiently small; see the Supplemental Material
[63], Sec. II. The limits of validity of the approximation will
be specific to each platform, and are not within the scope of
this work. We assume that the parameters ω0 and ϵ can be
independently tuned, while δω depends on some external
field to be probed. To provide a practical example, the most
direct implementation consists of a superconducting quan-
tum resonator [65–68], where ϵ corresponds to the intensity
of an external parametric drive,ω0 is the detuning of the bare
resonance frequencywith respect to half the pump frequency,
while δω is directly proportional to an externalmagnetic flux.
We consider a coupling to a thermal bath, described by the
Lindbladian

L½·� ¼ Γð1þ nBÞ
�
2a · a† − fa†a; ·g�

þ ΓnB
�
2a† · a − faa†; ·g�; ð2Þ

where Γ ≥ 0 is the environment-system coupling strength
and nB is the effective temperature of the bath.
We analyze a CQS protocol consisting of estimating the

parameter δω by choosing properly optimized values of ω0

and ϵ; see Fig. 1. Without loss of generality, we consider a
constraint on themaximumaverage number of photons in the
resonator, call itNmax, that can theoretically be set arbitrarily
large. This constraint is physicallymotivated as themodel (1)
is the result of different approximations working for finite
Nmax, such as the dispersive approximation when the
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resonator is coupled to an off resonance qubit, or the
Gaussian approximation [30,41].
Passive quantum sensing—PQS for the frequency esti-

mation problem consists of initializing a linear resonator to
a quantum state ρ, and letting it evolve according to the free
Hamiltonian H0 ¼ ωa†a under the influence of noise in
(2); see Fig. 1. As in CQS, we assume that ω ¼ ω0 þ δω,
where δω is to be estimated. PQS assumes no active control
over the resonator during the evolution, aside from choos-
ing the interaction time. We consider the initial state
generated with a generic unitary Gaussian operation
applied to the state at the equilibrium with the environment,
i.e., ρ ¼ DðαÞSðrÞρBS†ðrÞD†ðαÞ, where ρB is a thermal
state with nB photons, DðαÞ and SðrÞ are displacement
and squeezing operations respectively, and the total number
of photons is constrained to Nmax ¼ jαj2 þ ð1þ 2nBÞ
sinh2ðrÞ þ nB.
The noiseless case (Γ ¼ 0, nB ¼ 0)—Here, the QFI for

estimating δω with CQS is Icr ∼ ½2NðtÞ þ 8N2ðtÞ=9�t2 for
ϵ → ϵc, where NðtÞ ∼ ω2

0t
2. Details of the derivation can be

found in the Supplemental Material [63], Sec. III, where it
is also shown that homodyne measurements saturate the
QFI. Notice that, with constraints on both Nmax and the
total time T, the optimal choice is to set ω0 ¼

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
=T, so

we can use all resources coherently. For PQS, by optimizing
over Gaussian input states withNmax number of photons, we
get Ipas ¼ 8Nmaxð1þ NmaxÞt2. The optimal value is given by
a squeezed-vacuum state; see the Supplemental Material
[63], Sec. IV. Assuming NðtÞ ≤ Nmax, Ipas is always larger
than Icr by a constant factor. This comes with no surprise, as

PQS protocol is initialized with Nmax photons while CQS
is initialized with the vacuum. Here, the main message is
that both protocols show quantum advantage, achieving the
Heisenberg scaling ∝ ðNmaxTÞ2. Notice that this analysis
holds also for Γ > 0, as long as t ≪ ðNmaxΓÞ−1.
What part of this quantum advantage will survive for

longer times, where the effects of noise become significant?
In the following, we first discuss the scaling of the single-
shot QFI with Nmax, therefore momentarily neglecting time
as a resource. This will turn out to be useful for under-
standing the scaling of QFI with both T and Nmax, which
will be then related to ultimate precision bounds.
Zero-temperature dissipative case (Γ > 0, nB ¼ 0)—In

the dissipative scenario, we recognize two different time-
scales for the critical dynamics, defined by the real parts of
the Liouvillian eigenvalues λ� ¼ Γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − ω2

