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Markovian open many-body quantum systems display complicated relaxation dynamics. The spectral
gap of the Liouvillian characterizes the asymptotic decay rate towards the stationary state, but it has
recently been pointed out that the spectral gap does not necessarily determine the overall relaxation time.
Our understanding on the relaxation process before the asymptotically long-time regime is still limited. We
here present a collective relaxation dynamics of autocorrelation functions in the stationary state. As a key
quantity in the analysis, we introduce the instantaneous decay rate, which characterizes the transient
relaxation and converges to the conventional asymptotic decay rate in the long-time limit. Our theory
predicts that a bulk-dissipated system generically shows an accelerated decay before the asymptotic regime
due to the scrambling of quantum information associated with the operator spreading.
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Introduction—It is a fundamental problem in nonequili-
brium statistical physics to elucidate how a quantum system
approaches to stationality under dissipative couplings to
large environments [1–3]. This problem has been inves-
tigated mainly for small quantum systems, whereas our
understanding on the nonequilibrium dynamics of open
many-body quantum systems has still been limited. The
recent experimental progress using ultracold atoms and
trapped ions has made us to introduce controlled dissipa-
tion to realize many-body quantum systems with desired
properties [4–8]. The experimental background also moti-
vates us to study the generic dynamical properties of open
many-body quantum systems.
Recently, it was pointed out that open many-body

quantum systems exhibit counterintuitive dynamical fea-
tures. The dynamics of Markovian open quantum systems
are generated by the Liouvillian superoperator of the
celebrated Lindblad form [9,10]. The spectral gap of the
Liouvillian,which is simply called theLiouvillian gap, gives
the asymptotic decay rate [3], and thus it is expected that the
relaxation time is given by the inverse of the Liouvillian gap.
However, it was found that the relaxation time can be much
longer than the inverse of the Liouvillian gap when there is a
conserved current in the bulk (it is always the case when the
dissipation acts only at the boundaries of the system) [11–
14]. The point is that the crossover time into the asymptotic
regime is very long and even diverging in the thermody-
namic limit. If the transient regime is dominant for the
overall relaxation process, the decay rate in the transient
regime determines the relaxation time. Hence, we should
investigate the relaxation dynamics in the transient regime,
which is the main focus of our work.

In this Letter, we discuss the transient dynamics of
quantum many-body systems under bulk dissipation. In
contrast to boundary dissipation, we find that the relaxation
time is generically much shorter than the inverse of the
Liouvillian gap in bulk-dissipated systems. Based on a
rigorous inequality on the autocorrelation function, we
introduce a key quantity called the instantaneous decay
rate. We argue that the instantaneous decay rate exhibits
three distinct dynamical regimes in the weak dissipation
regime: (i) the acceleration regime, (ii) the plateau regime,
and (iii) the asymptotic regime. Figure 1 illustrates dynam-
ics of the instantaneous decay rate for various system sizes
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FIG. 1. Dynamics of the instantaneous decay rate κAðtÞ with
Â ¼ σz1 − hσz1iss for various system sizes in the bulk-dissipated
Ising spin chain [see the model in Eqs. (10) and (11)]. Solid lines
show κAðtÞ for N ¼ 4, 5, 6, 7, 8 from bottom to top, while dotted

lines show κð0ÞA ðtÞ for N ¼ 7, 8. The arrows indicate the values of
the Liouvillian gap.
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in a bulk-dissipated system. In the acceleration regime,
the decay rate increases with time. This is a universal
phenomenon under bulk dissipation, and this accelerated
decay is explained by the operator-size growth (or the
operator spreading) under unitary time evolution without
dissipation. In the plateau regime, the decay rate is
saturated at a constant value proportional to γN, where γ
and N are the strength of dissipation and the system size,
respectively. In the asymptotic regime, the decay rate
converges to the asymptotic value, which is identical to
the Liouvillian gap.
In the following, we first provide the general setup, and

then present the main result. We demonstrate the relevance
of the theoretical results in a bulk-dissipated spin chain.
Setup—This work adopts the same set up as [15]. We

consider a finite quantum system, whose density matrix
ρðtÞ obeys the Lindblad equation [1]:

dρðtÞ
dt

¼ LρðtÞ;

