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Solving the Hamiltonian of a system yields the energy dispersion and eigenstates. The geometric phase
of the eigenstates generates many novel effects and potential applications. However, the geometric
properties of the energy dispersion go unheeded. Here, we provide geometric insight into energy dispersion
and introduce a geometric amplitude, namely, the geometric density of states (GDOS) determined by the
Riemann curvature of the constant-energy contour. The geometric amplitude should accompany various
local responses, which are generally formulated by the real-space Green’s function. Under the stationary
phase approximation, the GDOS simplifies the Green’s function into its ultimate form. In particular, the
amplitude factor embodies the spinor phase information of the eigenstates, favoring the extraction of the
spin texture for topological surface states under an in-plane magnetic field through spin-polarized STM
measurements. This work opens a new avenue for exploring the geometric properties of electronic
structures and excavates the unexplored potential of spin-polarized STM measurements to probe the spinor
phase information of eigenstates from their amplitudes.
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Introduction—A quantum system is described by a
Hamiltonian. Solving the Hamiltonian is a prerequisite for
exploring the properties of a systemandgenerating the energy
dispersion and eigenstates that underlie the electronic band
theory for crystallinematerials [1]. In conventional cognition,
energy dispersion controls the physical properties of crystal-
linematerials [2], whereas the eigenstates are not valued until
the accompanying geometric phase is identified [3,4]. The
geometric phase has become an essential component of
modern band structure theory and generates various remark-
able phenomena [5]. However, the geometric properties of
energy dispersion are unexplored.
Macroscopic and global measurements are typically used

to reveal phenomena originating from the geometric phase
[6]. Conversely, local measurements are likely to reflect the
local information of crystalline materials, which is required
for a low-dimensional system [7,8]. There are emergent
nonmagnetic, magnetic, topological two-dimensional (2D)
materials and exotic surface states of three-dimensional
topological insulators and semimetals, their novel physics
and potential applications [9–15] promote the continuously
increasing demand for local information. Recently, two

experiments used scanning tunneling microscopy (STM) to
measure the Friedel oscillation or quasiparticle interference
(QPI) in real space [16] induced by intentionally introduced
single impurity, and then identified the Berry phases of
monolayer and bilayer graphene [17,18]. The two experi-
ments were performed on a multiple-valley system, i.e.,
graphene as the model system without spin-orbit coupling.
However, these are not applicable to a single-valley system,
e.g., the surface states of a three-dimensional topological
insulator (TISS) as the model system with spin-orbit
coupling. The success of the two experiments [17,18]
inspired us to identify electronic information with higher
complexity in local responses.
In this study, we provide geometric insight into the

energy dispersion, and consider the constant-energy con-
tour (CEC) as a geometric entity. The Riemann curvature of
the CEC microscopically determines the density of states
(DOS), which is then called geometric DOS (GDOS).
The GDOS represents a type of geometric amplitude,
unlike the well-known geometric phase [5]. The GDOS
governs the amplitude of the real-space Green’s function
(GF) under the stationary phase approximation and enables
it to attain the ultimate expression in which each factor
corresponds to specific electronic information. The GDOS
should be accompanied by various local responses, which
are generally formulated by the GF. As an example, we
propose characterizing the spin texture of a TISS under an
in-plane magnetic field [19–21] using the spin-polarized
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STM measurements in real space. This study comple-
ments the geometric perspective of the Hamiltonian or
the corresponding electronic structure [cf. Fig. 1(a)].
Therefore, the GDOS is fundamental and powerful to
explore crystalline materials and other periodic systems.
Model—We consider the TISS under an in-plane mag-

netic field. It has recently attracted significant interest
because of its novel effects, such as the planar Hall effect
[19,20,22] and super-resonant transport [21]. The TISS
under an in-plane magnetic field can be described by the
Hamiltonian [19,21,23]

HðkÞ ¼ vFðkxσy − kyσxÞ þ t · k; ð1Þ

where k ¼ ðkx; ky) is the momentum, σx;y are Pauli
matrices for the spin vector σ, vF is the velocity parameter,
and t ¼ ðtx; ty) is the tilt vector induced by the applied in-
plane magnetic filed B [19,21]. The corresponding energy
dispersion and eigenstates are Eη;k ¼ txkx þ tyky þ ηvFk
and juηðkÞi ¼ 1=

