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Learning physical properties of high-dimensional states is crucial for developing quantum technologies
but usually consumes an exceedingly large number of samples which are difficult to afford in practice. In
this Letter, we use the methodology of quantum metrology to tackle this difficulty, proposing a strategy
built upon entangled measurements for dramatically reducing sample complexity. The strategy, whose
characteristic feature is symmetrization of observables, is powered by the exploration of symmetric
structures of states which are ubiquitous in physics. It is provably optimal under some natural assumption,
efficiently implementable in a variety of contexts, and capable of being incorporated into existing methods
as a basic building block. We apply the strategy to different scenarios motivated by experiments,
demonstrating exponential reductions in sample complexity.
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Learning properties of states like expectation values of
observables is of increasing importance in quantum phys-
ics, underpinning vast applications in emerging fields, such
as quantum machine learning [1], quantum computational
chemistry [2], and variational quantum computing [3,4]. A
fundamental difficulty in this task is that any full
reconstruction of a generic unknown state inevitably
consumes exponentially many samples due to the growth
of the state space dimension with the system size. This
makes traditional learning methods like full state tomog-
raphy hopelessly inefficient and poses a serious challenge
in the noisy intermediate-scale quantum (NISQ) era [5].
Fortunately, most of the states that are relevant in

quantum physics admit some nontrivial structures, such
as those of low rank [6,7], matrix product states [8,9], and
those with quasilocal structures [10,11]. Furthermore, for
many purposes, one is only interested in some specific
properties of states, e.g., mean energies of many-body
systems, which makes it unnecessary to fully reconstruct
states for obtaining all their information. These well-
motivated physical considerations have led to a series of
proposals for more efficient alternatives to full state
tomography, with excellent examples including com-
pressed sensing [6,7], adaptive tomography [12,13], self-
guided tomography [14,15], and classical shadows [16,17].
While existing methods generally rely on local mea-

surements, it has been recognized that entangled measure-
ments are typically far more efficient than local
measurements for extracting information from unknown
states [18–23]. Moreover, the ongoing development of
large-scale quantum computers opens up exciting

possibilities of leveraging quantum computational resour-
ces to realize entangled measurements [20,21]. In particu-
lar, motivated by the availability of NISQ computers [24], a
number of experiments [25–27] have been carried out for
realizing entangled measurements as well as demonstrating
their superiority over local measurements. An important
issue is therefore to explore the usefulness of entangled
measurements in learning properties of states [20,21].
Here we propose a strategy built upon entangled

measurements, for dramatically reducing sample com-
plexity beyond what can be achieved with local measure-
ments. The basic idea is to explore symmetric structures of
states which are ubiquitous in quantum physics and
known a priori in various situations. Using informa-
tion-theoretic tools from quantum metrology [28,29],
we figure out the measurement that can make optimal
use of these symmetric structures for learning expectation
values of observables. This enables our strategy to operate
at the optimal sample efficiency in a variety of physical
contexts, thereby achieving a sought-after goal in quan-
tum metrology [30–32], which is unlikely, if not impos-
sible, to reach with local measurements. Further, we apply
our strategy to two physical contexts involving transla-
tional and permutational symmetries, showing that it
allows for saving exponentially many samples while
merely consuming polynomial amounts of quantum com-
putational resources. The findings of this Letter uncover
an intriguing route to reducing sample complexity via
taking advantage of symmetric structures of states, which
opens opportunities for leveraging recent breakthroughs
on large-scale quantum computers to facilitate a plethora
of learning tasks.
We first recall some basic facts. A common task in

quantum physics is to measure the expectation value
X̄ ¼ trðXρÞ of an observable X in a state ρ. Traditionally,

*Contact author: zdj@sdu.edu.cn
†Contact author: tdm@sdu.edu.cn

PHYSICAL REVIEW LETTERS 133, 040202 (2024)

0031-9007=24=133(4)=040202(6) 040202-1 © 2024 American Physical Society

https://orcid.org/0000-0002-1291-3806
https://orcid.org/0000-0003-0398-9945
https://ror.org/0207yh398
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.040202&domain=pdf&date_stamp=2024-07-25
https://doi.org/10.1103/PhysRevLett.133.040202
https://doi.org/10.1103/PhysRevLett.133.040202
https://doi.org/10.1103/PhysRevLett.133.040202
https://doi.org/10.1103/PhysRevLett.133.040202