Lρ ¼ −i½Ĥ; ρ� þ γ
X
k

�
L̂kρL̂

†
k −

1

2

n
L̂†
kL̂k; ρ

o�
; ð1Þ

where L is the Liouvillian superoperator, Ĥ is the bulk
Hamiltonian, and fL̂kg is a set of jump operators.
The Planck constant ℏ is set to unity. We assume that
the stationary state is unique. The density matrix of the
stationary state ρss is described by Lρss ¼ 0. The Lindblad
equation ensures the complete positivity [9,10].
Let Â be an Hermitian operator. The autocorrelation

function for Â in the stationary state is expressed as [16]

CAAðtÞ ≔ hÂðtÞ; Âiss; ð2Þ
where hÂ; B̂iss ¼ TrðÂ†B̂ρssÞ. We can assume hÂiss ≔
TrðÂρssÞ ¼ 0 without loss of generality. Here, ÂðtÞ repre-
sents the time-evolved operator in the Heisenberg picture:
ÂðtÞ ¼ eL̃tÂ, where the superoperator L̃ is defined as

L̃ Â ¼ i½Ĥ; Â� þ γ
X
k

�
L̂†
kÂL̂k −

1

2

n
L̂†
kL̂k; Â

o�
: ð3Þ

The eigenvalue spectrum of L̃ is the same as that of L.
Since any eigenvalue has a nonpositive real part, we sort the
eigenvalues denoted by fλαg in the descending order:
0 ¼ λ0 > Reλ1 ≥ Reλ2 ≥ …. The Liouvillian gap g is
defined as

g ¼ −Reλ1: ð4Þ
The Liouvillian gap determines the asymptotic decay rate
of CAAðtÞ as

jCAAðtÞj ∼ e−gt ðt → ∞Þ: ð5Þ
In this work, we discuss the transient dynamics before

reaching the asymptotic regime. Recent work introduced

the symmetrized Liouvillian to study the relaxation dynam-
ics in a transient regime [15]:

L̃s ¼
L̃þ L̃�

2
; ð6Þ

where the superoperator L̃� is the adjoint superoperator of
L̃ associated with the inner product hÂ; B̂iss:

hÂ; L̃ B̂iss ¼ hL̃�Â; B̂iss; ð7Þ

which is expressed as L̃�Â ¼ LðÂρssÞρ−1ss [17]. We assume
that ρss is invertible for simplicity. The symmetrized
Liouvillian is a non-positive and Hermitian superoperator
(i.e., L̃s ≤ 0 and L̃�

s ¼ L̃s). The nonpositivity is shown by
using the complete positivity of L. We sort the eigenvalues
of L̃s denoted by fsαg in the descending order: 0 ¼ s0 ≥
s1 ≥ s2 ≥ …. L̃s has a zero eigenvalue: L̃sÎ ¼ 0, where Î is
the identity operator. The spectral gap gs of L̃s is defined by

gs ¼ −s1: ð8Þ

The spectral gap gives a simple bound on the autocorre-
lation function in the stationary state [15]:

jCAAðtÞj ≤ e−gstCAAð0Þ: ð9Þ

However, as we see in the following, we need a more
sophisticated analysis beyond the spectral gap bound like
Eq. (9) to describe generic relaxation dynamics of bulk-
dissipated quantum many-body systems.
Instantaneous decay rate—Let us investigate how the

autocorrelation function in the stationary state decays.
Although the discussion below is general, for clarity we
consider a bulk-dissipated Ising spin chain under the
periodic boundary condition [18]. The bulk Hamiltonian
is given by

Ĥ ¼
XN
i¼1

ðhzσ̂zi þ hxσ̂xi þ Jσ̂zi σ̂
z
iþ1Þ; ð10Þ

where σ̂x;y;zi denotes the Pauli matrices at site i. We fix the
parameters as hz ¼ 0.9045, hx ¼ 0.809, and J ¼ 1, for
which eigenstate thermalization hypothesis has been
numerically shown to hold [20]. Each site i is associated
with the jump operator L̂i given by

