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We image local superfluid density in single crystals of Pd-intercalated ErTe3 below the superconducting
critical temperature Tc, well below the onset temperature TCDW of (disordered) charge-density-wave order.
We find no detectable inhomogeneities on micron scales. We observe a rapid increase of the superfluid
density below Tc, deviating from the behavior expected in a conventional Bardeen-Cooper-Schrieffer
superconductor, and show that the temperature dependence is qualitatively consistent with a combination of
quantum and thermal phase fluctuations.
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PdxErTe3 is a model system for quasi-two-dimensional
(2D) superconductivity and for the competition between
charge-density-wave (CDW) and superconducting (SC)
states. The superfluid density characterizes the phase
stiffness of the superconducting order parameter and
determines the London penetration depth λðTÞ. In a
conventional 3D Bardeen-Cooper-Schrieffer (BCS) super-
conductor, the temperature dependence of the normalized
superfluid density nsðTÞ ¼ λ2ð0Þ=λ2ðTÞ is controlled by the
population of thermally excited Bogoliubov quasiparticles,
and can be calculated using the Bogoliubov–de Gennes
equations [1] or the semiclassical model [2]. At low temper-
atures, measurements of nsðTÞ provide information about
the superconducting gap structure ΔðT;kÞ. At temperatures
close to Tc, however, the same theoretical considerations
imply that dnsðTÞ=dTjT→Tc

is not very sensitive to the gap
structure, and changes somewhat but not dramatically in the
strong-coupling and/or dirty limits [3,4].
nsðTÞ may have distinct features in quasi-2D conven-

tional BCS superconductors. When the superconducting
coherence length ξ is larger than the film thickness,
the Berezinskii-Kosterlitz-Thouless (BKT) theory predicts
an anomaly in the superfluid density at the BKT transition
temperature [5–7]. More generally, strong phase fluctua-
tions may suppress Tc and increase dnsðTÞ=dTjT→Tc

[8].
Such anomalies have been observed in various ultrathin
film superconductors, including Y1−xCaxBa2Cu3O7−δ [9],
NbN [10], Pb [11], and a-MoGe [12].
We conducted measurements of the local diamagnetic

susceptibility in PdxErTe3 (0<x<0.06), a quasi-2D lay-
ered bulk superconductor, using scanning superconducting

quantum interference device (SQUID) microscopy (SSM)
with micron-scale spatial resolution. Our results show that
the superfluid density is homogeneous, with no detectable
heterogeneity on micron scales. Additionally, we find non-
BCS-like temperature dependence of the superfluid density
with a steep slope dnsðTÞ=dT near Tc.
Recently, intertwined SC and CDW order has been

observed in Pd-intercalated ErTe3 [13–15]. The pristine
“parent” compound ErTe3 shows two, mutually transverse,
in-plane, unidirectional, incommensurate CDW states [16],
with no SC down to the measured lowest temperature,
100 mK [15]. Pd-intercalation induces disorder in the
crystal lattice, suppressing CDW formation and leading
to a SC ground state (Fig. 1) [14,15]. In crystals with a
Pd concentration near x ¼ 0.05, long-range CDW is not
observed [17]. Scanning tunneling microscopy (STM)
measurements of the tunneling conductance revealed a
homogeneous SC gap at length scales exceeding the
SC coherence length, and showed no direct correlation
between the CDW and SC orders [15]. The anisotropic in-
plane coherence lengths were estimated as ξa ∼ 1500 Å
and ξc ∼ 1000 Å [15].
For this work, bulk single crystals of Pd-intercalated

ErTe3 were grown using the flux method [14]. We made
images with a scanning SQUID susceptometer on cleaved b
planes of PdxErTe3 at temperatures varying from 0.3 to 3 K
in a Bluefors LD dilution refrigerator for samples with
x ¼ 0.003, 0.008, 0.018, 0.023, 0.029, 0.041, 0.054. Our
scanning SQUID susceptometer has a pickup loop that
measures the local magnetic flux Φ in units of the flux
quantum Φ0 [18] while scanning with a pickup-loop-sample
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separation z, which we call the height. The minimum z can
vary slightly between cooldowns and is 800 nm in these
measurements (Supplemental Material [19]). The pickup
loop is paired with a concentric field coil through which we
apply an ac current of jIacj ¼ 1 mA at a frequency of 1 kHz
using an SR830 lock-in amplifier to produce a spatially
varying localized ac magnetic field [18]. The maximum field
applied to the sample surface with 1 mA currents is
numerically estimated as 0.9 Oe in our configuration using
SuperScreen [24], smaller than Hc1 ∼ 2.5 Oe at 0.89Tc in a
sample with x ¼ 0.043 [14]. We measure both quasistatic
flux and the ac magnetic flux Φac, and report the local
ac susceptibility as χ ¼ Φac=jIacj in units of Φ0=A. Note
that the imaginary part of χ did not have any height or
location dependence in our measurements. SSM has been
employed to image inhomogeneous superfluid responses
in unconventional superconductors by detecting the local
ac magnetic susceptibility [25–30]. By measuring the
dependence of the local susceptibility on the scanning
SQUID height, SSM enables estimation of the local
London penetration depth λ [25,30–35].
To investigate the inhomogeneity of superfluid response,

