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We show that non-Abelian anyons can emerge from an Abelian topologically ordered system subject to
local time-periodic driving. This is illustrated with the toric-code model, as the canonical representative of a
broad class of Abelian topological spin liquids. The Abelian anyons in the toric code include fermionic and
bosonic quasiparticle excitations which see each other as π fluxes; namely, they result in the accumulation
of a π phase if wound around each other. Non-Abelian behavior emerges because the Floquet modulation
can engineer a nontrivial band topology for the fermions, inducing their fractionalization into Floquet-
Majorana modes bound to the bosons. The latter then develop non-Abelian character akin to vortices in
topological superconductors, realizing Ising topological order. Our findings shed light on the non-
equilibrium physics of driven topologically ordered quantum matter and may facilitate the observation of
non-Abelian behavior in engineered quantum systems.
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Quasiparticles with anyon quantum statistics are pre-
dicted to appear as gapped excitations in topologically
ordered (TO) quantum phases of matter, such as fractional
quantum Hall and spin liquids [1,2]. Braiding anyons of
Abelian type can change the many-body wave function by a
phase factor. Braiding non-Abelian anyons, instead, can
induce a unitary transformation in a topologically protected
degenerate ground state, enabling fault-tolerant quantum
computation [1,3,4]. Abelian anyons have been recently
observed and manipulated in various engineered quantum
systems, ranging from ultracold atoms in optical lattices
[5,6] to Rydberg-atom arrays [7] and superconducting
circuits [8,9], and first realizations of non-Abelian TO
states have been reported in trapped ion quantum process-
ors [10]. This progress motivates the study of TO phases
out of equilibrium, such as subject to external control,
which may both provide a stepping stone toward non-
Abelian physics [4,9,11–13] and unveil novel effects, with
examples being radical chiral Floquet phases [14,15] and
fractionalized prethermalization [16].
Here we show that time-periodic driving can effectively

turn an Abelian TO system into a non-Abelian one. We use
as a testbed the paradigmatic toric-code model [3], which is
believed to capture the fundamental low-energy physics of
a large class of Abelian topological spin liquids [2,17]
while remarkably being exactly soluble. This argues for the
broad applicability of our results while enabling a clear
illustration of the desired effect through exact methods.
Abelian anyons in Z2 spin liquids like the toric code
emerge as bosonic and fermionic quasiparticle excitations
which see each other as π fluxes: Winding a fermion around
a boson (and vice versa) results, unusually, in the accu-
mulation of a π phase. We show that a local Floquet
modulation can alter the picture by driving one anyon type,

the fermion, into a superconducting phase with a nontrivial
band topology. This induces the fractionalization of the
fermions into pairs of Majorana modes which bind to the
other anyon type (the boson), realizing non-Abelian Ising
TO [1,4,18]. This is predicted through analytical high-
frequency expansions and verified by numerical computa-
tion of the non-Abelian exchange phases. Our results shed
light on the properties of driven interacting topological
systems and promote the development of protocols to
Floquet-engineer non-Abelian anyons [19,20] from
Abelian phases, further motivated by the recent experi-
mental realizations [7,8,21] and theoretical proposals [22–
25] of toric-code TO in quantum simulators. Comple-
mentary to achievements in the manipulation of individual
TO states [8–10], a Floquet-engineering approach has the
appeal of realizing the background Hamiltonian, which
stabilizes the desired TO states, makes anyons well-defined
quasiparticles [26], and enables the study of dynamics.
The driven model.—The toric-code model [3,27] de-

scribes spin-1=2 systems on the bonds of a square L × L
lattice [Fig. 1(a)] (L even hereafter) with Hamiltonian

Ĥtc ¼ −
g
2

X
v

Âv −
g
2

X
p

B̂p: ð1Þ

The labels p and v denote lattice plaquettes and vertices, g
is a coupling constant, Âv ¼

Q
i∈ v X̂i and B̂p ¼ Q

i∈p Ẑi

are four-spin interactions, and X̂i; Ŷi; Ẑi are Pauli matrices
for the ith spin. When convenient, we will also interpret
p ¼ ðpx; pyÞ and v ¼ ðvx; vyÞ as coordinates of two
separate plaquette and vertex lattices, respectively, both
with lattice vectors x ¼ ð1; 0Þ and y ¼ ð0; 1Þ. All four-spin
operators in (1) commute with each other, making the
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model exactly solvable. The eigenstates can be labeled by
the eigenvalues Av ¼ �1 and Bp ¼ �1 for each vertex and
plaquette. On a torus, since

