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Nonequilibrium phase transitions are notably difficult to analyze because their mechanisms depend on
the system’s dynamics in a complex way due to the lack of time-reversal symmetry. To complicate matters,
the system’s steady-state distribution is unknown in general. Here, the phase diagram of the active Model B
is computed with a deep neural network implementation of the geometric minimum action method
(gMAM). This approach unveils the unconventional reaction paths and nucleation mechanism in
dimensions 1, 2, and 3, by which the system switches between the homogeneous and inhomogeneous
phases in the binodal region. Our main findings are (i) the mean time to escape the phase-separated state is
(exponentially) extensive in the system size L, but it increases nonmonotonically with L in dimension 1;
(ii) the mean time to escape the homogeneous state is always finite, in line with the recent work of Cates
and Nardini [Phys. Rev. Lett. 130, 098203 (2023)]; (iii) at fixed L, the active term increases the stability of
the homogeneous phase, eventually destroying the phase separation in the binodal for large but finite
systems. Our results are particularly relevant for active matter systems in which the number of constituents
hardly goes beyond 107 and where finite-size effects matter.
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Introduction—Activated processes, pervasive in nature,
are intrinsically difficult to probe in simulations since they
require the sampling of rare events [1–4]. When a first-
order phase transition (FOPT) occurs, a nucleation event is
usually required for the system to reach its stable phase
[5–8]. In equilibrium systems, we can exploit the property
of time-reversal symmetry (TRS) and the knowledge of
their equilibrium distribution to derive a free energy from
which we can infer both the thermodynamic stability of
each phase, and the reaction paths that are followed by the
system during activation [9–11]. However, TRS breakdown
in nonequilibrium systems prevents access to the free
energy, necessitating comprehension of activated process
mechanisms through dynamics rather than unknown
steady-state distributions [12–19]. Mapping their phase
diagram thus persists as a challenge.
In this Letter, we tackle this issue within the activeModel

B, a natural nonequilibrium extension of Cahn-Hilliard
dynamics with a nonlinear growth term [20,21] breaking
TRS. This widely studied model has attracted considerable
attention in recent years [22–25], serving as an effective
description, for instance, of active particles undergoing
motility-induced phase separation (MIPS) [26–28]. Here,
we map the phase diagram of the active Model B and
analyze FOPT pathways. Our findings reveal transitions
involving nucleation events markedly different from their

equilibrium counterparts, shaped by the interplay between
noise and nongradient terms in the stochastic system
dynamics. Moreover, in large but finite systems, we
demonstrate that the active term can reduce the probability
of observing phase-separated state nucleation and facilitate
the reverse transition from the phase-separated phase to the
homogeneous state. To obtain these results, we compute
reaction paths using a geometric minimum action method
(gMAM) [29–31] implementation relying on physics-
informed neural networks (PINNs) [32,33]. This neural
implementation, known as deep gMAM [34], is notable as
it can be transferred to study FOPTs in other non-
equilibrium systems. It also gives access to higher dimen-
sional problems not accessible by traditional methods.
Additionally, we cross-check some results of the deep
gMAM algorithm using the traditional gMAM method as a
benchmark.
Problem setting—The active Model B (AMB) character-

izes the stochastic dynamics of a conserved scalar field
ϕðx; tÞ, usually interpreted as the local (relative) density of
particles or the local composition of a mixture. It can be
expressed as the divergence of a noisy flux [5,22,23,35]

∂tϕ ¼ ∇ · ðM∇μþ ξÞ; ð1Þ

μð½ϕ�; xÞ ¼ δF ½ϕ�
δϕðxÞ þ λj∇ϕðxÞj2: ð2Þ
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In this context, F ½ϕ� represents a Ginzburg-Landau
free energy, M is the mobility operator, and ξ is a spatio-
temporal white noise, a Gaussian process with mean zero
and covariance hξðx; tÞξðx0; t0Þi ¼ 2ϵMδðx − x0Þδðt − t0Þ,
where ϵ controls the amplitude of fluctuations. We inves-
tigate Eq. (1) in d ¼ 1 up to d ¼ 3 dimensions, assuming
periodic boundary conditions of the domain Ω ¼ ½0; L�d
with lateral size L. We simplify by considering M ¼ 1 and
F ½ϕ� ¼ R

