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The Atlantic circulation is a key component of the global ocean conveyor that transports heat and
nutrients worldwide. Its likely weakening due to global warming has implications for climate and ecology.
However, the expected changes remain largely uncertain as low-resolution climate models currently in use
do not resolve small scales. Although the large-scale circulation tends to weaken uniformly in both the low-
resolution and our high-resolution climate model version, we find that the small-scale circulation in the
North Atlantic changes abruptly under global warming and exhibits pronounced spatial heterogeneity.
Furthermore, the future Atlantic Ocean circulation in the high-resolution model version expands in
conjunction with a sea ice retreat and strengthening toward the Arctic. Finally, the cutting-edge climate
model indicates sensitive shifts in the eddies and circulation on regional scales for future warming and thus
provides a benchmark for next-generation climate models that can get rid of parametrizations of unresolved
scales.

DOI: 10.1103/PhysRevLett.133.034201

Introduction.—The Atlantic Meridional Overturning
Circulation (AMOC), an important part of the global ocean
conveyor, is projected to slow in the warming 21st century
[1,2], as carbon dioxide emissions continue to increase and
melting of the Greenland ice sheet accelerates [3]. Its
decline would affect the Northern Hemisphere [4] and
decelerate global carbon cycle [5]. Although a collapse of
the large-scale AMOC (large scale means basin scale in this
context) is unlikely in the near future [1,2], the regional
scales are not investigated so far.
The small scales (in this context, ocean eddies and

convection) are also crucial in climate and ecology.
For example, the mesoscale eddies transport considerable
heat [6] and nutrients [7]. Satellite observations have shown
a global acceleration of eddy activity over the course of
altimetry records [8]. Ocean convection, which forms deep
water and transforms the upper limb of AMOC into lower
limb, acts as heat [9] and carbon [10,11] pump. They have
undergone some changes over the last decades [12–14].
Small-scale eddies play an important role in precondition-
ing and restratifying the water column before and after
convection events, influencing the variability of deep water
formation [15]. Simulations using high-resolution ocean
and climate models, as well as measurements in key regions
of the AMOC, indicate that the decline in AMOC over the
past 20 years is primarily the result of weakened deep-water
formation in the subarctic Atlantic [16]. Since the AMOC
characterizes the zonally integrated circulation (Fig. 1), the

small scales might hold the key in understanding its
changes [17–19].
However, projecting these small scales under future

climate is challenging due to the low resolution of climate
models [20]. The subarctic Atlantic, where convection and
the overturning occur, is very rich in eddy activity.
However, eddies are not resolved due to their small spatial
scale. Simulation of convection is generally problematic, in
part because it is modulated by misrepresented small-scale
boundary currents and eddies [21]. In addition, the complex
topography determines the dynamics of boundary currents
and overflows. These small scales are not properly resolved
in the current generation of climate models, so even AMOC
predictions remain largely uncertain [17]. The projected
AMOC collapse has a certain threshold [22,23], but the
small scales could have different thresholds to collapse.
The AMOC collapse is also suggested to be resolution
dependent—the AMOC in higher-resolution model might
be less sensitive to freshwater forcing and driven predomi-
nantly by internal feedbacks [22].
Climate model.—With the development of a high-reso-

lution climate model [24], it is possible to assess how the
AMOC and eddies may change [20]. Here, we use a
cutting-edge high-resolution climate model [24] (herein-
after abbreviated as HR), which has been used for studying
small scales and corresponding regional climate and
ecology in the other ocean basins [25–27] to examine
AMOC and small scales in the subarctic Atlantic under
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global warming. We also use a low-resolution analog
model version [24] to compare results (hereinafter abbre-
viated as LR).
The models used in this study are based on CESM1.3