Q
v Âv ¼

Q
p B̂p ¼ 1, a com-

plete set of observables is obtained by including two
operators Ôx ¼

Q
i∈Λx

X̂i and Ôy ¼
Q

i∈Λy
X̂i spanning

noncontractible loops [Λx and Λy in Fig. 1(a)] and
commuting with all Âv and B̂p. The �1 eigenvalues of
Ôx=y define four superselection sectors, leading to four
degenerate ground states satisfying Av ¼ Bp ¼ 1. Flipping
one eigenvalue, Av ¼ −1 (Bp ¼ −1), costs an excitation
energy g and is interpreted as the creation of a pointlike
quasiparticle e (m) on top of the ground state 1tc, which
occupies the corresponding vertex v (plaquette p). While e
and m are hardcore bosons under self-exchange, they are
mutual semions: The wave function picks up a Peierls-like
π phase when m is wound around e, or vice versa. A bound
state ψ ¼ e ×m, costing an energy μψ ¼ 2g, is then a
fermion, while still being a semion with respect to a
separate e or m. These quasiparticles, including 1tc,
represent the four anyon types in the toric code. They
are Abelian, since their nontrivial fusion has a single
possible outcome: e ×m ¼ ψ , e × ψ ¼ m, m × ψ ¼ e.
We add a drive to Ĥtc to induce ψ-fermion motion and

realize a topological band structure. Non-Abelian character
will emerge from the interplay between the fermion band
topology, achieved through Floquet engineering, and the
semion relation between the ψ and e Abelian anyons,
provided by the underlying toric code. The drive addresses
neighboring spins as

ĤdðtÞ ¼ −
X
p

½dxðtÞX̂p;RẐp;B þ dyðtÞX̂p;TẐp;L�: ð2Þ

The subscripts ðp; jÞ, with j∈ fB;R; T; Lg denote the
spins at the bottom, right, top or left of p, respectively
[Fig. 1(a)]. We expect drives of even simpler structure to
achieve the desired effect, but (2) has the key merit that,
while still being local, it allows for a transparent analytical
treatment and efficient numerical simulation of the time-
dependent system, as we shall see, thus enabling a clear
illustration of the target physics. This is an important
advantage: Investigating the toric code with even static
magnetic-field perturbations generically requires sophisti-
cated methods not directly applicable to the driven case
[28–30]. Two-spin couplings of the form X̂iẐj on adjacent
spins induce ψ tunneling and pairing: They displace a pair
of neighboring e and m composing ψ , as well as create and
annihilate pairs of them. Indeed, since X̂i anticommutes
with B̂p on neighboring plaquettes p and p0 while
commuting with Âv, its action on an eigenstate flips the
eigenvalues Bp and Bp0 , while preserving the jointm-anyon
parity ð−1ÞBpþBp0 . Hence, if an m particle composing a
fermion is present at p, it tunnels to p0 (and vice versa). If
no fermion or a pair is present, the associated pair ofm will
be created or annihilated. An equivalent analysis applies to
e motion on nearby vertices induced by Ẑj. The functions
dxðtÞ and dyðtÞ control processes along the horizontal and
vertical direction, respectively.
Quasiparticle picture.—With the chosen form of the

modulation, the driven model can be mapped exactly to a
problem of driven noninteracting ψ fermions coupled to
static e bosons, which allows us to focus on the impact of
the drive on the ψ anyons. To this end, we adopt the
quasiparticle picture of Ref. [31] (details are given in the
Supplemental Material [32]). The spins’ Hilbert space is
mapped to the tensor product of Fock spaces for e hardcore-
boson and ψ fermion occupations, and of a four-
dimensional Hilbert space reflecting four superselection
sectors. The spin operators map to creation and annihilation
operators of bosons on vertices ðb̂†v; b̂vÞ and of fermions on
plaquettes ðf̂†p; f̂pÞ, with the toric-code ground state j0tci
representing the quasiparticle vacuum. The Hamiltonian

Ĥtc maps to Ĥe þ Ĥð0Þ
eψ with Ĥe ¼ g

P
v b̂

†
vb̂v and

Ĥð0Þ
eψ ¼ 2g

P
p½1 − b̂†vðpÞb̂vðpÞ�f̂†pf̂p, describing quasi-

particles at rest [vðpÞ denotes the vertex to the bottom

left of p]. The drive ĤdðtÞ maps to ĤðdÞ
eψ ðtÞ ¼

−
P

p;r∈ fx;yg drðtÞŜðrÞ
p ðf̂pf̂pþr þ f̂†pf̂pþr þ H:c:Þ, describ-

ing fermion tunneling and pairing but also containing
a coupling to the e bosons through ŜðxÞ

p ¼ 1 and

ŜðyÞ
p ¼ Q

v∈R½vðpÞ�ð−1Þb̂
†
vb̂v . Here, R½vðpÞ� denotes the ver-

tices to the right of the spin shared by the plaquettes p and
pþ y; see Fig. 1(b). This coupling explicitly reproduces the

