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Characterizing entanglement is central for quantum information science. Special observables which
indicate entanglement, so-called entanglement witnesses, are a widely used tool for this task. The
construction of these witnesses typically relies on the observation that quantum states with a high fidelity to
some entangled target state are entangled, too. We introduce a general method to construct entanglement
witnesses based on the Schmidt decomposition of observables. The method works for two-particle and
multiparticle systems and is strictly stronger than fidelity-based constructions. The resulting witnesses can
also be used to quantify entanglement and to characterize its dimensionality. Finally, we present
experimentally relevant examples, where our approach improves entanglement detection significantly.
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Introduction—In recent years, several experimental
breakthroughs on different quantum technologies have
been achieved. Examples are the demonstration of quantum
supremacy with superconducting qubits [1], the implemen-
tation of quantum cryptography using a satellite [2] or in a
device-independent manner [3,4], and the study of quantum
phases using digital quantum simulation [5]. In such
experiments large datasets are collected, and the problem
arises of how to analyze them and connect them with the
underlying quantum phenomena. For instance, if one
wishes to reconstruct the density matrix of the quantum
state arising in an experiment, methods like compressed
sensing [6], matrix-product-state tomography [7], shadow
tomography [8,9], and forms of overlapping tomography
[10,11] have been designed.
For analyzing quantum correlations in experiments one

frequently considers specific inequalities signaling the
presence of correlations. The paradigmatic examples are
Bell inequalities, whose violation signals the presence of
quantum nonlocality [12]. Bell inequalities do not rely on
assumptions on the measurement devices, and if knowledge
about at least some of the implemented measurements is
given, steering inequalities [13] or entanglement witnesses
[14–16] are more efficient. In short, an entanglement
witness is an observable with a non-negative expectation
value on all separable states; hence a negative expectation
value signals the presence of entanglement. Clearly, finding
all entanglement witnesses is a hard task, as it is equivalent
to characterizing all entangled states, which is known to be
an NP-hard problem [17]. Still, many constructions exist,

often based on the idea of measuring the fidelity of the
experimental state with some target state. If this fidelity is
high enough, entanglement must be present.
In this Letter, we present a method to analyze quantum

entanglement based on the so-called Schmidt decomposi-
tion of operators. The Schmidt decomposition is a ubiqui-
tous tool when analyzing pure two-particle quantum states,
but it can also be applied to bipartite observables. Our
method leads to novel entanglement witnesses, which
outperform fidelity-based witnesses and tolerate signifi-
cantly more noise when analyzing multiparticle entangle-
ment. Our approach is computationally simple and can also
be used to quantify entanglement or its dimensionality.
Entanglement and witnesses—To start, recall that a

bipartite quantum state ϱAB shared by two parties, tradi-
tionally named Alice and Bob [14,18] is separable if it can
be written as ϱAB ¼ P

k pkjakihakj ⊗ jbkihbkj, where the
pk form a probability distribution. If a state cannot be
written in this way, it is entangled, which is, for many
quantum tasks, a necessary condition to outperform
classical protocols [19,20]. Unless stated otherwise, we
assume that the dimensions of Alice’s and Bob’s space are
the same, dA ¼ dB ¼ d.
For characterizing quantum entanglement, in experi-

ments as well as in theory, entanglement witnesses have
turned out to be useful [16,21,22], since they do not require
full knowledge of the quantum state. As already mentioned,
entanglement witnesses have a positive expectation value
on separable states, so measuring a negative expectation
value proves entanglement. For the construction of wit-
nesses, several methods exist [22–29], and one of the well-
known key methods is the use of witnesses based on the
fidelity with a given pure target state. They are of the form
W ¼ α1 − jψihψ j, where jψi is some pure entangled target
state. This witness expresses the fact that states with a high
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fidelity with jψi, namely the ones with Fψ ¼ hψ jϱjψi > α
are entangled, too. Three remarks are in order. First, the
coefficient α can directly be computed. If jψi ¼ P

R
i¼1 sijiii

is the Schmidt decomposition (with decreasingly ordered
Schmidt coefficients si > 0 and Schmidt rank R), it is given
by the maximal squared Schmidt coefficient α ¼ s21 [21].
Second, while fidelity-based witnesses are easy to con-
struct, they have the disadvantage that they are not able to
detect all entangled states, such as states with a positive
partial transpose [30,31]. Still, fidelity-based witnesses
have the advantage that they can be extended easily to
the multiparticle case by considering the Schmidt decom-
positions for the different bipartitions [21]; this makes them
the standard tool for analyzing entanglement in current
experiments [32–34].
The main idea—To introduce our main idea, let us start

by pointing out the well-known fact that the Schmidt
decomposition does not apply to pure states only, but also
to observables. Indeed, one can decompose any operator X
acting on a bipartite space in the operator Schmidt
decomposition (OSD) [35,36]