L̂i ¼ σ̂−i ¼ 1

2
ðσ̂xi − iσ̂yi Þ: ð11Þ

We assume weak dissipation and set γ ¼ 0.01. This open
quantum system has been implemented on Rydberg atoms
under laser driving and dissipation [21,22]. Each Rydberg
atom is regarded as a two-level system, where the spin-up
(-down) corresponds to the Rydberg (ground) state. In this
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model, the Liouvillian gap is independent of the system
size, i.e., g ∼OðN0Þ (Fig. 1).
Figure 2 shows the autocorrelation functions of a local

operator Â ¼ σ̂z1 − hσ̂z1iss for various system sizes by solid
lines. In the long-time limit, the autocorrelation function
decays at the rate of the Liouvillian gap. There is a different
decay rate appearing in the transient regime. The decay rate
is much larger than the Liouvillian gap.
To understand how the transient dynamics emerges, we

give an upper bound of the autocorrelation function:

jCAAðtÞj ≤ e−
R

t

0
ds κAðsÞCAAð0Þ: ð12Þ

Here, we introduce the instantaneous decay rate κAðtÞ. The
instantaneous decay rate is defined by using the sym-
metrized Liouvillian L̃s as

κAðtÞ ¼ −
hÂðtÞ; L̃sÂðtÞiss
hÂðtÞ; ÂðtÞiss

: ð13Þ

We prove the inequality. The autocorrelation function is
generally bounded as follows:

jCAAðtÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂðtÞ; ÂðtÞiss

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂ; Âiss

q
; ð14Þ

where we have used the Cauchy-Schwarz inequality

jhÂ; B̂issj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂ; ÂisshB̂; B̂iss

q
. The time evolution of the

quantity hÂðtÞ; ÂðtÞiss is given by

d
dt

hÂðtÞ; ÂðtÞiss ¼ 2hÂðtÞ; L̃sÂðtÞiss: ð15Þ

Equation (15) is then formally solved as

hÂðtÞ; ÂðtÞiss ¼ e−2
R

t

0
ds κAðsÞhÂ; Âiss: ð16Þ

By substituting it into Eq. (14), we obtain Eq. (12). The
instantaneous decay rate is actually the decay rate of the

quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂðtÞ; ÂðtÞiss

q
, and it gives an upper bound on

the autocorrelation function as in Eq. (12).
Now we list important properties of the instantaneous

decay rate. First, it is non-negative κAðtÞ ≥ 0 since L̃s is a
nonpositive superoperator. Second, κAðtÞ is not smaller
than the spectral gap gs of L̃s:

κAðtÞ ≥ gs: ð17Þ
This is proved by using the following property:

gs ¼ inf
X̂≠0;hX̂iss¼0

hX̂; L̃sX̂iss
hX̂; X̂iss

: ð18Þ

The condition hX̂iss ¼ hÎ; X̂iss ¼ 0 ensures that X̂ is
orthogonal to Î, which is the eigenvector of L̃s correspond-
ing to the zero eigenvalue, and thus gs is expressed in the
variational form as in Eq. (18). Equation (17) indicates that
the instantaneous decay rate gives a simple bound on the
autocorrelation function, i.e., Eq. (9), but it cannot capture
the three dynamic regimes manifest in Fig. 1.
Third, the instantaneous decay rate converges to the

asymptotic decay rate (i.e., the Liouvillian gap) in the long-
time limit:

lim
t→∞

κAðtÞ ¼ g; ð19Þ

when TrðÂρ1Þ ≠ 0 and Imλn ¼ 0 for every n with
Reλn ¼ −g.
Accelerated decays due to operator spreading—To gain

insights into the relaxation dynamics in Fig. 2, we inves-
tigate how κAðtÞ behaves at transient times for sufficiently
small γ with a fixed system size N.
Figure 1 illustrates the dynamics of κAðtÞ by solid lines.

We find three distinct dynamic regimes: acceleration
regime, plateau regime, and asymptotic regime. κAðtÞ
initially increases in the acceleration regime, has an almost
constant value in the plateau regime, and decreases and
converges to the Liouvillian gap in the asymptotic regime.
The growth of κAðtÞ implies the acceleration of the decay.
For weak dissipation, it is expected that the time

evolution of ÂðtÞ appearing in the instantaneous decay
rate, i.e., Eq. (13), would be well approximated by the
unitary dynamics without dissipation. The instantaneous
decay rate is thus approximated as

