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Strong, scale-free disorder disrupts typical transport properties like the Stokes-Einstein relation and
linear response, leading to anomalous diffusion observed in amorphous materials, glasses, living cells, and
other systems. Our study reveals that the combination of scale-free quenched disorder and geometrical
constraints induces unconventional single-particle mobility behavior. Specifically, in a two-dimensional
channel with width w, under external drive, tighter geometrical constraints (smaller w) enhance mobility.
We derive an explicit form of the response to an external force by utilizing the double-subordination
approach for the quenched trap model. The observed mobility enhancement occurs in the low-temperature
regime where the distribution of localization times is scale-free.

DOI: 10.1103/PhysRevLett.133.037101

Transport in disordered and amorphous materials has
attracted vast attention for many decades [1–10]. The study
of systems’ response to external forces, particularly with an
aim to optimize transport, constitutes an imperative focus
of research [11]. The external force can be a result of an
electric field pulling on an electron through a conductor
[12–14] or a pressure gradient pushing on a molecule
diffusing in a channel [15–18]. The classical depiction of
such dynamics is Drude’s model of current flow in a metal
[19]. It describes, through the application of kinetic theory,
the diffusion of electrons by repeated encounters with
immobile hard scatterers (such as ions or impurities). When
an external electric field is applied, the charge carriers
experience a net drift velocity related to the mean free path
between scattering events. The resulting picture is that the
response to the external force, i.e., carrier mobility, is an
intrinsic property of the medium. Therefore, for transport in
restricted geometry, like a channel, the expectation is that
the mobility will be independent of channel width (or cross
section) or sometimes will increase with channel width due
to the availability of new pathways. In this work, we
explore the mobility properties of transport inside a channel
with the presence of strong and quenched disorder.
Specifically, we aim to demonstrate that quenched and
strong disorder can redefine our understanding of the
dependence of mobility on geometry.
Experiments in amorphous materials [20–24] have

shown that a packet of charge carriers does not propagate
in a Gaussian manner and instead exhibits a dispersion of
carrier transit times. Scher and Montroll [5,25] termed this
phenomenon anomalous transport and suggested that
carriers are affected by deep traps or local areas of arrest.
When the duration τ of such events follows a power-law
distribution, ∼τ−1−α with 0 < α < 1, the transport is

subdiffusive [3]; i.e., the mean squared displacement is
not proportional to time t but grows sublinearly ∼tα.
Subdiffusion was observed in amorphous materials
[20–28], biological cells [6,8,29–33], granular materials
[10,34,35], non-Newtonian fluids [36], and other systems
[37–39]. These power-law distributed waiting times
(∼τ−ð1þαÞ), as detected in various systems [9,36,40–42],
can appear naturally due to the exponential distribution of
the depths of energetic wells that give rise to the regions of
local arrest. The strong disorder (0 < α < 1) results in a
diverging mean trapping time that disrupts regular diffusive
properties and leads to aging, weak ergodicity breaking,
and non-self-averaging [43–48]. Most theoretical studies
address the annealed version of the strong disorder.
Namely, the waiting times in the trapping regions are
uncorrelated, and each time the particle returns to the same
arrest region, it is localized for a different time. Such
framework was termed the continuous time random walk
(CTRW) [3,6,25,49], a very popular model of anomalous
transport. The quenched version with a strong disorder,
termed the quenched trap model (QTM), treats the trapping
times during revisits of the arrest region as correlated. For
the QTM regular techniques and Stokes-Einstein-
Smoluchowski theory do not apply due to strong correla-
tions and memory effects [3,50,51]. Scaling arguments and
renormalization group approach [3,52,53] among other
works [54–58] suggest that, for dimensions d > 2, QTM
behaves qualitatively as CTRW in the subdiffusion regime.
But big differences can be witnessed, as we show.
In this work, we explore the effects of a strong quenched

disorder on particle mobility under the geometrical con-
straint of a channel with width w. By utilizing the recently
developed double-subordination technique [58–62], we
obtain an analytical expression for the mobility and its
dependence on the external driving force f, temperature T,
and width w. For low temperatures, we find that the
mobility is a decreasing function of w. Namely, the
response to an external drive weakens as the channel cross
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section grows. Such a counterintuitive enhancement with
decreasing w appears only when the disorder is quenched
and strong. When one of these requirements is omitted, the
mobility is independent of the channel width.
The quenched trap model—The physical picture behind