(a) (b)

(c)

FIG. 1. (a) Toric-code spin lattice. The m anyons live on
plaquettes p (orange), while e anyons live on vertices v (blue),
and their bound state forms a fermion ψ . The operators X̂iẐj

depicted induce fermion tunneling and pairing. Dashed lines
indicate periodic boundaries. (b) Corresponding lattice for ψ
fermions in the quasiparticle mapping, where dx and dy control
fermion tunneling and pairing. Vertical processes include a boson
operator ŜðyÞ

p reproducing the mutual statistics of ψ and e.
(c) Drive-assisted fermion pairing, restoring otherwise off reso-
nant (J ≪ μψ ) processes with rate Δ and phase ϕr.

PHYSICAL REVIEW LETTERS 133, 036601 (2024)

036601-2



semion mutual statistics: ŜðrÞ
p yields the accumulation of π

phasewhen a fermion encircles an e particle. Since the drive
does not induce boson motion, all bosonic terms are
diagonal in the Fock basis jn⃗ei ¼ ðb̂†v1Þn1…ðb̂†vN ÞnN j0tci
describing e occupations. We can then analyze the fermion

Hamiltonian ĤψðtÞ ¼ hn⃗ejĤð0Þ
eψ þ ĤðdÞ

eψ ðtÞjn⃗ei correspond-
ing to a fixed distribution of e particles. The potential
presence of e bosons at vertices fvg is assumed to derive
from preparing the ground state of a slightly modified
Hamiltonian (1) with inverted coupling g → g̃ ¼ −g for
those vertices. The Hamiltonian ĤψðtÞ then reads as

ĤψðtÞ ¼
X
p

�
μψ f̂

†
pf̂p

−
X

r∈fx;yg
drðtÞSðrÞ

p ðf̂pf̂pþrþ f̂†pf̂pþrþH:c:Þ
�
; ð3Þ

where SðrÞ
p ¼ hn⃗ejŜðrÞ

p jn⃗ei. It describes spinless supercon-
ducting fermions coupled, through ŜðrÞ

p , to an effective
gauge flux given by a background distribution of e particles.
For a fixed e-boson distribution, the driven toric code then
maps to a problem of driven noninteracting fermions.
Floquet engineering.—The above ingredients suggest a

potential analogy to topological superconductors [1,38,39],
where non-Abelian anyons emerge as vortices (σ) carrying
Majorana zero modes [40]. The latter result from the
fractionalization of the fermions occurring when their bulk
bands are gapped and topological, as is the case for pairing
in so-called pþ ip symmetry [1]. In the lattice model (3),
this corresponds to a complex-valued pairing coupling
Δrf

†
pf

†
pþr with ðΔx;ΔyÞ ¼ ðΔ; iΔÞ [17]. These so-called

Ising anyons σ, 1is and ψ feature nontrivial fusion rules
σ × σ ¼ 1is þ ψ , ψ × ψ ¼ 1is, ψ × σ ¼ σ [1,4]. The multi-
ple fusion channels for the vortex σ, yielding either the
vacuum 1is or a fermion ψ , qualify them as non-Abelian.
We will show that the driven toric code reproduces
faithfully this physics, with e particles behaving like σ
vortices, for appropriate driving functions that Floquet-
engineer complex fermion pairing.
Since the drive controls the physical spins, rather than

the quasiparticle pairing terms directly, no choice of time-
independent dx and dy in Eq. (2) can achieve the goal.
Indeed, the functions drðtÞ need be real valued, and they
induce tunneling and pairing with equal real rate. We
overcome these limitations employing a periodic modula-
tion drðtÞ ¼ drðtþ TÞ and Floquet engineering [41,42].
The driving functions are chosen as

drðtÞ ¼ J þ 2Δ cosðωtþ ϕrÞ; ð4Þ

with frequency ω ¼ 2π=T and amplitudes J and Δ much
smaller than the fermion chemical potential, J;Δ ≪ μψ .