[28]. HR has a nominal horizontal resolution of 0.1° in the
ocean and sea ice components and 0.25° in the atmosphere
and land components. LR has a nominal horizontal
resolution of 1°, which is consistent with most current
generation climate models [29]. The oceanic eddies are
parametrized in LR [30]. The time period of both versions
is 1950–2100, with 1950–2005 and 2006–2100, respec-
tively, applied with historical forcing and representative
concentration pathway 8.5 forcing (high CO2 emission
scenario) [1,2]. The spin-up time is 250 years, with a
climate forcing fixed to preindustrial (year 1850) condi-
tions. The detailed setup of the models can be found in an
overview paper [24].
Atlantic Meridional Overturning Circulation.—The

AMOC stream function Ψ in the model [31] is defined as

Ψðy; zÞ ¼
Z

z

0

Z
xe

xw

vðx; y; z̃Þdxdz̃;

where xe and xw are the eastern and western boundaries of
the Atlantic basin, v is the meridional velocity. The AMOC
index is defined as the spatial maximum of Ψ at 26 °N.
The AMOC indices are surprisingly consistent between

HR and LR [Fig. 1(a)]. Their magnitude is comparable to
the observation [32] and reconstructions [33,34] of AMOC
at 26 °N. The AMOC indices in both models similarly
decline by ∼8 Sv from 2000 to 2100 CE with the sharpest
decline beginning in ∼2020. The AMOC decline reflected
in the spatial distributions of the trends is somewhat weaker
in HR [Figs. 1(b) and 1(c)]. It is suggested to be modulated
by the resolved processes in HR: the better resolved
Labrador Current limits the offshore transport of freshwater
from Arctic Ocean into the convection region, and thereby
the decline in Labrador Sea overturning is weaker in

HR [35]. The mean states of AMOC show larger
differences [Figs. 1(b) and 1(c) magenta lines]. In HR,
the upper limb of North Atlantic deep water is shallower.
This is attributed to the no longer necessary parametrization
for the Nordic Sea overflows and stronger Antarctica
Bottom Water flow in HR [24]. Although the large-scale
AMOC indices are very similar between the model
versions, the changes in the spatial structure of AMOC
are more evident in the high-resolution model. The AMOC
indices cannot reflect regional-scale changes either
[31,36,37], which is detected in other basins of HR [25,27].
The overturning stream function across sections (MOCσ)

is defined as [38]

MOCσðσ; tÞ ¼
Z

σ

σmin

dσ
Z

se

sw

vðs; σ; tÞds;

where sw and se are the western and eastern boundaries of
the sections, s is the distance coordinate along the sections,
v is the velocity perpendicular to the sections, σ is the
potential density referenced to 0 m. The integral of density
is taken from the surface density (σmin) across all density
surfaces. The maximum of MOCσ at a certain time is
recognized as the magnitude of AMOC at the sections.
The Subpolar North Atlantic Program (OSNAP) sections

[Fig. 2(a)] are designed to observe the western and eastern
overturning in the subarctic Atlantic since 2014 [38]. In
HR, the overturning in the subarctic Atlantic compares
better with the observations, in terms of magnitude and
variability (Fig. 2 in [39], Fig. S1). The detailed analysis is
provided in Supplemental Material [40] (see also
Refs. [41–54] therein). Further north at the Greenland-
Scotland Ridge [GSR; Fig. 2(a)], an overflow parametriza-
tion is not used for HR, in contrast to LR. Here, we see an
increase of AMOC in HR [Fig. 2(b)], which is the opposite
to the decline at 26 °N and OSNAP sections. While in LR,
there is almost no overturning and also no increase
[Fig. 2(c)].