ffiffiffi
2

p ½1 ηeiΘk �T, respectively. Here, η ¼ �
for the conductance and valence bands.Θk ¼ argðky − ikxÞ
is the spinor phase of eigenstates, which determines the
orientation of the spin vector because huηðkÞjσjuηðkÞi ¼
ηðcosΘk; sinΘkÞ. The in-plane magnetic field tilts the
Dirac cone of the TISS by comparing the electronic
structures at B ¼ 0 [cf. inset of Fig. 1(b)] and B ≠ 0
[cf. inset of Fig. 1(c)]. In Figs. 1(b) and 1(c), the CECs are
fringed by spin vectors, namely, the spin texture.
Geometric density of states and the ultimate Green’s

function—To characterize the spin texture of the TISS, we
propose the experimental setup shown in Fig. 2(a), i.e.,
probing the QPI in real space induced by the designed

magnetic impurity using spin-polarized STM. The in-plane
magnetic field breaks the time-reversal symmetry of the
TISS and causes the elliptical CEC to lose its inversion
symmetry in the momentum space [cf. Fig. 1(c)]. In
local responses, the spin-velocity locking (but not the
spin-momentum locking) is the contributing mechanism
[cf. Figs. 1(d) and 1(e) for the periodically rotating spin
vectors with the angle θv of the group velocity along the
circular and elliptical CECs] [34]. In Fig. 2(b), the velocity
texture is fringed on the CEC. In particular, the velocity
vector defines a local coordinate system kk − k⊥ through
kk ¼ k · nk and k⊥ ¼ k · n⊥ by using nk ¼ v=jvj and
n⊥ ¼ z × v=jvj (shown in the inset). Here, the group
velocity is v ¼ ∇kEηk. For the CEC, there is a textbook
concept as a shortcut to capture the effective information
from the electronic structure [35], namely, the DOS, which
is defined as ρ0ðεÞ≡ δN=δε [1] with δN being the number
of states in the energy range δε. Analogous to ρ0ðεÞ, we
introduce the microscopic DOS ρðε; θvÞ≡ δN=ðδεδθvÞ.
From the inset of Fig. 2(b), we arrive at

ρðε; θvÞ ¼
1

4π2
δkkδs
δεδθv

¼ 1

4π2vκ
; ð2Þ

FIG. 1. (a) Solving the system Hamiltonian Ĥ yields the energy
dispersion ε and eigenstates ψ (colored by the geometric
perspective). These generate the geometric amplitude and geo-
metric phase, respectively. (b), (c) Schematic circular and
elliptical constant-energy contours (fringed by the spin texture,
black arrows) of the untilted and tilted Dirac cones (insets)
corresponding to the surface states of the topological insulator for
B ¼ 0 and B ≠ 0. Here, B is an in-plane magnetic field. (d),
(e) The spin vectors rotate periodically with the azimuthal angle
θv of the group velocity along the circular and elliptical constant-
energy contours.

FIG. 2. (a) For the surface states (black) on the three-dimen-
sional topological insulator (light blue), a single magnetic
impurity (red dot) at r ¼ 0 is introduced intentionally. The
impurity-induced quasiparticle interference in real space δϱ
(black oscillation waves) can be measured by spin-polarized
scanning tunneling microscopy with the tip at r ≠ 0 (white
triangle), even under an in-plane magnetic field B. The inset
shows the coordinate system with B lying in the x-y plane. (b) A
general elliptical constant-energy contour fringed by the texture
of group velocity v. v defines the unit vectors nk ¼ v=jvj and
n⊥ ¼ z × v=jvj. z is directed away from the plane. The enlarged
inset shows a local coordinate system kk − k⊥ constructed using
kk ¼ k · nk and k⊥ ¼ k · n⊥. (c) The oscillation and the ampli-
tude of δϱ originate from corresponding factors of the Green’s
function G. These are exploited to determine the constant-energy
contour by conventional quasiparticle interference in momentum
space and the spin texture by quasiparticle interference in real
space, as proposed in the main text.
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owing to the magnitude of the group velocity v¼δε=δkk
and the curvature of the CEC κ ¼ δθv=δs with δs being the
curve length of the CEC. ρðε; θvÞ is determined by the
Riemann curvature κ. Therefore, it attains the term GDOS.
There are two implications for Eq. (2). It enables the
straightforward calculation of the GDOS because κ is a
well-known mathematical quantity [23,36] and enables the
direct measurement of κ experimentally.
The GDOS enters the amplitude of the GF as the

theoretical basis for local responses [37]. Under the sta-
tionary phase approximation, the GF arrives at the form [23]