They only differ in their phase ϕr. Consider first the limit
Δ ¼ 0 in Eq. (4). Since the energy 2μψ required for pair
creation and annihilation is much larger than J, pairing
processes with a real coupling J in (3) are far off resonant
and effectively suppressed, leaving only quasiparticle
tunneling. They are restored via the modulation with
Δ ≠ 0 and a frequency ω quasiresonant with 2μψ
[Fig. 1(c)]. The advantage is that a complex phase can
be attributed to the “photon-assisted” pairing coupling,
depending on the phases ϕr of the drives. We choose
ω ¼ 2ðμψ þ μÞ, allowing for a small detuning 2μ.
Applying Floquet theory [43,44], the stroboscopic dynam-
ics induced by the time-periodic Hamiltonian (3) in steps of
T is captured as ÛðnTÞ ¼ e−iĤFnT by a time-independent
Floquet Hamiltonian ĤF, which can be approximated from
ĤψðtÞ through high-frequency expansions, in the regime
ω ≫ J;Δ; μ considered here [41,42,45–47]. To leading
order in ω−1 and in a frame defined by R̂ðtÞ ¼
exp½−itðω=2ÞPp f̂

†
pf̂p� [32], ĤF is approximated by the

time-averaged Hamiltonian

Ĥavg ¼−
X
p

�
μf̂†pf̂p

þ
X
r¼x;y

SðrÞ
p ðΔeiϕr f̂pf̂pþrþ Jf̂†pf̂pþrþH:c:Þ

�
: ð5Þ

At time T, R̂ðTÞ ¼ ð−1Þ
P

p
f̂†pf̂p reduces to the total

fermion parity, which is a conserved quantity. Since
quasiparticles in the toric code can only be created in
pairs, only even-parity states are physical, and R̂ðTÞ ¼ 1 in
their subspace. The desired pþ ip pairing in Ĥavg is
obtained by choosing a circularlike shaking, with phase
delay ϕy − ϕx ¼ π=2 between horizontal and vertical
modulations. The effective chemical potential μ is con-
trolled by the detuning of the drive from the excitation
energy of a fermion pair in the toric code, and the fermions

are coupled to the e particles via SðrÞ
p .

Floquet-Majorana modes.—We verify that this Floquet
modulation indeed induces topological properties and
yields Floquet-Majorana modes. We study these properties
by numerically computing the Floquet Bogoliubov-
de Gennes (BdG) Hamiltonian ĤF;BdG, defined by
ĤF ¼ ð1=2Þðf̂ †; f̂ ÞĤF;BdGðf̂ ; f̂ †ÞT , as well as its quasie-
nergy spectrum and ground state parity, from the driven
model of Eq. (3) [32]. The topological phase is expected for
jμj < 4J and is characterized by a nonzero Chern number
of the negative-energy fermion band [17,38,39]. Tuning the
frequency ω to this topological region (μ ≃ −2J), in the

absence of e vortices [SðrÞ
p ¼ 1], we find four nearly

degenerate high-frequency “ground” states on a torus,
one in each superselection sector corresponding to periodic
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or antiperiodic boundary conditions in x and y directions
[38]. The topological degeneracy is approached exponen-
tially with increasing system size, as shown in Fig. 2(a),
and only three ground states have even fermion parity and
are thus physical, signaling three Ising-anyon types
e; 1is;ψ . On a cylinder, the quasienergy spectrum exhibits
two edge modes [Fig. 2(b)], indicating the development of
nontrivial topology and a nonzero Chern number.
Introducing a pair of separated e particles on the torus,

approximate Majorana modes at near-zero quasienergy
appear [Fig. 2(c)], which persist until ω is detuned out
of the topological phase, as predicted by the time-averaged
description of Eq. (5). For weak driving the gap remains
open as the amplitude J ¼ Δ increases, indicating that
higher-order terms neglected in (5) do not fundamentally
alter the nature of the phase in this regime. Their impact can
be suppressed exponentially with decreasing J=ω [48,49].
While generic periodically driven systems are expected to
reach “infinite-temperature” at long times due to energy
absorption from the drive [50,51], our model may evade
such heating given that it maps to an integrable fermion
system (and static bosons) [52,53]. We verify in the

Supplemental Material [32] that this is indeed the case
at high frequency, also for large e-particle densities.
Increasing the driving amplitudes beyond the high-
frequency regime, whilemaintaining μ ¼ −2J, the fermions
enter an anomalous Floquet phase [42,54,55]. Here the time-
averaged description of Eq. (5) is no longer valid, but the
system still exhibits Majorana modes, at both quasienergy
zero and �π=T; see Fig. 2(c). This effect, only possible in
driven systems [54,56–63], has been proposed as a means to
realize non-Abelian braiding and quantum computation in
1D Kitaev quantum wires [64–67].
Non-Abelian exchange phases.—We analyze whether the

exchange statistics of two e particles (vortices) in the
fermion topological phase is non-Abelian, as predicted in
the presence of Majorana zero modes [4,40]. Two vortices
are exchanged explicitly in different fusion sectors follow-
ing Levin-Wen’s protocol [4,68,69], sketched in Fig. 2(d),
and Ref. [31]. The protocol computes the difference in the
Berry phase accumulated by moving vortices along two
paths P and P0, sharing the same set of positions but
involving a different order of vortex moves. This guaran-
tees that the resulting phase is only determined by the
exchange statistics [68]. For each intermediate vortex
configuration jn⃗ei i along the paths, we numerically deter-
mine the corresponding even-parity ground state jΦii of the
Floquet-BdG Hamiltonian [32]. The Berry phase accumu-
lated along the path P is computed from the sequence
of ground states as θP ¼ Arg