p
. Here,

ReðλþÞ−1 is the timescale when the dynamic stops being
effectively unitary, while Reðλ−Þ−1 is the timescale to reach
the steady state. For ϵ ≤ ω these times are equal, while for
ϵ > ω both λ� are real and different. This results in the
emergence of a transient regime; see Fig. 2. Approaching
the critical point ϵ → ϵc makes the steady-state time
diverge since λ−1− ∼ Γ=ϵcðϵc − ϵÞ, so the transient regime
can be arbitrarily long.
Let us switch to the problem of estimating δω. We

consider ϵ > ω0, and we work at ω0 ¼ Γ, which max-
imizes the QFI; see the Supplemental Material [63],
Sec. III. Also in the dissipative case, the optimal meas-
urement is homodyne. From Fig. 2, we see that the
interesting part is the transient regime, where the QFI
is Icr ≳ N2ðtÞ=2Γ2. The maximal QFI to N2 rate is
achieved at the steady state, where Icr ≃ 2N2ð∞Þ=Γ2;
see the inset of Fig. 2. The mean number of photons
NðtÞ increases monotonically in time and saturates at
Nð∞Þ ¼ ϵ2=2ðϵ2c − ϵ2Þ. Looking for an optimal strategy
with constraints on Nmax, since the optimal rate is
at the steady state, the optimal choice of ϵ will be
the one for which Nð∞Þ ¼ Nmax, i.e., ϵopt ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2Nmax=ð1þ 2NmaxÞ�
p

ϵc. This analysis also shows that
working close to the exceptional point ϵ ≃ ω0 is a
suboptimal choice, as at this point the number of photons
is severely bounded.
For PQS, the QFI for estimating δω is [69]

Ipas ¼
�

4α2

e−2rþe2Γt−1
þ e−2rðe4r−1Þ2
2e2rþ4Γtþðe2r−1Þ2ðe2Γt−1Þ

�
t2:

ð3Þ

Let us consider t≳ ðNmaxΓÞ−1. Under the condition
e2r ≫ e4Γt=ðe2Γt − 1Þ, we get the simple expression

Ipas ≃
4Nmaxt2

e2Γt − 1
: ð4Þ

FIG. 2. Single-shot QFI. Comparison of the single-shot QFI
between PQS (blue) and CQS (red), at zero temperature, for
ω0 ¼ Γ and Nmax ¼ 100. The vertical axis has been rescaled
as logð1þ QFIÞ for better visibility. For PQS, the optimal
measurement time is t ≃ 0.8=Γ. For CQS, the optimal ϵ is
ϵopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2Nmax=ð1þ 2NmaxÞ�
p

ϵc. The critical enhancement is
due to the emergence of the transient regime in the dissipative
case, where the QFI grows with quadratic scaling with N until
reaching the steady state; see inset.
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The condition on r can be easily satisfied also at finiteNmax
if Γt is not too large. One can see that, to optimize the QFI,
the exact amount of squeezing is not crucial as long as it
guarantees the condition on r. The QFI (4) is optimal for
t ≃ 0.8=Γ, for which Ipas ¼ OðNmax=Γ2Þ; see Fig. 2. We
should notice that the first term in (3) corresponds to the
Fisher information for homodyne measurement of the p
quadrature, which saturates the QFI for t≳ ðNmaxΓÞ−1
already when Nmax ≳ 103; see the Supplemental Material
[63], Sec. IV.
We see a difference in scaling in the number of photons

between CQS and PQS as Icr ¼ OðN2
max=Γ2Þ, while

Ipas ¼ OðNmax=Γ2Þ. This is the signature of the critical
enhancement. It is also clear that this enhancement emerges
from the splitting of the real part of the Liouvillian
eigenvalues for ϵ > ω0, which allows λ−1− to be arbitrarily
large for ϵ approaching ϵc, as λ−1− ¼ OðNmax=ΓÞ. As we
will see in the next section, when considering both time and
system size as a resource, the optimal scaling for the QFI is
OðNmaxt=ΓÞ; see Eq. (5). CQS allows for the coherent use
of time t ∼ λ−1− , from which the quadratic scaling for the
QFI follows. In the absence of the transient regime, i.e., for
ϵ < ω0, there is a single timescale for the dynamics given
by t ∼ Γ−1, so the QFI scales linearly. This happens even if
we initialize the system to a state other than vacuum, and,
therefore, explains also why PQS shows a linear scaling for
the QFI (see Fig. 2).