gðε; rÞ ≈ −ieikc·r−iπ=4

ffiffiffiffiffiffiffiffi
2πρ

vcr

s
juðkcÞihuðkcÞj; ð3Þ

where kc ¼ ðkx;c; ky;cÞ is the stationary momentum on the
CEC, and vc ¼ jvcj with vc as the group velocity at kc. For
brevity, a single stationary momentum is considered in
Eq. (3), while the summation over multiple stationary
momenta is generally required [23]. For gðε; rÞ, except
the constant factor −ie−iπ=4

ffiffiffiffiffiffi
2π

p
, each of its factors corre-

sponds to the specific electronic information. It is summa-
rized by four features: (I) The oscillation wavelength of the
GF depends on the Fermi wave vector kc in the exponential
function [37]. (II) The GF decays following the dimension-
determined power rate 1=

ffiffiffi
r

p ¼ 1=rðd−1Þ=2 with d ¼ 2 for
2D systems [38]. (III) The spinor eigenstate juðkcÞi controls
the matrix form of the GF through juðkcÞihuðkcÞj. (IV) The
amplitude is proportional to

ffiffiffiffiffiffiffiffiffiffi
ρ=vc

p
with ρ and vc origi-

nating from the multimode property of 2D systems and the
current normalization of eigenstates, respectively.
Figure 2(c) shows the usefulness of four features of GF.

Experimentally, feature (I) is exploited in the conventional
QPI in the momentum space, which can indirectly char-
acterize the electronic structure [7,39–41]. Our ultimate
physical expression of the real-space GF favors the
straightforward simulation of QPI in real space, deserving
the development of the relevant numerical package in
future work. More importantly, feature (II) of the GF
can be scaled out, leaving features (III) and (IV) into the
amplitude of the QPI in real space which can be exploited
to probe the spinor phase of eigenstates or spin texture
[cf. Fig. 2(c)] as illustrated below.
Characterization of spin texture by spin-polarized

STM—The spin texture of the TISS is extracted using
the standard T-matrix approach [23,42], giving the QPI in
real space characterized by the change of the local DOS
[43,44]:

δϱαβðε; rÞ ¼ −
1

π
ImTr½gðε; rÞTαgðε;−rÞσβ�; ð4Þ

where the T matrix is expressed as

TαðεÞ ¼ Vα½1 − gðε; 0ÞVα�−1; ð5Þ

where Vα represents the magnetic impurity potential. Here,
we use the subscript α∈ f0; x; y; zg with α ¼ 0 and α ≠ 0
for the spin-unpolarized and spin-polarized imperfection
or STM tip, respectively. Thus, δϱαβðε; rÞ provides a
β-resolved QPI induced by an α-resolved imperfection.
The real-space GF is necessary to analyze δϱαβðε; rÞ, which
is generally difficult to derive for the model Hamiltonian
[45] and time-consuming to calculate for the first-principles
electronic structure [46]. However, the ultimate expression
of the GF, i.e., Eq. (3), can be derived conveniently after
the CEC is specified. Utilizing Eq. (3) for the Hamiltonian
in Eq. (1), we first derive the stationary points
kc ¼ ðkx;c; ky;cÞ. To consider the Fermi level in the con-
duction band, the group velocity is v ¼ ðvx; vyÞ with
vx;y ¼ tx;y þ vFkx;y=k. On the stationary points, vkr, so
vy=vx ¼ tan θr which gives the equation for k. Combining
the energy dispersion Eþ;k ¼ ε for the given Fermi level ε,
we obtain

kx;cðθrÞ¼
ε

v2t vm

�
txty sinθrþðv2F− t2yÞcosθr−vmtx

� ð6aÞ

ky;cðθrÞ¼
ε

v2t vm

�
txty cosθrþðv2F− t2xÞsinθr−vmty

�
; ð6bÞ

where vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2F − t2sin2ðϕ − θrÞ

p
with ϕ ¼ argðtx þ ityÞ,

and v2t ¼ ðv2F − t2x − t2yÞ. Then, one can obtain the classic
velocity vcðrÞ and then its magnitude vc ¼ jvcj ¼
t cos ðθr − ϕÞ þ vm. In addition, the curvature of the CEC
corresponding to the energy dispersion is κðθrÞ¼v3m=ðεv2FÞ.
According to Eq. (3), the explicit expression of the GF is

gðε;�rÞ ¼ c�eikc;�r
�

1 e−iΘ�

eiΘ� 1

�
; ð7Þ

where c� ¼ −ie−iπ=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πρ�=ð2vc;�rÞ

p
with ρ� ¼

ð4π2vc;�κ�Þ−1. Here, to account for �r, we define
kc;�¼kx;cðθ�rÞcosθ�rþky;cðθ�rÞsinθ�r, vc;� ¼ vcð�rÞ,
κ� ¼ κðθ�rÞ, and Θ� ¼ Θkc;� . To arrive at the explicit
expression of the GF, the QPI in real space can be derived
conveniently by incorporating amagnetic impurity potential
[23]. To intentionally introduce a single imperfection
[17,18,47], precise STMmeasurements were used to extract
information on the electronic structure of the host system.
To describe the imperfection as a δ-function potential