X ¼
XS
i¼1

μiGA
i ⊗ GB

i : ð1Þ

Here, the μi ≥ 0 are the operator Schmidt coefficients
(OSC), chosen to be decreasingly ordered, and if X is a
quantum state, then the largest one μ1 encodes the maximal
correlation between two appropriately normalized observ-
ables. Further, the GA

i (GB
i , respectively) form an ortho-

normal basis of Alice’s (Bob’s) operator space. This means
that TrðGA

i G
A
j Þ ¼ δij; examples of such bases are the

appropriately normalized Pauli or Gell-Mann matrices.
In fact, several works used the OSD, for example to
analyze entanglement of mixed states [37–40] or dynamics
[41]. We now write down our first main result, where we
apply the OSD to a general operator X.
Observation 1—Let X be an operator with its OSD as in

Eq. (1) and μ1 its largest OSC. Then

W ¼ μ11 − X ð2Þ
is an entanglement witness for bipartite entanglement.
Note that the choice of the parameter μ1 guarantees the

positivity of the witness on separable states, but for general
X there may be proper witnesses W ¼ α1 − X with a
smaller α < μ1. This is in contrast to witnesses based on
pure state fidelities, where α ¼ s21 is optimal. In order to
prove the observation, it suffices to show that the expect-
ation value ha; bjWja; bi is non-negative for an arbitrary
pure product state ja; bi; this implies the statement for
general separable states. First, writing X in its OSD
according to Eq. (1) it is clear that ha; bjX ja; bi ≤
μ1

P
i jhajGA

i jaihbjGB
i jbij. Then, for x ¼ a and x ¼ b

and any orthonormal basis of the operator space one has

P
ihxjGX

i jxi2 ¼ 1; this follows from the fact that for
ϱ ¼ jxihxj the relation Trðϱ2Þ ¼ 1 holds. So, by the
Cauchy-Schwarz inequality we have ha; bjX ja; bi ≤ μ1,
and Observation 1 follows.
From this simple construction of witnesses, several

questions arise: How shall one choose the operator X to
detect a given entangled state ϱ? Which states can be
detected by this construction? What about the characteri-
zation of high-dimensional entanglement? Can this method
be extended to the multiparticle scenario, in order to detect
genuine multiparticle entanglement?
In the following, we will answer all these questions. For

the moment, we would like to stress that the construction in
Eq. (2) contains the pure state fidelity-based witness
mentioned in the second paragraph as a special case, but
still it is a more general description, so the OSD witnesses
are strictly stronger. Indeed, starting from a pure state
jψi ¼ P

R
i¼1 sijiii one can directly calculate the OSD of

X ¼ jψihψ j. One finds R2 nonzero operator Schmidt
coefficients of the type fμig ¼ fsαsβg, and the largest
one is hence given by μ1 ¼ s21. Thus, the pure state fidelity-
based witness is indeed a special case of Eq. (2).
Schmidt number witnesses—Let us now explain how the

method of OSD witnesses can be used to characterize
the dimensionality of entanglement, as characterized by the
Schmidt number. Given the Schmidt decomposition of a
pure state as above, the number R of nonzero Schmidt
coefficients is called the Schmidt rank, and is known to be
an entanglement monotone characterizing the dimension-
ality of entanglement [42]. It can be generalized to mixed
states as follows. If a mixed state cannot be written as a
convex decomposition into pure states with Schmidt rank k,
then the mixed state has Schmidt number (SN) kþ 1 [43].
Note that in this classification, mixed states with SN 1 are
just the separable states, while entangled states have at least
an SN of 2.
Similar to entanglement witnesses, one can define

Schmidt number witnesses as observables whose expect-
ation values are positive for all states with SN k − 1 such
that a negative result indicates at least SN k [44]. In our
scheme, these witnesses may be constructed analogously to
Eq. (2), where the prefactor μ1 is replaced by a different
number λk, which is a not necessarily optimal bound on the
overlap of pure Schmidt-rank k − 1 states with the operator
X . It turns out that these λk are simply given by the solution
of a (k − 1)th order polynomial equation in the OSC of X .
For example, for SN k ¼ 3 we find λ3 ¼ ½μ1 þ μ4þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ1 − μ4Þ2 þ ðμ2 þ μ3Þ2