QTM is a thermally activated particle jumping between ener-
getic traps.When a particle is in a trap, the average escape time
τ is provided by the Arrhenius law τ ∝ exp ðEr=TÞ, where
Er > 0 is the depth of trap at position r and T is the
temperature. When the distribution of the energetic traps Er
is exponential, ϕðErÞ ¼ expð−Er=TgÞ=Tg, where Tg is the
temperature of the glass transition, the distribution of the
average escape time is [3]

ψðτrÞ ∼ τ
−1−ðT=TgÞ
r A=jΓð−T=TgÞj; ð1Þ

A ¼ jΓð−T=TgÞjT=Tg, and Γð…Þ is the Gamma function.
For T < Tg, the slow power-law decay of ψðτÞ leads to a
diverging mean escape time, when averaged over disorder.
In the following, we set α ¼ T=Tg and focus on the glassy
regime 0 < α < 1, where QTM exhibits aging and non-self-
averaging behavior [50,51,53]. The average escape times τr
serve in QTM as the waiting times. Each time the particle
visits position r, it spends there exactly the same time τr;
hence, the disorder is quenched. In [47], no difference was
found between setting quenched waiting times or setting
quenched average waiting times. The quenched variables
fτrg are positive, independent, identically distributed (i.i.d.)
random variables with probability density function (PDF)
provided byEq. (1).We consider the spatial process between
different positions r as a random hop process on a two-
dimensional square lattice with lattice spacing a taken to be
1 (a.u.). At time t ¼ 0, the particle starts at r ¼ 0 and stays at
this position for the period τ0 before jumping to some
random site r0, where it waits for the period τr0 , and then the
random jumpþ waiting period procedure continues. The
probability of transition (jump) from r to r0 is provided by
pðr0; rÞ. We assume that the lattice is translationally invari-
ant in space; i.e., pðr0; rÞ is a function of r0 − r: pðr0 − rÞ.
The disorder averaged positional PDF of finding the particle
at position r at time t, hPðr; tÞi (h…i represents the averaging
over disorder) is found by utilizing the double-subordination
technique [59,60] that we briefly describe below.
The diffusion front—The effect of correlations imposed

by quenched disorder is appreciated when the measurement
time t is written in terms of the local waiting times τr.
Namely, t ¼ P

r nrτr, where nr is the number of visits to r
up to time t. Although all the different τr are i.i.d., the fnrg
are correlated, like in our case of nearest-neighbor hopping
on a lattice where nr is very similar to the nearest-neighbor
nr0 . By fixing the values of fnrg and averaging over fτrg
(disorder averaging), the t → u Laplace transform is
he−uti ∼ e−ASαu

α
, where

Sα ¼
X
r

ðnrÞα: ð2Þ

The Laplace transform of the one-sided Lévy distribution
lα;A;1ðηÞ is ∼e−Auα , which is also the small u limit of the
Laplace transform of a single τr. Therefore, in the long time
limit (t → ∞), t ∼ S1=αα η, where η is a random variable distri-
buted according to lα;A;1ðηÞ. This connection between t, η, and
fixedSα allowsone toobtain thePDFofSα for fixed t,N tðSαÞ,
by changing variables from η¼t=Sα1=α to Sα¼ðt=ηÞα.
Therefore, N tðSαÞ∼ðt=αÞðSαÞ−1=α−1lα;A;1

�
t=ðSαÞ1=α

�
. The

explicit form of N tðSαÞ allows performing the first what is
commonly called subordination [63] and expresses the
disorder averaged hPðr; tÞi by using Sα as the local time
of the process. Namely, for the conditional probability
PSαðrÞ of finding the particle at position r for a given Sα
(i.e., at “time” Sα), the law of total probability yields

hPðr; tÞi ¼
X
Sα

PSαðrÞN tðSαÞ: ð3Þ

The second subordination is applied to PSαðrÞ. We use the
number of jumps,N, to represent PSαðrÞ in terms ofWNðrÞ,
the probability to find the particle at r after N jumps, and
GSα;rðNÞ, the probability of different values of N for a
prescribed Sα and r. The law of total probability yields
PSαðrÞ ¼