Ω½12 νð∇ϕÞ2 þ fðϕÞ�dx, where ν > 0 and fðϕÞ
represents a double-well potential. With this choice, there
is a region of the phase diagram where a homogeneous
state, denoted ϕH, coexists with a phase-separated state (or
inhomogeneous state), denoted ϕI [see Fig. 1(a)]. These
states correspond to the two locally stable fixed points of
the noiseless version of Eq. (1), namely, ∇ · ðM∇μÞ ¼ 0
with a prescribed value of the spatial average ϕ0 of ϕ in the
domain.
When λ ¼ 0, μ is the functional derivative of the free

energy F ½ϕ�, and the dynamics is in detailed balance with
respect to the Gibbs-Boltzmann measure, and the stationary
probability of observing a configuration ϕðxÞ is given by
Ps½ϕ� ∝ expð−F ½ϕ�=ϵÞ. In this case, the relative stability of
the phases ϕH and ϕI can be inferred from the values of
F ½ϕH� and F ½ϕI�. Transitions between these states involve
a reaction path passing through a saddle-point configura-
tion on F ½ϕ�.
In contrast, when λ ≠ 0, TRS is broken because μ does

not satisfy the Schwarz condition on its functional deriva-
tive [25,36,37]. Consequently, the stationary distribution of
the system is no longer available. Therefore, F ½ϕ� provides
no information on the relative stability of ϕH and ϕI .
Instead, characterizing their relative stability relies on
dynamics.
Phase transitions and quasipotential—We use Freidlin-

Wentzell large-deviation theory (LDT) to compute tran-
sition rates from ϕH to ϕI and vice versa, along with most
likely paths [12], in the limit as ϵ → 0 (when the system is
either in ϕH or ϕI with probability one, and proper phases
can be defined). Denoting kI;H as the rate to transition from
ϕI to ϕH, it is given by kI;H ≍ exp ð−VϕI

ðϕHÞ=ϵÞ, where
VϕI

ðϕHÞ is the quasipotential of ϕH relative to ϕI , akin to a
potential barrier in Arrhenius’ law. A similar expression
holds for kH;I, the rate from ϕH to ϕI . Assessing the relative
stability of the phases relies on the difference in the
logarithm of the escape rates:

ϵ log kI;H − ϵ log kH;I ≍ −VϕI
ðϕHÞ þ VϕH

ðϕIÞ: ð3Þ

This expression is positive when ϕH is preferred and
negative when ϕI is. The quasipotential values VϕI

ðϕHÞ
and VϕH

ðϕIÞ depend on system control parameters like λ
and ϕ0, thus their difference can switch sign, indicating a
FOPT. This allows for analyzing these transitions by
computing these quasipotentials for various λ and ϕ0

values, as suggested in [38]. These quasipotentials

are obtained as minima of the action functional ST ½ϕ�,
defined as

ST ½ϕ� ¼
Z

T

0

Z

Ω
j∇−1ð∂tϕ −∇2μÞj2dxdt ð4Þ

where Ω denotes the domain. Minimizing action (4) with
respect to both T and ϕ, subject to ϕðt ¼ 0; xÞ ¼ ϕH and
ϕðt ¼ T; xÞ ¼ ϕI yields VϕH

ðϕIÞ, and subject to ϕðt ¼
0; xÞ ¼ ϕI and ϕðt ¼ T; xÞ ¼ ϕH yields VϕI

ðϕHÞ.
Deep gMAM—The key feature of the method, introduced

in Ref. [34], is to replace the field ϕðx; tÞ with an ansatz
satisfying the spatiotemporal boundary conditions and