p
�=2. Then the witness W ¼

λ31 − X detects only three-dimensional entanglement.
However, for SNs greater than 3, the prefactor is not so
compact anymore; details on the computation of λ3 and the
prefactors for higher SN are given in Appendix A in the
Supplemental Material [45]. These witnesses can be seen as
a generalization of the computable cross norm or realign-
ment (CCNR) criterion for detecting the Schmidt number
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(see also Observation 2 below), similar to the one in
Ref. [58]. But one can choose X such that it certifies
the SN of states, for which the CCNR extension [58] fails;
see also Appendix A [45].
Estimating bipartite entanglement monotones—In many

cases, one is not only interested in detecting quantum
entanglement, but also wishes to quantify it and its resource
character. For this quantification, many entanglement
monotones have been proposed [59–75]. A frequently used
monotone is the concurrence [64–69], defined for pure
states asCðjψiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1 − Trðϱ2AÞ�

p
and for mixed states via

the so-called convex roof construction (see Appendix B in
the Supplemental Material for details [45]). This quantity is
notoriously difficult to compute, but with the OSD witness,
it can be directly estimated. Indeed, one can show that

CðϱÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

dðd − 1Þ

s
ðS − 1Þ ð3Þ

where S ¼ maxfTrðϱXÞ=μ1; 1g. Note that Eq. (3) has a
similar form of the result in Ref. [76], but interestingly
analogous bounds can be derived for other measures, such
as the convex-roof extended negativity [63], the G con-
currence [70–72], and the geometric measure of entangle-
ment [73–75]; details are given in Appendix B of the
Supplemental Material [45]. Moreover, they can finally be
extended to the multiparticle case.
Optimization of OSD witnesses—Having established

basic properties of the OSD witness, we can now ask
how to choose the observable X in an optimal manner.
Consider an entangled state ϱ that is detected by a witness
as in Eq. (2) with the X as in Eq. (1). Since we want to
minimize the expectation value of the witness we can,
without loss of generality, consider a witness where the
expectation values hGA

i ⊗ GB
i i are positive for the given

state and the μi are positive. In addition, the witness may be
renormalized to achieve μ1 ¼ 1. But then it is clear that the
optimal choice of the other μi is to take μi ¼ 1, too.
So, an entangled quantum state is detected by a witness

from Eq. (2) if and only if it can be detected by a witness of
the form WCCNR ¼ 1 −

P
S
i¼1G

A
i ⊗ GB

i These witnesses,
however, are characteristic for the CCNR criterion
[25,77,78], and we have the following.
Observation 2—A bipartite quantum state can be

detected by an OSD witness as in Eq. (2) if and only if
it can be detected by the CCNR criterion.
The critical reader may ask at this point, why we have

defined the OSD witnesses in the general form of Eq. (2)
although the simpler subclass of CCNR witnesses contains
all the relevant cases already. There are two reasons for that:
First, as stressed above, the direct connection to the CCNR
criterion does not hold for witnesses for a higher Schmidt
number. Second, the form of the witness in Eq. (2) is the
key for the generalization to multiparticle entanglement.

There, we will search for multiparticle witnesses, which
have the form as in Eq. (2) for any bipartition. Restricting
then the attention to specific optimal witnesses for each
bipartition does not lead to strong witnesses for the entire
system [79], and there is a trade-off between the optimality
of the bipartite witness and the efficiency for multiparticle
entanglement detection.
So, let us discuss how a given OSD witness can be

gradually optimized; this will be central for the discussion
of multiparticle entanglement later. We consider an
entangled state ϱ (e.g., some pure state) which is affected
by some separable noise σ (e.g., the maximally mixed state
1=d2). So, the total state is of the form ηðpÞ ¼ pϱþ
ð1 − pÞσ, and one can ask for the minimum of the required
visibility pcrit, such that all states with p > pcrit are detected
by the OSD witness.
A given OSDwitness can be optimized in two directions.

First, one may alter the coefficients μi in Eq. (1), and
second, one may change the operators GX

i in the Schmidt
decomposition. Let us first discuss the optimization of the
OSC. For a given OSD witness, one can directly compute
the pcrit and, leaving all other quantities fixed, this is a
function of the parameters fμig. Then, one can compute the
gradient∇pcritðfμigÞ and minimize pcrit with some steepest
descent algorithm (see Appendix C in the Supplemental
Material for details [45]). We stress that after adjusting the
fμig in one iteration step one can calculate the updated μ̃1
in order to guarantee that the updated W̃ is indeed a proper
witness, so no fake entanglement detection can arise from
this procedure.
Second, we explain the optimization of the Schmidt