P∞
N¼0WNðrÞGSα;rðNÞ, and then according to

Eq. (3)

hPðr; tÞi ¼
X
Sα

X∞
N¼0

WNðrÞGSαðN; rÞN tðSαÞ: ð4Þ

When t → ∞, also Sα → ∞, and the PDF GSαðN; rÞ con-
verges to δðSα − ΛNÞ (see Ref. [58]), as long as the
probability of eventual return to the origin Q0 is less than
1. The constant Λ depends on Q0 and is provided by

Λ ¼ �ð1 −Q0Þ2=Q0

�
Li−αðQ0Þ; ð5Þ

where LiaðbÞ ¼
P∞

j¼1 b
j=ja is the polylogarithm function

[64].Q0 is computed when the spatial process is treated as a
function of N and will be explicitly found in what follows.
Therefore, for QTM where the spatial process is defined
solely by the jump probabilities pðr0 − rÞ, Eq. (4) yields

hPðr; tÞi ∼
X
N

WNðrÞ
t=Λ1=α

αNð1=αÞ−1 lα;A;1

�
t=Λ1=α

N1=α

�
: ð6Þ

Equation (6), first obtained in [58], presents the disorder
averaged propagator of QTM in terms of the spatial process
on a lattice as a function ofN and a transformation fromN to
t. Two points are in place: (I) The distribution WNðrÞ is
defined by the jump probabilitiespðr0 − rÞ and found by the
standard techniques for a random walk on a lattice [65]. (II)
For Λ ¼ 1, Eq. (6) displays the propagator for the annealed
version of the disorder (CTRW) [3]. Therefore,Λ quantifies
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the difference between quenched and annealed disorder as a
function of Q0 [Eq. (5)] which depends on the geometry
(type of lattice, dimensions, etc.) and any external forces
present in the system. Below, we utilize Eq. (6) and compute
the response to external constant force F acting on a single
particle in a two-dimensional channel of width w. For this
purpose, we first compute the average position along the
longitudinal axis of the channel x̂.
The average displacement—Themotion occurs on a lattice

in a two-dimensional channel and is unrestricted in the x̂
direction. The width of the channel, in the ŷ direction, is w,
which is also thenumber of sites across ŷ (the lattice spacing is
a ¼ 1). Because of the translational invariance of the spatial
process and transition probabilitiespðr − r0Þ, we use periodic
boundary conditions for ŷ. The case of reflecting boundary
conditions will be addressed below. The strength of the force
f, applied only along x̂, is characterized by the dimensionless
parameter F ¼ af=T, where kB is set to 1. The transition
probabilities pðr − r0Þ allow transitions only to the nearest
neighbors on the square lattice. Namely, p→ (p←) is the
probability for a single jump to the right (left) along x̂, andp↑

(p↓) is the probability for a single jump up (down) along ŷ.
The detailed balance condition dictates that p→=p← ¼ eF

and p↑=p↓ ¼ 1. Therefore, due to the normalization con-
ditionp↑ þp↓ þp← þp→ ¼ 1,weobtain thatp→ ¼ BeF=2,
p← ¼ Be−F=2, and p↑ ¼ p↓ ¼ B ¼ 1=½2 coshðF=2Þ þ 2�.
We are interested in the mean position hxðtÞi ¼P

r xhPðr; tÞi. After one single jump, the average displace-
ment along x̂ is p→ − p← ¼ tanhðF=4Þ; therefore, after
N jumps, the average displacement is

P
r xWNðrÞ ¼

N tanhðF=4Þ. Then according to Eq. (6) hxðtÞi ¼P
NN tanhðF=4ÞfNt=½αðΛNÞ1=α�glα;A;1ðt=ðΛNÞ1=αÞ. We

take the limit t → ∞, replace the summation by integration
[3], and use the relation

R∞
0 yqlα;A;1ðyÞdy ¼ Aq=αΓð1 −

q=αÞ=Γð1 − qÞ for q=α < 1 [66] to obtain the average
displacement in x̂:

hxðtÞi ∼ tanhðF=4Þ
AΓ½1þ α�

Q0

ð1 −Q0Þ2Li−αðQ0Þ
tα: ð7Þ

Equation (7) shows that the average displacement is ano-
malous in time ∼tα. Such departure from the Einstein
relation that predicts a linear dependence on time is a direct
consequence of diverging mean waiting times and for the
annealed disorder was termed as the generalized Einstein
relation [67]. To finalize the calculation of hxðtÞi, we find the
explicit form of Q0.
The return probabilityQ0 is computed in terms of fNð0Þ,

the first return probability to the origin after N steps.
Namely, Q0 ¼

P∞
N¼0 fNð0Þ. The probability fNð0Þ deter-

mines the probabilityWNð0Þ, since, according to the renewal
equation [65],WNð0Þ ¼ δN;0 þ