(a)

(c)

(b)

FIG. 1. (a) Three configurations in d ¼ 1: The solid line
represents the stable inhomogeneous state ϕI , the dashed line
indicates the unstable critical state ϕc;1, and the gray line depicts a
field configuration along the nonequilibrium reaction path from
ϕI to the homogeneous state ϕH (not shown). Parameters:
ϕ0 ¼ 0.65, λ ¼ 2, and L ¼ 120. (b) Phase diagram of active
Model B in parameter space ðλ;ϕ0Þ. It shows the binodal (black
line) and the spinodal (red line) previously computed in Ref. [22].
In finite-size systems, the bistable region does not fully span
between the spinodal and the binodal but stops at the blue line
(shown here for L ¼ 60 and d ¼ 1). Both states ϕH and ϕI are
stable in the shaded region. (c) In the bistable region, the purple
dashed line marks the FOPT between ϕH and ϕI . On this line,
VϕH

ðϕIÞ ¼ VϕI
ðϕHÞ. In region H, ϕH is thermodynamically

preferred, in regions I1, I2, I3, the inhomogeneous state ϕI
is preferred. The index q in Iq indicates the number of bumps
along the reaction path from ϕI to ϕH . Region I3 may display
asymmetric paths with slightly smaller actions than their sym-
metric counterparts.
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involving deep neural networks. The minimization of
Eq. (4) is achieved by a stochastic gradient descent
(SGD) algorithm where space-time collocation points are
randomly drawn at each SGD step. Such procedure is very
often used in problems involving PINNs. The method is
simple to implement, highly flexible, and, importantly, able
to tackle problems in higher dimensions not accessible by
classical approaches. Furthermore, it provides an analytical
parametric approximation of the various fields across the
entire spatiotemporal domain.
In this study, results from the deep gMAM algorithm in

d ¼ 1 were validated against those from classical gMAM
implementation, which discretizes the field in space and
time and is somewhat more intricate. For further details on
both algorithms, especially regarding optimization on T via
reparametrization of the solution using arc-length s instead
of physical time t, we refer to the Supplemental Material
(SM) [39].
Phase diagram in 1D—We focus first on the one-

dimensional system, whose dynamics reads

∂tϕ ¼ −∂2x½∂2xϕþ ϕ − ϕ3 − λð∂xϕÞ2� þ ∂xξ; ð5Þ

with hξðx; tÞξðx0; t0Þi ¼ 2ϵδðt − t0Þδðx − x0Þ. Space has
been rescaled such that all lengths are given in units offfiffiffi
ν

p
. We consider a system of size L and we take periodic

boundary conditions. The relevant parameters are thus L,
the total mass ϕ0 ≡ L−1 R L

0 ϕ dx, and the activity level λ.
The constant density solution of Eq. (5) is the homo-
geneous state ϕH, and since the mass ϕ0 is conserved, we
have ϕH ¼ ϕ0. We restrain the study to the region ϕ0 > 0,
since Eq. (5) is invariant under ðλ;ϕÞ → ð−λ;−ϕÞ. The
homogeneous state ϕH is always a stable fixed point of the
noiseless dynamics for ϕ0 > ϕλ

spþ, where ϕλ
spþ ¼ 1=

ffiffiffi
3

p
is

the frontier of the spinodal in the space ðλ;ϕ0Þ for ϕ0 > 0.
We are interested in the region where ϕH competes with the
inhomogeneous state ϕI . In the infinite system size limit,
this region lies between the spinodal ϕλ

spþ [red line in

Fig. 1(b)] and the binodal curve ϕλ
biþ [black line in

Figs. 1(b) and 1(c)] that yields the bulk densities of each
phase when the system undergoes a phase separation
[22,27]. We will denote by ϕλ

f:o: the transition density
indicating the change of thermodynamic stability of the two
competing metastable states, ϕI and ϕH. Naturally we
have ϕλ