we imaged the local susceptibility at several temperatures.
In all samples over the entire range of Pd concentrations
explored, we observed sharp and apparently homogeneous
transitions from the paramagnetic (PM) phase to the SC
diamagnetic phase with Tc’s in the range Tc ¼ 0.8–2.8 K
[Fig. 2(a)]. The slight variation in the observed para-
magnetic susceptibility above Tc among different Pd
concentrations could represent the variation as a function
of the doping but could also be due to differences in scan
heights.
We analyze the susceptibility images by constructing a

histogram of the number of pixels with a given amplitude of
χ. The histograms show sharp peaks, indicating a relatively
homogeneous sample. The spacing between pixels is

300 nm, and each pixel samples a micron-scale area
determined by the geometry of the pickup loop and
field coil. We choose a Gaussian function of the form
N exp ½−ðχ − βÞ2=2γ2� to fit the peaks in the histogram
(Supplemental Material Fig. S1 [19]). The normalized
susceptibility averaged over the image is hχ̄i≡ βðTÞ=βmin,
where βmin is the most negative value of βðTÞ. For certain
doping levels, βmin does not equal β at the lowest temper-
atures, which can be attributed to noise. The upper limit on
the inhomogeneity of the superfluid response on micron
scales is characterized by the normalized standard deviation
γðTÞ=γðT > TcÞ. Plotting hχ̄i vs T, we see that Tc as a
function of the Pd concentration [Fig. 2(b)] is consistent
with previous measurements based on bulk susceptibility
and STMmeasurements [14,15]. The apparent modest ratio
of paramagnetic to diamagnetic susceptibility in our data
aligns with previous findings [14]. This may stem from
factors such as minimal susceptibility due to long
penetration depths and pronounced paramagnetic sus-
ceptibility from the intrinsic magnetic properties of Er
ions in PdxErTe3. More research is required to clarify

(a)

(b) (c)

FIG. 2. Homogeneous superfluid density on micron scales in
PdxErTe3. (a) Temperature dependence of local susceptibility
images. (b) Normalized average susceptibilities show sharp drops
just below Tc. (c) The standard deviation of the susceptibility
shows only small peaks near Tc, consistent with thermal drift.
Inverted triangles indicate Tc and solid lines are numerical
calculations, including thermal drifting of �5 mK [19].

(ac Susc.)

FIG. 1. Phase diagram of Pd-intercalated ErTe3. TCDW1;2 from
Ref. [14]. Tc determined by bulk ac susceptibility [14] and
STM [15]. Tc obtained in this work (SSM) are plotted as red
squares.
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these effects, which are outside the scope of this study.
The upper limits on the inhomogeneity exhibit small
peaks just below Tc [Fig. 2(c)] and are consistent with
a slight thermal drift during the scan (Supplemental
Material Fig. S2 [19]). Thus, the superfluid response
in PdxErTe3 (x ¼ 0.003–0.054) is consistent with homo-
geneity on a micron scale.
To determine the penetration depth, we measured sus-

ceptibility vs height [Fig. 3(a)]. The susceptibility is para-
magnetic above Tc and diamagnetic below Tc. We fit the
height dependence of the susceptibility [19] to a model that
assumes a circular pickup loop of radius r0 and field coil
of radius r at a height z above the top of a film of thickness t
on a substrate. The film is characterized by a London
penetration depth λ and a paramagnetic permeability μ2. We

estimate the permeability μ2 ¼ 1.03μ0, where μ0 is the
permeability of vacuum, by fitting the height dependence
of the paramagnetic susceptibility above T > Tc to
Supplemental Material Eq. (S4) [19] with fixed parameters
t, r0, r, and free parameter μ2. We then estimate λðTÞ by
fitting susceptibility vs z for each value of T < Tc to
Supplemental Material Eq. (S4) [19] with fixed parameters
t, r0, r, and μ2, a copper substrate permeability μ3 ¼ μ0, and
free parameter λðTÞ.
The penetration depth does not depend strongly on the