κð0ÞA ðtÞ ¼ −
hÂ0ðtÞ; L̃sÂ0ðtÞiss
hÂ0ðtÞ; Â0ðtÞiss

; Â0ðtÞ ¼ eiĤtÂe−iĤt:

ð20Þ
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FIG. 2. Dynamics of the autocorrelation function CAAðtÞ with
Â ¼ σ̂z1 − hσ̂z1iss for various system sizes in the bulk-dissipated
Ising spin chain. Solid lines show jCAAðtÞ=CAAð0Þj for N ¼ 4, 6,
8 from top to bottom. Dashed lines show the upper bound of the
correlation functions in Eq. (12). Although the upper bounds are
not tight, they correctly capture large decay rates appearing in the
transient regime.
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Figure 1 shows the dynamics of κð0ÞA ðtÞ for N ¼ 7 and 8.
The approximated one correctly reproduces the instanta-
neous decay rate in the acceleration regime and the plateau
regime [23]. It indicates that the growth of the instanta-
neous decay rate arises due to the unitary dynamics and
dissipation is relevant only for the crossover to the
asymptotic regime.
We now explain the growth of the instantaneous

decay rate from the viewpoint of operator spreading.
Figure 3 gives a schematic of operator spreading in a
one-dimensional quantum spin system. Let us consider a
local operator Â acting to a single site at initial time. In the
figure, colored circles denote the sites where the operator
Â0ðtÞ nontrivially acts. Under unitary dynamics, the oper-
ator spreads over the system and the number of colored
sites linearly increases with time [24,25]. Here, the number
of colored sites represents the operator size. Then, we
consider the effect of bulk dissipation. The instantaneous
decay rate is roughly estimated as the product of γ and the
operator size. Suppose an operator Ôi acting on a single site
i. The operator decays with a decay rate of γ since the
dissipation independently acts on every site with strength γ.
Then, the operator acting to three sites such as Ôi−1ÔiÔiþ1

decays with a decay rate of 3γ. In this way, the instanta-
neous decay rate accelerates due to the operator spreading
in the acceleration regime.
In the plateau regime, the instantaneous decay rate is

saturated to a value proportional toN. The plateau regime is
also explained from operator spreading. In this regime, the
operator Âð0ÞðtÞ spreads across the entire system, and hence
the operator size is N. Using the relation between the
operator size and the instantaneous decay rate, κAðtÞ ∼ γN.
The dissipation exhibits a collective decay in this regime.
In the asymptotic regime, the instantaneous decay rate

converges to the Liouvillian gap g. The oscillation around
the Liouvillian gap in Fig. 1 implies that Imλ1 ≠ 0. We find
in Supplemental Material that the crossover time into the

asymptotic regime is inversely proportional to γ for weak
dissipation [18]. Thus, the plateau regime is longer for
weaker dissipation.
We develop a more quantitative theory explaining those

three dynamical regimes. In the following argument, we
assume γ ≪ N−1, which is relevant for this study. Later, we
will briefly discuss what happens when N → ∞ is taken at
a fixed γ. The instantaneous decay rate κAðtÞ obeys the
following equation [18]:

dκAðtÞ
dt

¼ vA − 2δκ2A; ð21Þ

where

vA ¼ hÂðtÞ; ½L̃; L̃s�ÂðtÞiss
hÂðtÞ; ÂðtÞiss

;

δκ2A ¼ hÂðtÞ; ½−L̃s − κAðtÞ�2ÂðtÞiss
hÂðtÞ; ÂðtÞiss

: ð22Þ

This formula generalizes the result in [26] to any open
quantum systems obeying Lindblad equations. vA=γ rep-
resents how fast the operator size of AðtÞ spreads with time
and ðδκA=γÞ2 roughly gives the variance of the operator
size. Note that the time evolution of AðtÞ in vA is well
approximated by the unitary dynamics without dissipa-
tion [18].
The formula accurately explains the observed three

dynamic regimes in Fig. 1. In the acceleration regime,
recent studies on random unitary circuits [24,25] indicate
vA ∼ γ and δκ2A ∼ γ2t. Since vA ≫ δκ2A for small γ,