P
N
i¼1 fið0ÞWN−ið0Þ, which

yields for the generating function of the first

return probability f̃zð0Þ ¼
P∞

N¼0 fNð0ÞzN the result
f̃zð0Þ ¼ 1 − 1=W̃zð0Þ, where W̃zð0Þ ¼

P∞
N¼0 WNð0ÞzN .

By noting that Q0 ¼ f̃1ð0Þ, the connection between Q0

and WNð0Þ is finally established [65], namely,
Q0 ¼ 1 − 1=W̃z¼1ð0Þ. Since WNðrÞ is a convolution of N
random variables, i.e., steps, its Fourier transform is the
Nth power of the single-step characteristic function
λðkÞ ¼ eikxp→ þ e−ikxp← þ eikyp↑ þ e−ikyp↓ and, there-
fore, W̃z¼1ð0Þ ¼ ð1=4π2Þ R π

−π
R
π
−πf1=½1 − λðkÞ�gdkxdky.

In Supplemental Material [68], we compute this integral
and show that

Q0¼1−
w=

�
1þcosh

�
F
2

��
P

w−1
m¼0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þcosh

�
F
2

�
−cos

�
2πm
w

��
2−1

q : ð8Þ

When w → ∞, the result in Eq. (8) converges to the known
result [5] for an unbounded two-dimensional square lat-
tice limw→∞Q0 ¼ 1 − 1=

�ð2=πÞK�
4=½1þ coshðF=2Þ�2��,

whereKðkÞ ¼ R π=2
0 dγð1 − ksin2γÞ−1=2 is the complete ellip-

tic integral of the first kind [64].
Equations (7) and (8) present hxðtÞi in a channel of width

w under a constant force F, in the limit of large t. For small
forces, Eq. (7) yields (see Supplemental Material [68])

hxðtÞi ∼ wα−1

AΓ2½1þ α�
�
F
4

�
α

tα; ð9Þ

while 4=F ≫ w=
ffiffiffi
2

p
and w is an integer ≥ 1. Our main

result is immediately apparent from Eq. (9): hxðtÞi unex-
pectedly decays with growing channel width w. The
dependence is wα−1, meaning the motion is faster for
narrow channels than for wide channels. In Fig. 1, we

FIG. 1. The average displacement in the direction of F. hxðtÞi is
growing as channel width w is reduced. Solid lines display the
theoretical prediction [Eq. (7)]. The red dash-dotted line is the
approximation for small F [Eq. (9)]. Symbols are simulation
results averaged over 3 × 106 trajectories, α ¼ 0.3, A ¼ 1, and
t ¼ 1014 (a.u.). The blue dashed line presents the equivalent
annealed disorder (CTRW) system.
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present an excellent agreement between Eq. (8) and
numerical simulations. For small F, the dependence is
simplified to ∼Fα. Namely, the strong disorder and its
quenched nature that impose prolonged correlations make
the usual assumption of linear response inapplicable in the
quasi 2D, as was found previously for 1D QTM
[3,58,59,74]. We note that for the case of strong annealed
disorder (CTRW) the dependence on F (when F → 0) is
linear [59] (see the dashed line in Fig. 1).
To emphasize the mobility enhancement due to the

channel width constraint, we calculate (see Supplemental
Material [68]) the ratio of the hxðtÞi for a given w and the
average displacement for unrestricted 2D motion, hx∞ðtÞi,
i.e., w → ∞. For F → 0, we obtain