temperature at low temperatures [Fig. 3(b)]. We estimate
λðT ¼ 0Þ across the doping series to be in the range of
700–1000 nm, consistent with measurements of an isolated
vortex field (Supplemental Material Fig. S3 [19]). This
penetration depth is a factor of 3.5–5 larger than the only
other estimate of λ in this material of which we are aware,
which was an indirect estimate from the lower critical
magnetic field at T=Tc ∼ 0.7 for an x ¼ 0.043 sample [15].
The error bars shown in the figure include all sources of
errors of which we are aware (Supplemental Material [19]).
Interestingly, we did not observe a significant dependence
of λðT ¼ 0Þ on the Pd-intercalation concentration
[Fig. 3(c)], which indicates that the slight variation in
susceptibility at 0.8 K between different concentrations
of Pd [Fig. 2(a)] is due to differences in scan heights.
In BCS theory, λ2 would be expected to decrease in
proportion to the mean free path [36], so the flat
dependence of λð0Þ on x suggests either that BCS theory
does not apply or that x is not the main determining
factor for the mean free path.
Using the obtained values of λ, we calculate the

normalized superfluid density nsðTÞ ¼ λ2ð0Þ=λ2ðTÞ. Our
results reveal a rapid increase of ns with decreasing
temperature just below Tc and a slower increase at lower
temperatures [Fig. 4(a)]. This temperature dependence
clearly deviates from the expectations of the conventional
weak coupling s-wave model (BCS model).
To investigate whether the anomalous temperature

dependence of ns can be simply attributed to details of
the gap structure or strong-coupling effects, we consider
an anisotropic s-wave model. In this model, the super-
conducting gap is described as ΔðT;kÞ ¼ Δ0ðTÞ × gðkÞ,
where Δ0ðTÞ represents the temperature dependence
of the gap, and gðkÞ its angular variation on the
Fermi surface [37]. The temperature dependence is
approximated by the typical mean-field form Δ0ðTÞ ¼
Δ0ð0Þ tanh½πTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðTc=T − 1Þp

=Δ0ð0Þ�, where Δ0ð0Þ is the
gap magnitude at T ¼ 0 and α is a parameter. For a gap
with anisotropic s-wave symmetry on a 2D cylindrical
Fermi surface, gðϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εsin2ϕ

p
, where ϕ ¼ 0 and π=2

correspond to the a and c axes, respectively, and ε ¼
1 − ½Δcð0Þ=Δað0Þ�2 (assuming that 0 < Δc ≤ Δa). We note
that our model does not determine which axis has a larger
gap amplitude, as we take an angular average for the
normalized superfluid density. The fitting parameters in this

FIG. 3. Local susceptibility vs height provides λðTÞ. (a) Height
dependence of local normalized susceptibility in the x ¼ 0.041
sample is well fitted by numerically calculated curves (solid lines)
using Supplemental Material Eq. (S4) [19] with λðTÞ as a fitting
parameter. The green-color-filled area indicates the distance
between the pickup loop’s center and the sample surface when
the SQUID tip touches the surface [19]. (b) Temperature depend-
ence of the penetration depth obtained from the fitting results of
Fig. 2(a) are plotted with an offset of 200 nm. (c) Estimated
penetration depth at T ¼ 0.
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model are Δ0ð0Þ, ε, and α [19], and the normalized
superfluid density is

niðTÞ ¼ 1 −
1

2πT

Z
2π

0

dϕPiðϕÞ

×
Z

∞

0

dϵ cosh−2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 þ Δ2ðT;ϕÞ
p

2T

�
; ð1Þ

where i ¼ a, c, and Pa ¼ cos2 ϕ, Pc ¼ sin2 ϕ. We find that
our measured normalized superfluid density ns ≃ ðna þ
ncÞ=2 can indeed be well fitted using Eq. (1) (for details
of the fits, see the Supplemental Material [19]) (Fig. 4).
However, the fitted parameter α ∼ 10 is much larger than
known models, such as α ¼ 1 (isotropic s wave) and α ¼ 2
(sþ gwave) [37]. Such a large α induces an extraordinarily
large dΔðTÞ=dTjT→Tc