Relation to ultimate precision bounds—So far the
analysis has been carried out considering Nmax alone as
a resource. In the occurrence of losses, it is not possible to
use the entire time resource coherently. However, as QFI
arises linearly with the number of repetitions and a shorter
time of single realization allows for a bigger number of
repetitions, for fair comparison, we should still treat both
Nmax and total time T as a resource. Then, to use them
optimally, one should divide the total time T into smaller
parts topt ¼ argmaxtIðtÞ=t, and in total time T perform
M ¼ T=topt repetitions. For passive strategies, this leads to
MIpas ∼ 2NmaxT=Γ for Nmax ≫ 1, where topt decreases
with increasing Nmax, see the Supplemental Material [63],
Sec. V for details.
To analyze the critical protocol in this framework, note

that, as in the transient regime the number of photons
increases linearly with time for ω0 ¼ Γ, and close to the
criticality the time of a single repetition scales roughly as
λ−1− ≃ 2Nmax=Γ. Therefore, the number of repetitions
decreases with Nmax as M ≃ TΓ=2Nmax, so the scaling
Icr ¼ OðN2

max=Γ2Þ translates toMIcr ¼ OðNmaxT=ΓÞ, as in
passive strategy. It is also worth emphasizing that, to obtain
the scaling ∝ NmaxT=Γ of the QFI, no quantum resources
are needed, i.e., a protocol based on a coherent state with
single repetition time 1=Γ and homodyne detection
achieves this scaling as well.
Can this scaling be improved in any way? By applying

results from [56,59], we show that the QFI for the
estimation of the frequency of the cavity coupled to
the thermal bath is fundamentally bounded by (see the
Supplemental Material [63], Sec. VI):

Itotalcr;pas ≤
Z

T

0

2NðtÞ
Γð1þ 2nB − nB

NðtÞþ1
Þ dt≲

2NmaxT
Γð1þ 2nBÞ

; ð5Þ

where the second inequality holds for Nmax=nB ≫ 1. Here
with the superscript “total” we stress the fact that the bound
already includes the possibility of dividing the total time T
into smaller parts and perform measurements between them
(QFI scales linearly with the number of repetitions). While
in this paper we discuss in detail the protocol based
on phase transition in the occurrence of squeezing
Hamiltonian, the above bound remains valid for any other
metrological strategy, including all kinds of criticality,
adaptiveness, partial measurements, etc. Note that, while
optimal PQS saturates the bound in the limit of large Nmax,
the CQS cannot perform as well, since the number of
photons arises from 0. Therefore, after averaging, it needs
to be strictly smaller than Nmax. Where, then, does the
advantage of CQS manifest itself?
The ultimate bound (5) is derived by neglecting prepa-

ration and measurement time tp;m. In many experiments,
this is an unrealistic assumption. For instance, to initialize a
linear resonator to a squeezed state with Nmax photons, one

Icr Г/Nmax(t+tp,m)

IpasГ/Nmax(t+tp,m)

FpasГ/Nmax(t+tp,m)

FIG. 3. QFI rate. Comparison of the ratios Ipas;cr=Nmaxðtþ
tp;mÞ for the PQS (blue) and CQS (red), at zero temperature, for
tp;m ¼ 0 (solid lines) and tp;m ¼ 2=Γ (dashed lines). In black, we
draw the same type of plot for the Fisher information of
homodyne measurement in PQS. Here, we set Nmax ¼ 100,
ϵ ¼ ϵopt, ω0 ¼ Γ. By neglecting preparation and measurement
time, the passive strategy is fundamentally optimal for large
enough Nmax, as it saturates the ultimate precision bounds. Even
for finite Nmax, it performs significantly better than the critical
strategy. However, by considering tp;m > 0, while the QFI rate is
significantly reduced for PQS, it remains essentially unchanged
for CQS. In this framework, there is a critical enhancement.
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way involves pumping the resonator with a squeezed
signal. Assuming the favorable situation that Γ represents
the coupling with the preparation line, it then takes
O½logðNmaxÞ=Γ� time to prepare the cavity; see the
Supplemental Material [63], Sec. VII. Discharging the
resonator, essential to perform measurements on the output
modes, requires the same time. Generally speaking, a more
meaningful way to approach the problem is to divide T in
topt ¼ argmaxtIðtÞ=ðtþ tp;mÞ parts. In Fig. 3, we show that,
already for tp;m ≃ 2=Γ, i.e., a time 1=Γ each for measuring
and preparing the state, PQS performance is largely
reduced while CQS performance remains virtually
untouched. This is because in CQS the single-shot QFI
achieves its maximum at a time much larger than Γ−1, so
tp;m is negligible. This leaves space for independent
exploration by considering specific implementations of
the protocols. For instance, preparation and measurement
of the field outside the resonator can be further analyzed
using the time-dependent input-output theory.
Finite-temperature dissipative case (Γ > 0, nB > 0)—A