FIG. 1. Atlantic Meridional Overturning Circulation under global warming. (a) Its annual-mean indices in HR (red line) and LR (blue
line). The black, magenta, green lines, respectively, represent AMOC at 26 °N observed by RAPID project (2005–2020) [32], a
reconstruction from the GloSea5 reanalysis (1993–2016) [33], a reconstruction from satellite altimetry and cable measurements (1994–
2012) [34]. (b),(c) Linear decadal trend over 1950–2100 in the stream function of HR (b) and LR (c). The solid magenta contours denote
the long-term mean stream functions.
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This amplification of AMOC suggests that ventilation
and subduction north of the GSR is increasing under global
warming. As sea ice retreats and open-ocean area increases,
air-sea interaction enhances ocean mixing. This leads to an
strengthening of AMOC toward the Arctic, as projected by
climate modeling [48] that indicates sites of convection and
subduction moving northward to the central Arctic with
global warming. Reference [55] also found AMOC
emerges beyond the GSR, which strengthens as the areas
of deep mixing move northward toward the central Arctic
following sea ice retreat. In addition, there is observational
evidence supporting increased mixing and convection as
the sea ice edge retreats [56,57]. Our results in HR support
the hypothesis that the AMOC intensifies toward the Arctic
under global warming.
Following the decline in sea ice, several locations show

weakly increasing trends of march mixed layer depth
(MLD, representing the convection strength [48], definition
written in Supplemental Material) (Fig. S3d [40]). The
convection in the Nordic Sea shows a tipping point at the
year 2000 for both models [Fig. 2(d)]. In HR, the MLD
strongly declines to a minimum of ∼300 m in the 1980s,
and then rising abruptly to 1000 m in 1990s. A similar
decline was observed in the 1980s [58] and recovery in the
1990s [59]. After 2000, it drops to ∼200 m and then
remains stable, indicating that convection has almost
collapsed. In LR, the MLD begins to decline in 2000
and remains ∼400 m since 2020 CE. The variability in HR
is more abrupt and step-wise. Regarding the convection in
the other seas, one can refer to Supplemental Material [40].
To summarize, at the regional scale in the North Atlantic,
HR outperforms LR in simulating local circulations and
shows a completely different response of the AMOC to
global warming. When representing regional ocean circu-
lations, the small scales should be key.
Eddy kinetic energy.—The eddy kinetic energy (EEK)

reflects the strength of eddy activity in the ocean. The eddy
activity is not resolved and parametrized in LR [30]. The
detailed discussion of regional EEK changes in HR is
written in Supplemental Material [40]. The EEK is calcu-
lated based on sea surface height from HR, which will be
referred as η hereinafter. First, the daily surface geostrophic
velocity ðug; vgÞ is calculated as

ug ¼
−g
f

∂η

∂x
; vg ¼

g
f
∂η

∂y
;

where the gravitational acceleration g ¼ 9.81 ms−2,
Coriolis frequency f ¼ 2Ω sinφ with the angular speed
of Earth Ω ¼ 7.292 × 10−5 rad s−1 and latitude φ.
Afterward the perturbation ðu0g; v0gÞ is defined as

u0g ¼ ug − ug; v0g ¼ vg − vg;

where the overbar denotes annual mean. ðu0g; v0gÞ does not
contain interannual variability and is recognized as eddy
velocity [60]. Therefore, the EEK is calculated as

EEK ¼ 1

2
ðu02g þ v02g Þ:

Prominent shifts in the eddy activity, which are key to
regional climate change, occur under the background of a
moderately declining AMOC [Fig. 3(b) and Fig. S2 [40] ].
The enhanced EEK near Fram Strait is related to the
increasing freshwater outflow (due to sea ice retreat) that
increases barotropic instability, as well as the increasing
freshwater presence inshore that increases the horizontal
density gradient and thus baroclinic instability. The eddy
activity causes freshwater spread into the convection region
in the GIN sea and thus its variability could be partly related
to the HR shifts in the convection. Given the lateral
freshwater spread, the EEK decrease as seen in the follow-
ing east greenland current (EGC) could be due to a
decreased velocity and density gradient. This further
leads to a stable (and even increasing) density in the
EGC [Fig. 3(c)] in HR. While in LR, the density decrease
across the GSR section is generally uniform [Fig. 3(d)]. In
HR, the contrast in the west-east density change [Fig. 3(c)]
causes a regional AMOC increase at the GSR section.
Discussion.—Eddies are ubiquitous in the world ocean

and alter seawater properties, ocean circulation, biogeo-
chemical fluxes, and mixed-layer properties [61]. In the
North Atlantic, GIN Sea and Barents Sea, pronounced
mixed layer anomalies and very energetic mesoscale eddies
are observed [62], suggesting a robust relationship between
eddy amplitude and mixed layer variations [15]. In