spþ ≤ ϕλ
f:o: ≤ ϕλ

biþ .
First, let us recall that for large but finite systems, the

phase-separated state cannot be the preferred phase if ϕ0 is
taken too close to the binodal density ϕλ

biþ. For instance, in
equilibrium, (i.e., λ ¼ 0) the binodal densities are
ϕλ¼0
bi� ¼ �1 but a free energy argument that compares

interfaces and bulk contributions shows that ϕλ¼0
f:o: con-

verges to 1 as ϕλ¼0
f:o: ∼ 1 − ð1=LÞ1=2. More than that, due to

finite-size effects, ϕI may not exist at all when there is not

enough space in the domain to nucleate the phase sepa-
ration. Hence, one should keep in mind that in a finite
system, say of size L, bistability can only be observed
below some threshold density ϕλ¼0

mþ
L
≤ ϕλ¼0

biþ , represented as

the blue curve in Fig. 1. Nonetheless, we have ϕλ
m�

L
→ ϕλ

bi�

as L → ∞. To pinpoint the FOPT, we run the gMAM
algorithm for ϕ0 ∈ ½ϕλ

sp;ϕλ
mþ

L
� and λ∈ ½−10; 10�. Solving

VϕH
ðϕIÞ ¼ VϕI

ðϕHÞ identifies the FOPT line ϕλ
f:o:, the

purple dashed line in Fig. 1(c), which splits the diagram
into two regions: for ϕ0 < ϕλ

f:o: the thermodynamically
stable state is the inhomogeneous one, ϕI , while for
ϕ0 > ϕλ

f:o: the homogeneous state ϕH ¼ ϕ0 is preferred.
Interestingly, we also find that the binodal and the FOPT
have a reentrance direction along λ that does not exist in the
system of infinite size [see Fig. 1(c)].
Reaction paths in 1D—We consider first the reaction

path starting from the homogeneous state ϕH and reaching
ϕI , and we compute VϕH

ðϕIÞ for different values of λ and
system size L. Interestingly this path is very close to the
heteroclinic orbit joining ϕH to ϕI , and going through the

(a)

(b) (c)

FIG. 2. (a) Minimum action path joining ϕI (at s ¼ 0) to ϕH (at
s ¼ 1) for λ ¼ 2, ϕ0 ¼ 0.65 and L ¼ 44.7 in d ¼ 1 dimension.
The vertical lines pinpoint the states where the norm of the flow is
minimal (and almost zero), corresponding to the states close to
the critical points. The corresponding critical points are displayed
in panel (b). The state at the dashed line lies in the basin of
attraction of the inhomogeneous state, while the state at the solid
line lies on the separatrix between the ϕI and ϕH . The action from
the dashed line to the solid line is strictly positive, while the
action from the solid line to ϕH is zero. (b) Pair of critical states
displaying two bumps, for the same parameters as panel (a). If
L ¼ L⋆

2 , these two states merge in a saddle-node bifurcation.
(c) Threshold lengths L⋆

q ðλÞ indicating the apparition of critical
states with a given number q of bumps as a function of the system
activity λ. Above the critical q line, pairs of critical states with q
bumps are dynamically accessible.
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critical (saddle) state ϕc;1ðxÞ that displays one density
bump [see Fig. 1(a)] and possesses only one unstable
direction. This behavior is very similar to the equilibrium
nucleation scenario occurring in Cahn-Hilliard dynamics,
as already noted in [5]: to escape ϕH, the system only needs
to nucleate a finite size droplet of the opposite phase. The
cost for the action associated to this event is always finite,
and the value of the action does not differ much from the
one computed using the time-reversed relaxational path (a
few percent difference, not shown).
In contrast, the transition from ϕI to ϕH is more complex,