similar analysis can be performed for arbitrary temperature.
For the dynamics, we consider the critical system starting
from a thermal state ρB with nB photons and consider
ϵ > ω0. For the same values of ϵ;ω0, the Liouvillian
eigenvalues are unchanged, so the unitary and steady-state
timescales are the same. Moreover, also ϵc and IcrðtÞ are left
unchanged. However, the mean number of photons at any
time is ð1þ 2nBÞ times bigger than in the zero-temperature
case. It means that the same value of QFI would be obtained
if the constraint for the number of photons would be also
rescaled to N0

max ¼ ð1þ 2nBÞNmax. The same holds also
for the passive strategy; see the Supplemental Material [63],
Sec. VIII. Both protocols are therefore robust to thermal
noise in the same way, in accordance to the bound (5).
Beyond the critical point—Lastly, we shall discuss

whether it is possible to get an enhancement by exploiting
the dynamics of a fast quench of the system, i.e., working at
ϵ > ϵc, as proposed in Ref. [46]. For ϵ > ϵc, the number of

photons grows exponentially in time, asNðtÞ ∼ e2
ffiffiffiffiffiffiffiffiffi
ϵ2−ϵ2c

p
t=4.

Since the QFI is polynomial in the number of photons, also
the QFI increases exponentially in time. One may then
conclude that this strategy offers a great advantage. However,
an analysis based on imposing a constraint on the number
of photons in the resonator reveals that this strategy is
suboptimal.
Consider for instance the noiseless case; see the

Supplemental Material [63], Sec. III. Here, Iϵ>ϵccr ðtÞ ∼
4N2ðtÞ=ðϵ2 − ϵ2cÞ for t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − ϵ2c

p
≫ 1. The optimal choice

of ϵ, allowing for coherent use of all resources, under the
photon number constraint NðTÞ ¼ Nmax, is ϵ2 ≃ ϵ2c þ
log2ð4NmaxÞ=4T2, which leads to Iϵ>ϵccr ¼ OðN2

maxT2=
log2NmaxÞ. So, contrary to the case below the critical
point, Heisenberg scaling with all resources is not possible
at all.

Conclusions—We have compared passive quantum sens-
ing strategies with protocols exploiting the dynamics of
driven-dissipative critical systems. We have identified
relevant frameworks in which critical quantum sensing
outperforms passive quantum sensing for the parameter
estimation task, in open quantum systems at arbitrary
temperature. The considered minimal model describes
the critical behavior of a broad class of systems, including
finite-component phase transitions [21,26,64–66] and fully
connected models [41–43]. PTs of this kind have been
already observedwith controllable atomic [64,70] and solid-
state [65–68] quantum technologies. For critical models that
do not belong to the considered class, such as many-body
spin models, our Letter still provides a method to make a
comparison with the ultimate precision performance. As the
critical enhancement appears for dissipative systems and is
robust against thermal noise and preparation and/or meas-
urement time, our analysis paves the way for the develop-
ment of practical critical quantum sensors in these
experimental settings. Indeed, in some experimental con-
texts CQS sensing protocols can be even simpler to imple-
ment than standard sensing strategies, as the initialization
does not depend on the prior, and the optimal measurement
is a simple homodyne detection in all regimes.
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