FIG. 2. Meridional Overturning Circulation in the North Atlantic. (a) The locations of the three sections—OSNAPWest, OSNAP East,
and Greenland-Scotland Ridge (GSR). Color shading denotes the ocean depth. (b),(c) Hovmöller diagram of MOCσ at GSR during
1950–2100 in HR (b) and LR (c). (d) Area-mean March mixed layer depth in the Nordic Sea (averaging areas are shown in Fig. S3 [40]),
smoothed by a 10-year running mean. The vertical dashed line denotes a tipping point.
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addition, eddies near deep convection and boundary cur-
rents cause flattening of steep isopycnals [63], affecting
directly deep-water formation and thus AMOC. Given the
slowing of AMOC and the potential crossing of a tipping
point in the future [64], our study suggests that the feedback
between AMOC and small scales could change in the
future. High-resolution climate modeling provides new
opportunities to study the links between eddies, convection,
and AMOC under climate change.
Although the decrease in the AMOC index under global

warming is basically the same in HR and LR, HR changes
the AMOC structure and eddy activity significantly. In HR,
abrupt shifts in regional circulation and eddy activity are
detected under global warming: the AMOC shows a
strengthening trend at GSR, suggesting enhanced ventila-
tion toward the Arctic, which is only seen in HR.
Convection nearly ceases after 2000 CE in the eastern
subpolar gyre, in contrast to a moderately decreasing
convection in LR. The change in eddy activity indicates
significant spatial heterogeneity: substantial increase
around Fram Strait and decrease in the EGC induce the
AMOC increase at GSR by altering the density distribution.
To summarize, it is likely that the small and regional scales

of AMOC have different tipping points compared to the
general AMOC.
Consequently, the upper-ocean variability and water

mass properties can strongly differ between high and
low resolution [65]. The shifts in the eddy activity imply
an abrupt change in the pattern of horizontal movement of
heat and nutrients under global warming. The resulting
convection shifts imply the transition in the vertical move-
ment of heat and nutrients. Although the AMOC is
uniformly decreasing, the regional redistribution of heat
and nutrients may be transitioning to a different state
because of the small-scale shifts. This can be crucial when
we try to reconstruct large-scale AMOC shifts that have
occurred in the past, based on limited spacial informa-
tion [66].
We conclude that the interplay between convection, eddy

activity, and AMOC is scale dependent, posing a challenge
for the large-scale circulation and mesoscale features in a
warming ocean. In the 1970s, the framework for climate
models was established [67,68], and a prototype climate
model was used to demonstrate that anthropogenic CO2 is
causing global warming [69]. Since then, given the limi-
tation of model resolution, the focus of research has been

FIG. 3. Surface eddy kinetic energy and density distribution in the subarctic Atlantic under global warming. (a),(b) Mean (a) and linear
decadal trend (b) of EEK over 1950–2100 in HR. FRAM and EGC, respectively represent East Greenland Current and Fram Strait. (c),(d)
Linear decadal trend over 1950–2100 of density at the GSR section in HR (c) and LR (d).
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on large-scale climate pattern that are externally driven.
With the developing computing capacities, it is time to
“think big and model small” [18], to understand the meso-
scale changes which can hold a key for surprises [70].
Regional high-resolution climate models like Med-
CORDEX aiming at Mediterranean climate [71] have
shown series of impacts from model resolution and
resolved processes on regional climate. Incorporating the
interplay of small-scale processes is key to assess the large-
scale ocean evolution, but also requires direct observations
at critical locations. On the other hand, the observed decline
in AMOC at 26 °N over the past two decades [72,73] is now
placed in the context of actual small-scale shifts that cannot
be simply inferred from the AMOC decline at a certain
latitude.