hxðtÞi=hx∞ðtÞi ∼ ½ðw=4πÞF ln ð128=F2Þ�α−1; ð10Þ

implying that imposing a geometrical constraint enhances
the transport, and the stronger the constraint (narrower
channel), the larger the enhancement. Note that the loga-
rithmic term in F enters Eq. (10) due to the critical
properties of Q0 in unrestricted 2D (see Ref. [59] and
Supplemental Material [68]). In Fig. 2, we present the
excellent agreement between the analytical results for
hxðtÞi=hx∞ðtÞi and numerical simulations when explored
as a function of F, w, and α. The enhancement associated
with geometrical restriction repeats itself in all the pre-
sented cases and is preserved for smaller times (see
Supplemental Material [68]). Figure 2(a) shows that the
effect disappears: hxðtÞi=hx∞ðtÞi ¼ 1 when the disorder is
not strong (α > 1) or if the disorder is not quenched.
In our derivation, we assumed periodic boundary con-

ditions. In Fig. 2(a), we show that reflecting conditions
produce similar behavior. See Supplemental Material [68]
for additional details.

Equation (9) summarizes the unconventional effect of
strong and quenched disorder. The regular expectation for
hxðtÞi is hxðtÞi ¼ μFt, where μ is the mobility. Strong
disorder modifies the temporal dependence and the regular
Einstein relation. Quenchness breaks linear response and
introduces the nonlinear dependence on F, and here we
have shown that the properties of the mobility μ are
counterintuitive. First of all, the mobility μ for QTM
is anomalous since it cannot be defined as hxðtÞi=tF
but rather as μ ¼ hxðtÞi=tαFα. From Eq. (9), μ ¼
wα−1=4αAΓ2½αþ 1� while α ¼ T=Tg < 1. The mobility
is enhanced as the channel width w decreases. While the
expectation is that additional pathways, which start to
appear with relaxed geometrical constraints, will lead to a
speedup of the transport [75], we observe an opposite
behavior. In the presence of strong and quenched disorder,
stricter geometrical constraints improve mobility.
Mathematical reasons for such counterintuitive enhance-

ment are rooted in the properties of the local time Sα,
transformation constraint Λ, and geometrical dependence
of Q0. The intuition behind the found effect is based on
what is known as the “big jump principle” [76–78]. When
scale-free waiting times [Eq. (1)] are in play, it is not the
accumulation of many events but rather a single maximal
event that governs the overall behavior. In our case, this
dominant event is a single extremely long waiting time that
scales as the total measurement time t, during which the
particle is immobilized. Naturally, when such a single event
is excluded, for example, by replacing the site with a
maximal waiting time by significantly shorter τ, it will lead
to faster transport [79]. Our results suggest that narrowing
the channel width decreases the number of possible sites
the particle will sample during transport and effectively
modifies this single dominant arrest time. This reduction of
the single dominant arrest time means that, on average,

FIG. 2. Enhancement of mobility in a channel of width w [hxðtÞi] with respect to mobility in unrestricted 2D geometry [hx∞ðtÞi], as a
function of external force F (a), width w (b), and α ¼ T=Tg (c). In all panels, Eq. (7) [combined with Eq. (8)] is displayed by solid black
lines, and the symbols are the results of numerical simulations. (a) The red dash-dotted line is the small-F expansion, while the leading
term is provided by Eq. (10) (see Supplemental Material [68] for the full expression). × presents simulation results for reflective
boundary conditions and w ¼ 5 that almost follows the corresponding case with periodic boundary conditions △. The blue dashed line
represents the case when no enhancement was detected: for annealed disorder (CTRW) and QTM with a finite average dwell times
(α > 1). For all cases t ¼ 1014 (a.u.) and except □, α ¼ 0.3. (b) The red dashed line indicates the wα−1 scaling, α ¼ 0.3, and t ¼ 1014

(a.u.). (c) F ¼ 0.1 and tα ¼ 4.2 (a.u.). For all panels, A ¼ 1.
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during time t, the particle will be trapped for a shorter time
in one single position. The saved time will be used to
perform more hops, increasing its average displacement
and enhancing mobility. The quenched nature of the
disorder is a crucial ingredient for this to work. A further
in-depth analysis and experimental research of this phe-
nomenon is warranted. We expect that such enhancement
will be useful to optimize transport in a channel media
relevant for applications in nanotechnology and nano-
medicine [11] and transport in porous media [79]. Our
theory will become useful in systems that change signifi-
cantly slower than the dynamics within them. As this work
shows, the quenched nature of the disorder cannot be
simply neglected. For example, quenched disorder appears
in transport driven by molecular motors on F-actin filament
networks [29], neurons in the brain [80], and other active
systems [81–83] where the escape times from trapping
regions are correlated.
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