X̄ is obtained from the projective measurement of X,
provided that this measurement is not difficult to implement
in experiments. As the measurement outcomes are the
eigenvalues of X, there is some uncertainty in obtaining
X̄, which can be characterized by the variance ðΔXÞ2 ¼
ðX − X̄Þ2. More precisely, the uncertainty is ðΔXÞ2=M if the
measurement is repeatedM times. So, to measure X̄ up to a
certain prescribed tolerance ϵ, the number of measurements
needed and hence samples consumed is

MX ¼⌈ ðΔXÞ2
ϵ
⌉; ð1Þ

where ⌈ · ⌉ denotes the ceiling function.
We now consider the setting that we know a priori the

symmetric structures of ρ, which can be described by a
finite or compact Lie group G, that is, UgρU

†
g ¼ ρ for

g∈G, where Ug denotes a unitary representation of G. It is
worth noting that the above consideration covers the vast
majority of symmetries of interest in quantum physics.
Then a question of relevance in a startling variety of
contexts is: How can we exploit the symmetric structures
of ρ to reduce to the greatest extent the number of samples
required in measuring the expectation value X̄ of any given
observable X in ρ up to the prescribed tolerance ϵ?
In this Letter, we will answer the above question by

showing that the projective measurement of another
observable

Y ¼ T ðXÞ ð2Þ

can not only be alternatively employed to measure X̄ but
also maximally reduce the number of samples required by
taking advantage of the symmetric structures of ρ. Here, T
is the so-called G-twirling operation defined as

T ðXÞ ¼ jGj−1
X
g∈G

UgXU
†
g; ð3Þ

for a finite group G, with jGj being the number of elements
in G. When G is a compact Lie group, T ðXÞ ¼R
G dνðgÞUgXU

†
g, where νðgÞ denotes the normalized

Haar measure [33]. It is interesting to note that Y satisfies
½Y;Ug� ¼ 0 for g∈G and is therefore the symmetrized
counterpart of X. We emphasize that Y is always different
from X except when X commutes with all Ug.
We first show that X and Y have the following subtle

relations.
Theorem 1—The observable Y shares the same expected

value with X but with a generally smaller variance, i.e.,
Ȳ ¼ X̄ but ðΔYÞ2 ≤ ðΔXÞ2.
Physically, the equality Ȳ ¼ X̄ means that the projective

measurement of Y can be an alternative to the projective
measurement of X for obtaining X̄. The inequality ðΔYÞ2 ≤
ðΔXÞ2 implies that the former generally consumes fewer

samples than the latter for reaching the same measurement
precision, that is, MY ≤ MX, where

MY ¼ ⌈ ðΔYÞ2
ϵ
⌉ ð4Þ

is the number of samples required in the projective
measurement of Y.
We now prove Theorem 1. Let us consider the case thatG

is a finite group. Using the cyclic property of the trace and

noting that ½ρ; Ug� ¼ 0 for g∈G, we have UgXU
†
g ¼ X̄. In

conjunction with Eq. (3), this further leads to

Ȳ ¼ P
g UgXU

†
g=jGj ¼ X̄. To prove ðΔYÞ2 ≤ ðΔXÞ2, we

make use of the known result that, for two observablesA and
B, there is ΔðAþ BÞ ≤ ΔAþ ΔB [34,35]. Using this result
and noting that ΔðUgXU

†
gÞ ¼ ΔX, we have that ΔY ¼

ΔðjGj−1 Pg UgXU
†
gÞ ≤ jGj−1Pg ΔðUgXU

†
gÞ ¼ ΔX. Then

the proof of Theorem 1 is completed by further noting that
the above reasoning can be carried over straightforwardly to
the case of G being a compact Lie group.
We then address the optimality of the projective meas-

urement of Y. Note that there are many other measurement
strategies that can be used to measure X̄, e.g., classical
shadows based on randomized measurements [16,17].
Without loss of generality, any strategy for measuring
X̄ can be described as first performing a measurement on
ρ⊗M and then classically postprocessing the measurement
outcome to yield an estimate of X̄ [28,29]. Here M denotes
the number of samples consumed in the strategy in
question. Any measurement can be described by a positive
operator-valued measure (POVM) fΠxg satisfyingP

x Πx ¼ 1, where x labels the measurement outcome
and could be multivariate in general. Any classical post-
processing of x amounts to a map X̄estðxÞ, which takes x as
the input and outputs an estimate of X̄. The uncertainty in
measuring X̄ can be quantified by the varianceP