(Supplemental Material Fig. S5 [19]).
Moreover, the quality of the fit strongly depends on the
value of α rather than the anisotropy ε or the coupling
constant Δ0ð0Þ=kBTc (see Fig. S4 in Supplemental Material
[19]). Thus, our fitting results suggest that the temperature-
dependent superfluid density cannot fit the BCS model.
We next consider fluctuations, which can suppress Tc

and modify the temperature dependence of the superfluid
density. Quasi-2D electronic structures can enhance fluc-
tuations [15,16]. A pure BKT scenario cannot be applied
here, as the sample thicknesses exceed the coherence
length. Classical phase fluctuations alone would destroy
the SC order above Tθ ¼ 7–14 K estimated from formulas
in Ref. [8] using ξ ¼ 100–150 nm and λ ¼ 700–1000 nm.
Notably, this estimated Tθ is close to Tc, suggesting that

such phase fluctuations might significantly contribute to the
determination of Tc. (Note that Fang et al. estimated Tθ as
170 K, much larger than Tc, from λ ¼ 200 nm [15].)
However, superfluid density that is dominated by classical
phase fluctuations would exhibit a linear-T dependence
well below Tc [38], not flattening until quantum effects
become important. Therefore, classical phase fluctuations
alone cannot explain our results.
Quantum phase fluctuations may modify this scenario.

The small value of Tθ and the quasi-2D character of the
electronic structure likely enhance the effectiveness of
these fluctuations, which may be further enhanced [39]
by a degree of randomness of the interlayer Josephson
coupling produced by the Pd intercalation. To determine
whether a combination of quantum and classical phase
fluctuations might account for the observed anomalous T
dependence of the superfluid density, we have studied a
caricature of the problem in terms of the quantum rotor
model on a 2D square lattice governed by the Hamiltonian

H ¼
X
j

n2j
2C

− J
X
hi;ji

cos ðθi − θjÞ; ð2Þ

where nj is the number of Cooper pairs on site j of the
2D lattice and satisfies the commutation relations
½ni; nj� ¼ ½eiθi ; eiθj � ¼ 0 and ½ni; eiθj � ¼ δijeiθj , C is a local
capacitance which plays the role of an effective mass, and J
is a measure of the phase stiffness within a plane. In this
model, it is required that the mean-field critical temperature
TMF be considerably higher than Tc to assume local pairing
over a broader range of T. (This model omits many possibly
significant effects, including long-range Coulomb inter-
actions and dissipation stemming from the existence of
quasiparticle excitations.) For this model, we estimate
the T-dependent superfluid density using the variational
method used in [40] (for details, see the Supplemental
Material [19]). The results for a range of coupling constants
C and J capture some of the salient features of our
experimental findings, as shown in Fig. 5(b), suggesting
that strong quantum phase fluctuations are probably
significant.
Finally, it is worth noting that Tc displays a complex

variation with x as shown in Fig. 1, where Tc initially rises
rapidly with x before approximately “saturating.” The fact
that Tc does not decrease with the disorder at x > 0.02
might be attributed to Anderson’s theorem, but this theorem
does not explain the initial rise relative to zero Pd
concentration [41]. The x dependence of Tc likely reflects
the complex interplay of a variety of factors, including
the competition between CDW formation and supercon-
ductivity, the effects of disorder on the CDW state, and also
the influence of quantum phase fluctuations on the super-
conducting state.

FIG. 4. Comparison of the estimated normalized superfluid
density from Fig. 3(b) to an anisotropic s-wave BCS model.
(a) Superfluid density (dots) and fits (solid lines) offset by 0.5.
(b) Fitted values of α vs x. Values α ≫ 1 are physically unrealistic
for known BCS models. (c) Fitted coupling constant Δ0ð0Þ=kBTc
vs x.
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In summary, we use scanning SQUID susceptometry
to examine, at the microscopic level, the superfluid
response on cleaved surfaces of Pd-intercalated ErTe3.
Our findings reveal that the superfluid response is uni-
form on a micron scale within the Pd-intercalation-
induced superconducting state, consistent with previous
STM measurements. We also observe an unexpectedly
strong (relative to BCS) temperature dependence of the
superfluid density near Tc for all Pd concentrations. To
explain this non-BCS-like temperature-dependent super-
fluid density in PdxErTe3, we employ the quantum rotor
model. Our results suggest that quantum phase fluctua-
tions suppress Tc and determine the functional form of
λðTÞ in PdxErTe3. Moreover, our study highlights the
potential of temperature-dependent superfluid density as
a valuable tool for investigating quantum phase fluctua-
tions in quasi-2D superconductors.
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