operatorsGA
i while keeping the fμig and fGB

i g fixed. Since
the GA

i form an orthonormal basis, one can consider an
infinitesimal rotation GA

i → G̃A
i ¼ P

k OikGk with Oik
being an infinitesimal rotation matrix of the form

O ¼ 1þ
X
l

ϵðlÞgðlÞ; ð4Þ

with gðlÞ being the generator matrices of the SOðNÞ.
Finally, one can write pcrit as a function of the ϵðlÞ and
optimize the GA

i via a gradient algorithm.
In practice, these two approaches work very well, even if

the initial OSD witness was not chosen properly. For
instance, for a bound entangled state (the so-called unex-
tendible product basis (UPB) state in 3 × 3 systems) the
procedures directly find a witness that detects it, even if the
initial witness was not capable of detecting it. Details on the
optimization procedures and on the examples are given in
Appendix C of the Supplemental Material [45].
Multiparticle entanglement—Now we are ready to pre-

sent the extension of OSDwitnesses to the multiparticle case.
Let us first recall the notion of genuine multiparticle entan-
glement (GME) [15]. For the case of three particles, a
pure state can be fully separable (e.g., jψ fsi ¼ j000i) or bise-
parable for some bipartition (e.g., jψbsi ¼ jϕiA ⊗ jψ−iBC,
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where jψ−i is a 2-qubit singlet state). Finally, a pure
state is genuine multiparticle entangled if it is not bise-
parablewith respect to any bipartition.Well-known examples
of genuine multiparticle entangled states for 3 qubits
are the Greenberger-Horne-Zeilinger (GHZ) state jGHZ3i ¼
ðj000i þ j111iÞ= ffiffiffi

2
p

and the W state jW3i ¼ ðj001iþ
j010i þ j100iÞ= ffiffiffi

3
p

. Similarly, one can define biseparability
and genuine multiparticle entanglement of more than three
particles.
The generalization to mixed states goes via convex

combinations. A mixed state is fully separable, if it can
be written as a convex combination of pure fully separable
states, that is ϱ ¼ P

k pkjψ fs
k ihψ fs

k j. A state is biseparable if
it can be expressed as a convex combination of pure
biseparable states; these pure states may be biseparable
with respect to different bipartitions. Finally, mixed states
are genuine multiparticle entangled, if they are not
biseparable.
For the characterization of genuine multiparticle entan-

glement, entanglement witnesses can be directly used
again, and a witness for GME is defined by the property
that it is non-negative on all biseparable states. The method
of OSD witnesses can directly be used to write down GME
witnesses: Consider a tripartite operator XABC. We can
compute the OSD for the three bipartitions AjBC, BjAC,
and CjAB, resulting in three maximal Schmidt coefficients

μAjBC1 , μBjAC1 , and μCjAB1 . Note that these are asymmetric
scenarios for the OSDs, where the dimensions of the two
sides are not the same. Then, taking μ as the maximum of
these, the operator

W ¼ μ1 − XABC ð5Þ

has a positive expectation value on all pure biseparable
states; hence it is a witness for genuine multiparticle
entanglement; the generalization for more particles is
described in Appendix E of the Supplemental Material [45].
It is clear that the witness in Eq. (5) is more general than

fidelity-based witnesses for multiparticle entanglement.
Such fidelity-based witnesses have been a standard tool
to analyze GME in experiments in the last years, so we will
analyze in the following the advantage occurring from the
construction in Eq. (5).
Examples of multiparticle states—Now we are ready to

use our methods to derive stronger witnesses for genuine
multiparticle entanglement. In the following, we explain our
approach for the 3-qubitW state jW3i; the approach for other
states is similar. A known witness for genuine multiparticle
entanglement in the vicinity of the W state is [80]

W ¼ 2

3
1 − jW3ihW3j: ð6Þ

This can be viewed as an OSD witness from Eq. (5) with
XABC ¼ jW3ihW3j. The recipe for its improvement is as

follows. We consider ϱ ¼ jW3ihW3j as an entangled target
state and wish to maximize the robustness for the separable
noise given by σ ¼ 1=8. For a given bipartition one can
improve XABC by adjusting the Schmidt coefficients or the
Schmidt operators as outlined above. We then go through
the bipartitions, and for each bipartition we improve the
witness by a combination of the two optimization methods.
Numerical details of the procedure are given in Appendix C
of the Supplemental Material [45].
The starting witness in Eq. (6) requires a visibility of

pfid ≥ 0.620 in order to detect GME. Already after some
iterations of the optimization procedure one arrives at a
witness for which the required visibility is reduced to
pOSD ≥ 0.556, demonstrating the superiority of the OSD
witness over the fidelity-based construction.
We have applied the same method to a variety of other