and its analysis had never been explored so far. For ϕ0 > 0,
as λ increases, the reaction path no longer follows the time-
reverse relaxation path that goes through the saddle ϕc;1,
but rather passes close to critical points with a large number
of unstable directions, see Figs. 2(a) and 2(b), as it may
sometimes be observed in nonequilibrium systems [34,38].
Any critical points ϕc can be obtained by solving the
noiseless and stationary version of Eq. (5). It solves
∂
2
xϕc ¼ −ϕc þ ϕ3

c þ λð∂xϕcÞ2 þ μ0, with μ0 a constant,
L−1

R
L
0 ϕcðxÞdx ¼ ϕ0, and ϕc subject to the constraints

of periodicity. A Newton mapping similar to the one
introduced in Ref. [22] enables us to compute precisely
the critical points using a symplectic scheme (see SM). For
given λ and ϕ0, pairs of critical points with q bumps
(q∈N�) appear at critical values of the system size denoted
L⋆
q , reported in Fig. 2(c). The saddle-node bifurcation at L⋆

q

occurs when the system size L is large enough to fit an

additional bump on the density profile. For L ¼ L⋆
q , one

degenerate critical state ϕ⋆
c;q becomes accessible to the

dynamics. As L > L⋆
q , the degeneracy is lifted and two

distinct critical states of q bumps appear. Any of the states
ϕc;q can be decomposed into q identical bumps of size L=q.
In particular, the state with bumps of largest amplitude
strictly lies in the basin of attraction of ϕI , while the other
state lies on the separatrix between ϕI and ϕH. We display
an example of such a pair of critical states for q ¼ 2 in
Fig. 2(b). For all q ≥ 2, the critical states are of Morse
index q ≥ 2. The case q ¼ 1 is special as it corresponds to
the apparition of the inhomogeneous metastable state ϕI ,
jointly with the critical state of Morse index 1, ϕc;1ðxÞ. A
sketch of the structure of the deterministic flow between
critical points is given in the SM. In summary, while the
path from ϕH to ϕI indeed resembles the equilibrium one,
the path from ϕI to ϕH displays spatial microstructures
which are not present in equilibrium. Notably, the number q
of bumps along the instanton changes with L, see Fig. 3,
but also depends on ϕ0 and λ, as indicated by the Iq-labeled
regions in Fig. 1. In the SM, we provide a more detailed
discussion on the paths selection, and we show that the
number of bumps along the path cannot be simply obtained
from a spectral analysis.
Phase transitions in 2D and 3D—The reaction paths are

also computable in higher dimensions using the deep
gMAMalgorithm.We specifically examine transitions from
ϕI to ϕH, having also checked that transitions from ϕH to ϕI

FIG. 3. Minimum action VϕI
ðϕHÞ as a function of the system

size L (top panel), for paths starting at ϕI and reaching ϕH . Here
λ ¼ 2 and ϕ0 ¼ 0.65. The action nonmonotonically increases
because increasing the system size L allows for qualitatively
different reaction paths. The successive branches of the curve
correspond to different types of paths displaying an increasing
number of bumps, see bottom panels. The yellow dots indicate
where branches cross each other. The ð�Þ symbol indicates a
branch on which the path is no longer axisymmetric (see SM).
The vertical dashed lines indicate the critical lengths L⋆

q , also
given in Fig. 2(c).

FIG. 4. Minimum action VϕI
ðϕHÞ as a function of L obtained

using the deep gMAM method, in d ¼ 2 dimensions. The
bottom-right panels show the successive states along the mini-
mum action path joining ϕI to ϕH for L ¼ 44.7, λ ¼ 2,
ϕ0 ¼ 0.65. The ð⋆Þ panel is the same solution in ðs; rÞ coor-
dinates where r is the radial coordinate and s is the arclength
coordinate. Other reaction paths in radial coordinates are shown
for different values of L ¼ 32, 40, 57. They exhibit additional
microstructures as L increases.
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are in line with classic nucleation theory [5] (results not
shown). In d ¼ 2, we investigate the dependence on domain
sizeL, as illustrated in Fig. 4. These transitions display radial
symmetry, with microstructures increasing as L grows. The
system exhibits extensive action values VϕI