VαδðrÞ with Vα ¼ Vσα, δϱαβðε; rÞ would have an explicit
form in the Born approximation [42]. In realistic measure-
ments, we anticipate that the introduced magnetic impurity
would have a weak influence on the TISS, making Born
approximation reasonable. To adopt Vα ¼ Vσz, we obtain

δϱz0≈δϱa;z0 sinðkþrÞ; δϱa;z0≡CsinðΘ−−ΘþÞ; ð8aÞ

δϱzx≈δϱa;zx sinðkþrÞ; δϱa;zx≡CðsinΘ−−sinΘþÞ; ð8bÞ
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δϱzy≈δϱa;zy sinðkþrÞ; δϱa;zy≡CðcosΘþ−cosΘ−Þ; ð8cÞ

δϱzz≈δϱa;zz cosðkþrÞ; δϱa;zz≡C−CcosðΘ−−ΘþÞ; ð8dÞ

where C ¼ −ðV=rÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþρ−=ðvc;þvc;−Þ

p
, kþ ¼ kc;þ þ kc;−

and δϱa;zβ is the amplitude of δϱzβ. If one completes the
measurement of the QPI in real space induced by the
designed imperfection, it is convenient to compare with
our theoretical simulations, which help determine the
Hamiltonian parameters of vF and t, and then all physical
quantities through the Hamiltonian, e,g., CEC and the
group velocities vc;�. This direct comparison based on the
QPI in real space profits from Eq. (3) for the ultimate real-
space GF. In particular, the magnetic impurity potential
strength V may first be extracted by performing an identical
STM experiment at zero magnetic field because the
Hamiltonian parameters are known. Unlike the conven-
tional QPI in momentum space [7], the proposed QPI in
real space [cf. Fig. 2(c)] is more intuitive.
The spin texture embodying the spinor phase of eigen-

states is one of the most remarkable properties of the TISS,
which is generally probed by angle-resolved photoemission
spectroscopy (ARPES) [7,48,49]. However, ARPES is
incompatible with magnetic fields [7]. To our knowledge,
spin texture has not been measured experimentally using
STM, although it is compatible with magnetic fields.
Nontrivially, our explicit derivations favor the extraction
of the momentum-resolved spin texture of the TISS under
an in-plane magnetic field from the amplitudes of the QPI
in real space:

C ¼ δϱ2a;zx þ δϱ2a;zy
2δϱa;zz

; ð9aÞ

cosðΘþ − Θ−Þ ¼ 1 −
δϱ2a;zx þ δϱ2a;zy

2C2
; ð9bÞ

cosðΘþ þ Θ−Þ ¼
δϱ2a;zx − δϱ2a;zy
δϱ2a;zx þ δϱ2a;zy

: ð9cÞ

Therefore, the spinor phase information or the spin ori-
entation Θ� of eigenstates on the stationary points kc;� can
be solved. For the TISS, the QPI in real space should first
be given, i.e., δϱzx, δϱzy, and δϱzz, as shown in Figs. 3(a)–
3(c). Along an arbitrary direction, one can extract the
amplitudes δϱa;zx, δϱa;zy, and δϱa;zz [cf. the green lines in
Figs. 3(d)–3(f)], which yields Θ� according to Eq. (9).
Considering different directions, the spin texture, i.e., Θ�
as a function of θv [cf. the black dotted lines in Figs. 4], is
determined by considering different tilt vectors. Note that
we use δϱa;zy ¼ 0 for θr ¼ 0 and δϱa;zx ¼ 0 for θr ¼ π=2
due to the faster 1=r2 decay of δϱzy and δϱzx. When the
numerical extraction is performed, the STM measurement
simultaneously determines Θ� of two states related to each

other through the backscattering event. For the known
Hamiltonian parameters, the eigenstates can be calculated
and then give the exact Θ� [cf. the red solid lines in Fig. 4].
For the TISS, the numerical construction of the spin texture,
i.e., Eq. (9), does not require the input of information from
the Hamiltonian except assuming a spin-1=2 model. As
expected, the black and red lines in Fig. 4 agree well with
each other. For the experiments, the measurable results
should replace Fig. 3, and then Fig. 4 should be obtained
using Eq. (9). The experimental data shown in Fig. 3 may
be imperfect, which can be simulated by incorporating
random numerical points. The difference from the theo-
retical Θ� is rather trivial when considering a 10% random
amplitude perturbation [cf. the green dotted lines in the first
and second columns in Fig. 4] when the tilt is moderately
strong, and it becomes more significant when the tilt is
enhanced [cf. the green dotted lines in the third column in
Fig. 4] as anticipated.