multiqubit states. This includes the 3-qubit uniform hyper-
graph state jH3i [81] and the 4-qubit W state jW4i, Dicke
state jD4i, and singlet state jΨ4i [15]. For all these states we
found a significantly improved noise robustness; see Table I
for concrete values. Detailed forms of the states as well as
the results for other states are given in Appendix C of the
Supplemental Material [45]. Note that OSD witnesses
do not improve the fidelity-based witness W ¼
1=2 − jGHZ3ihGHZ3j for the GHZ state, as this witness
is known to be optimal for maximally mixed noise [82].
Analytical approaches—Two analytical approaches are

worth mentioning. First, it is also possible to construct the
OSD witnesses analytically by starting from a pure high-
dimensional quantum state and interpreting this as an
operator on a lower-dimensional space. For instance, for
the GHZ state jGHZi ¼ ð1=2ÞP4

i¼1 jiiii on three four-
level systems the vector Schmidt decomposition is directly
given. Consequently, taking X ¼ P

4
i¼1 G

A
i ⊗ GB

i ⊗ GC
i for

arbitrary orthonormal bases GX
i , (X ¼ A, B, C) on 3 qubits

will always result in an entanglement witness W ¼ 1 − X .
This ansatz can be generalized using arbitrary highly
entangled pure states. Most importantly, given such a
witness with a fixed structure, one can optimize the
operators GX

i for given states by an iteration of purely
analytical steps, which is indeed more general than a simple

TABLE I. Improvement of the noise robustness of entangle-
ment detection for various multiqubit states. For five different
states, the required visibility pfid for the fidelity-based witness
and pOSD for the OSD witness are shown. Look at the text for
further details.

State Visibility pfid Visibility pOSD

jW3i 13=21 ≈ 0.619 0.556
jH3i 5=7 ≈ 0.714 0.545
jW4i 11=15 ≈ 0.733 0.714
jD4i 29=45 ≈ 0.644 0.540
jΨ4i 11=15 ≈ 0.733 0.572
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optimization over local unitary transformations. Details and
examples are given in Appendix D of the Supplemental
Material [45]. Second, note that the operators GX

i are
actually local orthogonal observables. Thus we can use
the results from Ref. [83] to define the OSD witnesses for
continuous variable systems, too.
Multipartite entanglement measures—Again, the novel

multiparticle witnesses can be made quantitative and be
used to estimate monotones for genuine multiparticle
entanglement. One possibility to build such monotones
is to start with an entanglement monotone E for pure two-
particle states. Then, one can define for a multiparticle state
the global entanglement EGME as the minimum of E for all
bipartitions. Finally, one extends this to mixed states via the
convex roof construction.
Such entanglement monotones can be directly estimated

from the expectation value of the witness in Eq. (5). For
instance, one may consider the multiparticle version of the
concurrence. Then, one findsCGME≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=½mðm−1Þ�p ðS−1Þ

where S ¼ maxfTrðϱXABCÞ=μ; 1g and m is, for the
special case of tripartite systems the maximum of dimen-
sions of Alice, Bob, and Charlie. This approach can
be generalized to other measures and more particles;
details are given in Appendix E of the Supplemental
Material [45].
Conclusion—We have introduced a novel method to

characterize entanglement for quantum systems of two or
more particles. The resulting entanglement witnesses are
strictly stronger than the widely used fidelity-based witness
and can improve entanglement detection in realistic sce-
narios significantly. On the technical level, the approach
does not involve advanced numerical tools such as semi-
definite programming. The method can be seen as an
extension of the CCNR criterion of separability to the
multiparticle case, in the same sense as Ref. [84] presented
an extension of the criterion of the positivity of the partial
transpose to the multiparticle case.
Several new lines of research emerge from our findings.

First, it would be highly desirable to further characterize the
resulting witnesses analytically for interesting families of
quantum states. Second, entanglement witnesses can also be
used to characterize other properties of quantum states, such
as the teleportation fidelity [85], the distillability [86], and
the multipartite Schmidt vector [87,88], so it is relevant to
apply our methods to these cases. Third, the statistical
analysis of entanglement tests from finite data has become
essential in the last years [89], so our approaches also need to
be analyzed from this viewpoint. Fourth, thinking of
experimental implementations, it is desirable to give an
estimation of the errors occurring when assuming small
deviations of the desired measurements. In fact, for a special
case of two-particle OSD witnesses this was recently
discussed [90], but it remains open to generalize this
approach further and apply it to the multipartite case.
Finally, in general, as fidelity-based entanglement witnesses

have been used for many experiments, the presented
improvementmay allow for novel and exciting experiments.
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