x trðΠxρ
⊗MÞ½X̄estðxÞ − X̄�2 [28,29]. The requirement of

measuring X̄ up to ϵ amounts to demanding

ϵ ≥
X
x

trðΠxρ
⊗MÞ½X̄estðxÞ − X̄�2; ð5Þ

which imposes constraints on M so that M cannot be
arbitrarily small. We uncover a fundamental bound onM as
follows.
Theorem 2—The numberM of samples consumed in any

strategy for measuring X̄ up to ϵ is bounded as M ≥ MY if
nothing about ρ is known except its symmetric structures.
Theorem 2 means that the projective measurement of Y

consumes the fewest copies of ρ for measuring X̄ up to ϵ,
under the assumption that our knowledge about ρ is only its
symmetric structures. That is, the projective measurement
of Y has the optimal sample efficiency allowed by quantum
mechanics whenever the assumption holds.
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Our proof of Theorem 2 is based on the quantum
Cramér-Rao bound [28,29] (see Supplemental Material
[36] for details). To calculate this bound, the key step in our
proof is to write out a general expression of ρ based on the
known symmetric structures. According to the representa-
tion theory of groups [39], Ug can be expressed as

Ug ≅ ⨁
s

α¼1

1nα ⊗ UαðgÞ; ð6Þ

where UαðgÞ is the αth irreducible representation of G with
dimension dα and multiplicity nα, and 1nα is the nα × nα
identity matrix. As ½ρ; Ug� ¼ 0 for g∈G, ρ must be of the
form

ρ ≅ ⨁
s

α¼1

qαρα ⊗
1dα
dα

; ð7Þ

where qα ≥ 0 satisfies
P

s
α¼1 qα ¼ 1 and ρα denotes a

density matrix. Using the generalized Bloch representation
[40], we can further express ρα as (see Sec. II of Ref. [36])

ρα ¼
1nα
nα

þ 1

2
rα · λα; ð8Þ

where rα and λα are used to denote the generalized Bloch
vector and the generators of Lie algebra suðnαÞ, respec-
tively [36]. It follows from Eqs. (7) and (8) that ρ is
explicitly expressed in terms of the parameters fqα; rαgsα¼1.
This allows us to figure out the quantum Cramér-Rao
bound,

X
x

trðΠxρ
⊗MÞ½X̄estðxÞ − X̄�2 ≥ 1

MJ½X̄; ρ� ; ð9Þ

where J½X̄; ρ� denotes the quantum Fisher information
about X̄ given ρ (see Sec. V of Ref. [36] for its explicit
expression). The meaning of Eq. (9) is that the uncertainty
in any strategy for measuring X̄ is fundamentally con-
strained by f1=MJ½X̄; ρ�g, irrespective of the choices of
fΠxg and X̄estðxÞ [28,29]. Using Eqs. (5) and (9), we obtain

M ≥
1

ϵJ½X̄; ρ� : ð10Þ

Besides, we derive, after some algebra (see Sec. VI of
Ref. [36]),

ðΔYÞ2 ¼ 1

J½X̄; ρ� : ð11Þ

The proof of Theorem 2 is completed by inserting Eq. (11)
into Eq. (10).
With the above analysis, we are ready to specify our

strategy. To measure X̄, our strategy is to repeatedly

perform the projective measurement of Y on MY samples.
This allows for yielding X̄ up to ϵ after averaging the MY

outcomes, i.e., X̄≈
ϵ PMY

i¼1 yi=MY , where yi denotes the ith
measurement outcome and is an eigenvalue of Y.
Interestingly, as demonstrated below, the projective meas-
urement of Y is often an entangled measurement [25–27],
since the eigenbasis of Y may contain entangled states. To
implement this measurement, we can first apply a quantum
circuit V to transform the eigenbasis of Y into the computa-
tional basis and then perform the standard measurement in
the computational basis (see Fig. 1). So, the working
principle of our strategy is to leverage quantum computa-
tional resources to reduce sample complexity. Notably, our
strategy operates at the optimal sample efficiency allowed
by quantum mechanics and outperforms other measure-
ment strategies in terms of sample complexity whenever the
assumption in Theorem 2 holds.
Application 1: Translational symmetries—Let us apply

our strategy to the scenario that ρ is a state of n qubits with
the symmetric structures described by the translation group
G ¼ fTi; i ¼ 0;…; 2n − 1g. Here, T is defined as Tjji ¼
jjþ 1i with the periodic boundary condition j2ni ¼ j0i,
where jji, j ¼ 0;…; 2n − 1, denote the computational
basis. Note that translational symmetries are ubiquitous
in condensed-matter physics. The above scenario could
arise, e.g., in quantum simulations of electrons in crystal-
line solids [41,42], for which Bloch’s theorem states that
the solutions to the Schrödinger equations are Bloch states
and hence respect translational symmetries.
To show the usefulness of our strategy, we calculate