Q
ði;iþ1Þ∈PhΦiþ1jẐf

iþ1;ijΦii.
Here, Ẑf

iþ1;i is the fermionic part of the quasiparticle
representation of the spin operator Ẑi which converts the
vortex configuration jn⃗ei i into jn⃗eiþ1i by displacing one e
particle. Details about the evaluation of the matrix elements
in θP are given in the Supplemental Material [32]. The
prediction for Ising anyons is that the exchange phase Rσσ

1is
in the 1is fusion sector (where the vortices fuse to the
vacuum) and Rσσ

ψ in the ψ sector (where they fuse to a
fermion ψ) differ by πC=2 for Chern number C, namely
Rσσ
1is

¼ e−iπC=8 and Rσσ
ψ ¼ e3iπC=8 [4]—a signature of their

non-Abelian nature [70]. The two sectors 1is and ψ are
selected by creating the e pair on top of two different
ground states, corresponding to doubly antiperiodic and
doubly periodic fermion boundary conditions, respectively
[31,71]. The counterclockwise exchange phases obtained
are shown in Fig. 2(e), for varying driving amplitude in the
high-frequency regime and for different system size. The
results converge rapidly with the size toward the prediction
for Ising TO with C ¼ 1. We have thus shown that the e
vortices carrying Floquet-Majorana modes, arising in the
driven toric code in the high-frequency regime, behave like
non-Abelian Ising anyons. The stability of the exchange
phases for increasing driving amplitude in this regime
confirms that higher-order corrections to the time-averaged
Hamiltonian do not disrupt the topological phase, as
anticipated. While the direct e exchange probed here is

(a) (b) (c)

(d) (e)

FIG. 2. (a) Splitting between fermion ground states for μ ¼
−2J in different superselection sectors, having energy Eðx;yÞ

GS
[ðx; yÞ denotes the boundary conditions, either periodic (P) or
antiperiodic (A) along x and y] in the high-frequency regime
(J ¼ Δ ¼ 0.1μψ , solid lines and circles) and in the anomalous
phase (J ¼ Δ ¼ 0.15μψ , dashed lines and squares). (b) Floquet-
BdG quasienergies on a Lx × Ly ¼ 20 × 200 cylinder, for
J ¼ Δ ¼ 0.1μψ , and (c) on a ðA; AÞ torus in the presence of
an e pair, for increasing driving amplitude (μ ¼ −2J, L ¼ 24).
The color scale indicates the inverse participation ratio of the
corresponding eigenstate. (d) Paths P and P0 involved in the
vortex-exchange protocol. (e) Vortex exchange phase θP − θP0 in
the 1is (bottom) and ψ (top) sectors at ω ¼ 2ðμψ − 2JÞ, for
different driving amplitudes and system sizes.

PHYSICAL REVIEW LETTERS 133, 036601 (2024)

036601-4



a smoking-gun signature at zero temperature, fermion
fractionalization can be detected at finite temperature,
e.g., in the temperature dependence of Raman scattering
intensities [72].
Conclusion.—We have shown that time-periodic driving

of an Abelian-anyon system can induce non-Abelian
topological order, using Kitaev’s toric code as the para-
digmatic example of a large class of Abelian topological
phases. Our findings suggest a potential path toward non-
Abelian anyons in synthetic quantum systems, where
Abelian phases have been realized [7,8]. The model studied
extends the range of potential candidates exhibiting 2D
Floquet-Majorana physics beyond systems with intrinsic
superconductivity or superfluidity [73,74] and offers a
flexible playground where key parameters such as quasi-
particle motion and pairing processes can be independently
controlled via the drive. The toric code, known to be closely
related to quantum dimer models [75–77], has been
recently shown to describe dimer liquids of Rydberg
excitations constrained by Rydberg blockade [78–80],
where Abelian spin-liquid behavior has been observed
[7]. This represents a promising setup to explore the
ideas presented here, alongside adaptations of Floquet-
engineering protocols for the toric code proposed in
superconducting circuits [23,25].
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