FIG. 3. (a)–(c) The calculated rδρzx, rδρzy, rδρzz. (d)–(f) Along
three directions, θr ¼ 0, π=6, π=2, the amplitudes rδρa;zx, rδρa;zy,
rδρa;zz of rδρzx, rδρzy, rδρzz can be given (green lines). Here,
tx ¼ ty ¼ 0.3vF, V ¼ 3 eV, and ε ¼ 0.15 eV.

FIG. 4. The Θþ [top row, (a)–(c)] and Θ− [bottom row, (d)–(f)]
extracted by utilizing Eq. (9) for the spinor phase of eigenstates or
the spin texture. We use tx ¼ 0.3vF and ty ¼ 0, tx ¼ 0 and
ty ¼ 0.3vF, and tx ¼ 0.3vF and ty ¼ 0.3vF for the first, second,
and third columns, respectively. In each panel, there are three
lines, i.e., the exact Θþ or Θ− from the eigenstates (red solid
lines), and the numerical extraction by using Eq. (9) with random
amplitude perturbation (black dotted lines for 0% and green
dotted lines for 10%). Here, V ¼ 3 eV, and ε ¼ 0.15 eV.
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Our theoretical derivations should be evaluated further.
In particular, κþ ¼ κ− ≡ κ0 for Eq. (1), so Eq. (9a) can also
be used to directly determine the Riemann curvature
because

C ¼ −
V

4π2r
1

κ0vc;þvc;−
; ð10Þ

and vc;� should be provided through the Hamiltonian
construction as discussed previously. This provides a direct
approach to resolving the local curvature of the CECs,
unlike the indirect manner of QPI in momentum space
which needs to obtain the CEC firstly.
Experimental feasibility—According to Fig. 2(c),

the GDOS implies the extraction of the spinor phase of
the eigenstates or the spin texture from the amplitudes
of the spin-polarized STM measurements. This extraction
requires impurity design and/or spin-polarized STM meas-
urement similar to that for characterizing the Berry phase
[17,18]. However, it is more intrinsic because the phase
accumulation of spin vectors (underlying the spin texture)
along a momentum loop yields the Berry phase [50–52].
This originates from the local (global) properties of the
GDOS (Berry phase). In our proposal, both magnetic
impurity and the STM probe should be considered as
the atomic-scale leads. Both of these work in the linear
response regime, i.e., it is appropriate to describe the
magnetic impurity potential in the Born approxima-
tion [42] and the STM tip potential in the Tersoff-
Hamman approximation [53]. If a controllable T matrix
[cf. Eq. (5)] can be realized in an experiment, i.e., the
orthogonal spin information is given as σzβ with β ¼ x, y, z
for the σz-type impurity [cf. Eq. (8)], the proposed method
does not constrain the impurity potential or the STM tip to
be weak. In principle, a single impurity plus an STM probe
is equivalent to two STM probes, so the dual-probe STM
may be an alternative method to realize the proposed
measurement of spin texture [54].
The magnetic doped topological insulator has attracted

wide theoretical and experimental interest owing to its
potential as a quantum anomalous Hall insulator [55,56].
Combined with the rapid experimental advances in spin-
polarized STM technology [57–63], our proposal is likely
to be verified in short term. After the spin texture
measurement is realized experimentally, it is promising
to characterize the Berry curvature [64–68] and even the
quantum geometric tensor [69–73] through spin-poarized
STM measurements.
Conclusions—In this study, we introduced a geometric

amplitude to locally describe the electronic band structure,
namely, the GDOS. The GDOS simplifies the construction
of the real-space GF as the basis for local responses and
makes it attain the ultimate expression with clear physics.
In particular, the amplitude factor of the GF embodies the

spinor phase information of the eigenstates, which is
utilized in QPI in real space to extract the spin texture
of the TISS under an in-plane magnetic field. Therefore, the
proposed GDOS deepens our understanding of electronic
band structures and is indispensable in local responses, and
it should be universal for any periodic system, such as
photonic [74] and phononic crystals [75].
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