ðΔXÞ2=ðΔYÞ2, which characterizes the ratio between MX
and MY . Using ½ρ; T� ¼ 0 and noting that the eigenbasis of
T is the Fourier basis jfji ¼

P
k e

2πijk=2n jki= ffiffiffiffiffi
2n

p
, we can

write ρ as ρ ¼ P
j pjjfjihfjj, where pj ≥ 0 satisfiesP

j pj ¼ 1. Then, expressing X as X ¼ P
jk Xjkjfjihfkj

with Xjk ¼ hfjjXjfki, we have

FIG. 1. Schematic of our strategy. To measure the expectation
value X̄ of an observable X in ρ which is possibly a many-body
state, we perform the projective measurement of the observable Y
on each sample. This measurement can be implemented by
utilizing the quantum circuit V to transform the eigenbasis of Y
into the computational basis and then performing the standard
measurement in the computational basis. Repeating this pro-
cedure MY ¼ ⌈ðΔYÞ2=ϵ⌉ times, we can obtain X̄ up to a
prescribed tolerance ϵ by averaging the outcomes yi.
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ðΔXÞ2 ¼
�X

jk

pjjXjkj2
�
−
�X

j

pjXjj

�
2

: ð12Þ

Besides, using Eq. (3) and Tjfji ¼ e−2πij=2
n jfji, we have

Y ¼ P
j Xjjjfjihfjj, which further leads to

ðΔYÞ2 ¼
�X

j

pjX2
jj

�
−
�X

j

pjXjj

�
2

: ð13Þ

Hence, ðΔXÞ2 − ðΔYÞ2 ¼ P
j

P
k≠j pjjXjkj2 contains

exponentially many nonnegative terms. Roughly speaking,
this indicates that ðΔXÞ2=ðΔYÞ2 is very large for countless
choices of X. To clearly see this point, we take

X ¼ ⊗
n

l¼1

1ffiffiffi
2

p ðσlx þ σlzÞ ð14Þ

as an example, where σlα, α ¼ x, y, z, are the Pauli matrices
acting on the lth qubit. Direct calculations show [36] that

ðΔXÞ2=ðΔYÞ2 ≥ 2n − 1; ð15Þ

implying that the reduction allowed by our strategy can be
exponential in n.
We point out that our strategy is efficiently implement-

able on a quantum computer in the scenario under con-
sideration. Indeed, the eigenbasis of Y is the Fourier basis,
which implies that the quantum circuit V is just the inverse
quantum Fourier transform. That our strategy is efficiently
implementable follows from the known result that the
inverse quantum Fourier transform can be realized as a
quantum circuit consisting of only Oðn2Þ Hadamard
gates and controlled phase shift gates [43] (see also
Ref. [44] for a semiclassical realization without using
two-bit gates).
Application 2: Permutational symmetries—Let us con-

sider again n qubits but in the state whose symmetric
structures are described by the permutation group G ¼
fPs; s∈ Sng. Here, s labels a permutation in the symmetric
group Sn and Ps is defined by Psjψ1i ⊗ � � � ⊗ jψni ¼
jψ sð1Þi ⊗ � � � ⊗ jψ sðnÞi. This scenario arises frequently in
multipartite experiments [45–47], in which the states
involved are typically invariant under permutations [48].
For example, three well-known states of this type are
Werner states [49], Dicke states [50], and Greenberger-
Horne-Zeilinger (GHZ) states [51], which are key resources
in quantum information processing [52–55]. Below, moti-
vated by the fact that Pauli measurements are widely used
in multipartite experiments, we explore our strategy to
reduce sample complexity in Pauli measurements.
We can express a generic Pauli observable as