κAðtÞ ∼ γt ðt≲ NÞ: ð23Þ

The system enters the plateau regime when the operator
spreads across the entire system at t ∼ N. Accordingly,
κAðtÞ is proportional to γN. In this regime, vA ≈ 0, whereas
δκ2A ∼ γ2N [18]. Thus, during the duration time Δt in the
plateau regime, κAðtÞ reduces by the amount proportional to
γ2NΔt. This decrease is negligible compared with the
plateau value ∼γN up to Δt ∼ γ−1. We therefore conclude
that κAðtÞ approximately remains constant up to t ∼ γ−1:

κAðtÞ ∼ γN ðN ≲ t≲ γ−1Þ: ð24Þ

When t≳ γ−1, the variation of κAðtÞ becomes the same
order of magnitude as the plateau value. Then the system
shows a crossover to the asymptotic regime and κAðtÞ
converges to the Liouvillian gap.
Here, we briefly explain the dynamics of κAðtÞ in the

thermodynamic limit (i.e., N → ∞ before taking γ ≪ 1).
Equation (21) with vA ∼ γ and δκ2A ∼ γ2t implies that the
operator-size growth stops at t ∼ γ−1 due to dissipation. The
peak of κAðtÞ is independent of γ and N. Subsequently,

T
im

e

Decay Rate

�

3�

5�

7���N��

7���N��

FIG. 3. Mechanism of accelerated decay in a bulk-dissipated
quantum chain with N ¼ 7 spins. The vertical axis denotes the
time. Colored circles represent sites where an operator Âð0ÞðtÞ
nontrivially acts.

PHYSICAL REVIEW LETTERS 133, 040201 (2024)

040201-4



κAðtÞ gradually approaches the Liouvillian gap g ∼ γ. In
this way, there is no plateau regime in the thermodynamic
limit, but the amplification of dissipation via the operator
spreading occurs, which yields a finite decay rate even for
an infinitesimally small γ.
Finally, we compare the exact autocorrelation function

with its upper bound. In Fig. 2, we plot the autocorrelation
jCAAðtÞ=CAAð0Þj by solid lines, whereas the upper bound

e−
R

t

0
dsκAðsÞ by dashed lines. The autocorrelation function

shows a rapid decay due to the unitary dynamics at short
times. This effect is not taken into account in the upper
bound. Thus, we find that the inequality in Eq. (12) is not
tight. However, the upper bound qualitatively reproduces
the autocorrelation function at large times. In particular, the
relaxation dynamics in the transient regime is well
described by the plateau value of the instantaneous decay
rate. The plateau value is proportional to the system size,
which is consistent with the numerical observation that a
larger system shows a faster decay. Thus, the autocorre-
lation function for a local operator exhibits a collective
decay due to the operator spreading.
Summary and discussion—We studied the autocorrela-

tion functions for a local operator in the stationary state in
bulk-dissipated quantum many-body systems. In the tran-
sient regime, the correlation exhibits a fast relaxation with a
decay rate much larger than the asymptotic one. We derived
a rigorous upper bound on the autocorrelation function. We
demonstrated that the instantaneous decay rate shows a
plateau over a long time interval (Fig. 1), which explains
the collective decay found in the autocorrelation func-
tion (Fig. 2).
We explained the mechanism of the accelerated decay

from the operator spreading. This mechanism is generic in
quantum many-body systems under weak bulk dissipation.
In recent cold-atom experiments, bulk dissipation has been
introduced in a controlled manner [8]. Ultracold atoms thus
provide an experimental platform to confirm the collective
relaxations predicted in this work. Also this setup is
relevant to the field of quantum computation using noisy
intermediate-scale quantum devices [27].
As a comparison of decay rates indicated by OðNÞ, we

explain the difference with superradiance. Superradiance is
a phenomenon that occurs when N atoms couple with a
common dissipative environment [28]. Therefore, it is
qualitatively different from the accelerated decay in this
work, in which the dissipation independently acts on
each site.
Although this work focuses on one-dimensional sys-

tems, the accelerated decay should also appear in high-
dimensional systems. Namely, the instantaneous decay rate
increases as κAðtÞ ∼ γtd, where d is a spatial dimension in
the acceleration regime, κAðtÞ ∼ γN in the plateau regime,
and κAðtÞ ¼ g in the asymptotic regime. The crossover time
between the plateau regime and the asymptotic regime

should be longer for weaker dissipation. It is a future
problem to study the explicit γ dependence of the crossover
time in two- or three-dimensional systems.
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