ðϕHÞ, scaling as
∼L2. Although the action in Fig. 4 seems monotonic,
rescaling it by L2 reveals a very similar nonmonotonic
behavior as in one dimension (not shown). Evidence
suggests that instantons do not traverse multispike profiles,
which are numerically identified as critical states of the
AMB (see SM and Ref. [45]), as their action values
consistently exceed those of the radially symmetric path.
Additionally, we compute 3D transitions, with one typical
example shown in Fig. 5. These transitions also exhibit
radial symmetry. Notably, there is a significant dimensional
effect: for the same extension L, microstructures have
more room to span as dimension increases. This is antici-
pated due to mass conservation, as the positive mass
concentrate towards the domain’s corners. It is noteworthy
that in dimensions d ≥ 2, characterizing critical states in the
Cahn-Hilliard dynamics is more challenging [45] than in
d ¼ 1 [46], and this question remains open for the AMB.
Overall, comparing to the Arrhenius law for λ ¼ 0 reveals
that the active term substantially reduces the action required
to escape the inhomogeneous state.
Conclusion—We have computed the phase diagram of

the AMB in d ¼ 1, identified various nucleation scenarios
in the binodal, and demonstrated similar instanton phe-
nomenology in d ¼ 2 and 3. By computing the reaction
paths, we identified regions where the homogeneous state
is thermodynamically preferred. The fact that the action
VϕI

ðϕHÞ remains extensive in system size, while VϕH
ðϕIÞ

remains finite, confirms that eventually, the system should
phase separate as L → ∞ when lying in the binodal region.
Our results align with those of Cates and Nardini [5], who
showed that nucleation from the homogeneous state

in AMB for d ≥ 2 is qualitatively similar to classical
nucleation theory in equilibrium. Moreover, a common
feature among all cases is the presence of microstructures
with more complex patterns as the dimension d increases.
These patterns help to significantly decrease the action
required to escape the inhomogeneous state. Our numerical
results were obtained using the deep gMAM approach [34]
and cross-checked in d ¼ 1 by running the classical
gMAM [30]. While the latter algorithm is more accurate,
the discretization scheme adopted for the Cahn-Hilliard
equation becomes numerically prohibitive when d ≥ 2.
The deep gMAM approach does not suffer much from an
increase in the dimension d. Consequently, we were able to
compute transitions for d ¼ 3. Overall, these features make
the proposed method relevant for numerous active matter
systems that may undergo phase separation, and
for field theories displaying metastable states in high
dimension.
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(2016).

[18] T. Grafke, T. Schäfer, and E. Vanden-Eijnden, in Recent
Progress and Modern Challenges in Applied Mathematics,
Modeling and Computational Science, edited by R. Melnik,
R. Makarov, and J. Belair (Springer, New York, New York,
NY, 2017), pp. 17–55.

[19] E. Woillez, Y. Zhao, Y. Kafri, V. Lecomte, and J. Tailleur,
Phys. Rev. Lett. 122, 258001 (2019).

[20] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,
889 (1986).

[21] T. Sun, H. Guo, andM. Grant, Phys. Rev. A 40, 6763 (1989).
[22] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D.

Marenduzzo, and M. E. Cates, Nat. Commun. 5, 4351
(2014).

[23] C. Nardini, E. Fodor, E. Tjhung, F. van Wijland, J. Tailleur,
and M. E. Cates, Phys. Rev. X 7, 021007 (2017).

[24] M. E. Cates, in Lecture Notes of the Les Houches Summer
School: Volume 112, 2018, edited by J. Tailleur, G.
Gompper, C. Marchetti, J. M. Yeomans, and C. Salomon
(Oxford University Press, New York, 2019).

[25] J. O’Byrne, Phys. Rev. E 107, 054105 (2023).
[26] M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter

Phys. 6, 219 (2015).
[27] A. P. Solon, J. Stenhammar, M. E. Cates, Y. Kafri, and J.