Xkl ¼ σk1x σ
l1
z ⊗ � � � ⊗ σknx σ

ln
z ðiÞk·l; ð16Þ

where k ¼ ðk1;…; knÞ and l ¼ ðl1;…; lnÞ are two vectors
of binary numbers and k · l ¼ P

n
i¼1 kili denotes the usual

dot product. Note that, associated to each Xkl, there is a
symmetrized counterpart Ykl ¼ T ðXklÞ. To illustrate the
superiority of the projective measurement of Ykl over the
Pauli measurement of Xkl, we evaluate ðΔXklÞ2 and
ðΔYklÞ2 on the GHZ state of n qubits. Hereafter we assume
for simplicity that n is odd. It can be shown that

ðΔXklÞ2 ¼ 1 ð17Þ

for any Pauli observable with jkj ≠ 0 and n [36]. Here
jkj ¼ P

n
i¼1 ki. By contrast,

ðΔYklÞ2 ¼ 1=
�

n

jkj

�
ð18Þ

for the same Pauli observable [36]. To clearly see the
difference between ðΔXklÞ2 and ðΔYklÞ2, we consider the
Pauli measurements with

ð1 − δÞ n
2
< jkj < ð1þ δÞ n

2
; ð19Þ

referred to as the typical Pauli measurements. Here,
0 < δ < 1 is fixed. We show that

ðΔXÞ2
ðΔYÞ2 ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

nπð1 − δ2Þ

s �
4

ð1 − δÞ1−δð1þ δÞ1þδ

�n
2 ð20Þ

for any typical Pauli measurement [36]. Noting that
ð1 − δÞ1−δð1þ δÞ1þδ < 4 for 0 < δ < 1, we deduce that
ðΔXÞ2=ðΔYÞ2 is exponential in n. Besides, the number of
typical Pauli measurements is ≥ 4n½1 − ð1=nδ2Þ� [36],
which means most of Pauli measurements are typical for
a large n. So, our strategy allows for exponentially reducing
sample complexity for most of Pauli measurements when n
is large.
Notably, our strategy can be efficiently implemented on a

quantum computer in the considered scenario, too. Indeed,
as detailed in Ref. [36], the eigenbasis of Y can be mapped
into the computational basis via the quantum Schur trans-
form followed by at most ⌈n=2⌉ controlled gates. That our
strategy is efficiently implementable follows from the
known result that the quantum Schur transform can be
realized as a quantum circuit of polynomial size [56].
Before concluding, we remark that while the assumption

in Theorem 2 holds in numerous scenarios, there are also
many cases in which we know other structures of ρ besides
its symmetric structures. For example, apart from transla-
tional symmetries, a many-body state usually admits
quasilocal structures, based on which some learning meth-
ods have been proposed [10,11]. As such, our strategy
could be incorporated into existing methods as a basic
building block for further reducing sample complexity by
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exploring symmetric structures of states. Besides, it should
be noted that there are difficulties in implementing the
projective measurement of X in many situations. For
example, it was recognized that the mean energy of a
many-body system is considerably difficult to measure, due
to which only a few architecture-specific experiments have
been carried out so far [57]. Interestingly, our strategy
allows for inferring X̄ from the projective measurement of
Y which, as demonstrated above, may be efficiently
implementable even when this is not the case for X.
In conclusion, targeting at measuring expectation values

of observables, we have proposed an entangled-measure-
ment-based strategy that can leverage quantum computa-
tional resources to dramatically reduce sample complexity.
Our strategy, which is powered by the exploration of
symmetric structures of states, is to infer the expectation
value X̄ of an observable X from the projective measure-
ment of its symmetrized counterpart Y in Eq. (2) rather than
X itself. This allows our strategy to be an intriguing
alternative with the optimal sample efficiency in a variety
of contexts, as stated in Theorems 1 and 2.
To illustrate the significance of our strategy, we have

applied it to two scenarios involving different kinds of
symmetric structures of states, i.e., those described, respec-
tively, by the translation and permutation groups, which are
ubiquitous in condensed-matter physics and quantum
many-body physics. These applications clearly illustrate
that our strategy allows for yielding exponential reductions
in sample complexity while merely consuming polynomial
amounts of quantum computational resources.
The present Letter opens many interesting topics for

future work, e.g., how to optimally take advantage of
symmetric structures of states to reduce the sample com-
plexity in simultaneously measuring expectation values of
multiple observables [58,59] and further to extend the
scope of discussions from expectation values of observ-
ables to other properties of states like various resource
measures [52–55].
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