Tailleur, New J. Phys. 20, 075001 (2018).
[28] T. Speck, Phys. Rev. E 105, 064601 (2022).

[29] W. E, W. Ren, and E. Vanden-Eijnden, Commun. Pure Appl.
Math. 57, 637 (2004).

[30] E. Vanden-Eijnden and M. Heymann, J. Chem. Phys. 128,
061103 (2008).

[31] M. Heymann and E. Vanden-Eijnden, Phys. Rev. Lett. 100,
140601 (2008).

[32] M. Raissi, P. Perdikaris, and G. E. Karniadakis, J. Comput.
Phys. 378, 686 (2019).

[33] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, Nat. Rev. Phys. 3, 422 (2021).

[34] E. Simonnet, J. Comput. Phys. 491, 112349 (2023).
[35] E. Tjhung, C. Nardini, and M. E. Cates, Phys. Rev. X 8,

031080 (2018).
[36] T. Grafke, M. E. Cates, and E. Vanden-Eijnden, Phys. Rev.

Lett. 119, 188003 (2017).
[37] J. O’Byrne and J. Tailleur, Phys. Rev. Lett. 125, 208003 (2020).
[38] R. Zakine and E. Vanden-Eijnden, Phys. Rev. X 13, 041044

(2023).
[39] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.133.038301, which in-
cludes Refs. [40–44] for additional information on the
algorithms we have used.

[40] D. Donnelly and E. Rogers, Am. J. Phys. 73, 938 (2005).
[41] E. Forest and R. D. Ruth, Physica (Amsterdam) 43D, 105

(1990).
[42] W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66,

052301 (2002).
[43] Z. Liu, W. Cai, and J. Z.-Q. Xu, Commun. Comput. Phys.

28, 1970 (2020).
[44] D. Kingma and J. Ba, arXiv:1412.6980.
[45] P.W.Bates andG. Fusco, J.Differ. Equations 160, 283 (2000).
[46] P. W. Bates and P. C. Fife, SIAM J. Appl. Math. 53, 990

(1993).

PHYSICAL REVIEW LETTERS 133, 038301 (2024)

038301-6

https://doi.org/10.1103/PhysRevLett.69.3691
https://doi.org/10.1103/PhysRevLett.69.3691
https://doi.org/10.1063/1.467139
https://doi.org/10.1063/1.467139
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1007/s00023-016-0507-4
https://doi.org/10.1007/s00023-016-0507-4
https://doi.org/10.1007/s00023-016-0507-4
https://doi.org/10.1103/PhysRevLett.122.258001
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevA.40.6763
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1103/PhysRevX.7.021007
https://doi.org/10.1103/PhysRevE.107.054105
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1088/1367-2630/aaccdd
https://doi.org/10.1103/PhysRevE.105.064601
https://doi.org/10.1002/cpa.20005
https://doi.org/10.1002/cpa.20005
https://doi.org/10.1063/1.2833040
https://doi.org/10.1063/1.2833040
https://doi.org/10.1103/PhysRevLett.100.140601
https://doi.org/10.1103/PhysRevLett.100.140601
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.jcp.2023.112349
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevLett.119.188003
https://doi.org/10.1103/PhysRevLett.119.188003
https://doi.org/10.1103/PhysRevLett.125.208003
https://doi.org/10.1103/PhysRevX.13.041044
https://doi.org/10.1103/PhysRevX.13.041044
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.038301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.038301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.038301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.038301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.038301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.038301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.038301
https://doi.org/10.1119/1.2034523
https://doi.org/10.1016/0167-2789(90)90019-L
https://doi.org/10.1016/0167-2789(90)90019-L
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.4208/cicp.OA-2020-0179
https://doi.org/10.4208/cicp.OA-2020-0179
https://arXiv.org/abs/1412.6980
https://doi.org/10.1006/jdeq.1999.3660
https://doi.org/10.1137/0153049
https://doi.org/10.1137/0153049