The data that support the findings of this study are
available upon request.
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[59] S. Ronski and G. Budéus, Time series of winter convection
in the Greenland Sea, J. Geophys. Res. 110, C04015 (2005).

[60] J. K. Rieck, C. W. Böning, and K. Getzlaff, The nature of
eddy kinetic energy in the Labrador Sea: Different types of
mesoscale eddies, their temporal variability, and impact on
deep convection, J. Phys. Oceanogr. 49, 2075 (2019).

[61] D. B. Chelton, M. G. Schlax, and R. M. Samelson,
Global observations of nonlinear mesoscale eddies, Progr.
Oceanogr. 91, 167 (2011).

[62] P. Gaube, D. J. McGillicuddy Jr, and A. J. Moulin, Meso-
scale eddies modulate mixed layer depth globally, Geophys.
Res. Lett. 46, 1505 (2019).

[63] J. Chanut, B. Barnier, W. Large, L. Debreu, T. Penduff, J. M.
Molines, and P. Mathiot, Mesoscale eddies in the Labrador
Sea and their contribution to convection and restratification,
J. Phys. Oceanogr. 38, 1617 (2008).

[64] N. Wunderling, R. Winkelmann, J. Rockström, S. Loriani,
D. I. Armstrong McKay, P. D. Ritchie, B. Sakschewski, and
J. F. Donges, Global warming overshoots increase risks of
climate tipping cascades in a network model, Nat. Clim.
Change 13, 75 (2023).

[65] C. Danek, P. Scholz, and G. Lohmann, Effects of high
resolution and spinup time on modeled North Atlantic
circulation, J. Phys. Oceanogr. 49, 1159 (2019).

[66] L. G. Henry, J. F. McManus, W. B. Curry, N. L. Roberts,
A. M. Piotrowski, and L. D. Keigwin, North Atlantic Ocean
circulation and abrupt climate change during the last
glaciation, Science 353, 470 (2016).

[67] S. Manabe and R. T. Wetherald, The effects of doubling the
CO2 concentration on the climate of a general circulation
model, J. Atmos. Sci. 32, 3 (1975).

[68] K. Hasselmann, Stochastic climate models part I. Theory,
Tellus 28, 473 (1976).

[69] K. Hasselmann, Optimal fingerprints for the detection of
time-dependent climate change, J. Clim. 6, 1957
(1993).

[70] F. Colleoni, L. De Santis, C. S. Siddoway, A. Bergamasco,
N. R. Golledge, G. Lohmann, S. Passchier, and M. J.
Siegert, Spatio-temporal variability of processes across
antarctic ice-bed–ocean interfaces, Nat. Commun. 9, 1
(2018).

[71] P. M. Ruti et al., Med-cordex initiative for mediterranean
climate studies, Bull. Am. Meteorol. Soc. 97, 1187
(2016).

[72] D. A. Smeed, G. D. McCarthy, S. A. Cunningham, E.
Frajka-Williams, D. Rayner, W. Johns, C. S. Meinen,
M. O. Baringer, B. I. Moat, A. Duchez et al., Observed
decline of the Atlantic meridional overturning circulation
2004–2012, Ocean Sci. 10, 29 (2014).

[73] M. Srokosz and H. Bryden, Observing the Atlantic meridio-
nal overturning circulation yields a decade of inevitable
surprises, Science 348, 1255575 (2015).

PHYSICAL REVIEW LETTERS 133, 034201 (2024)

034201-7

https://doi.org/10.1038/s41598-020-74345-w
https://doi.org/10.1038/s41586-018-0006-5
https://doi.org/10.1038/ncomms14055
https://doi.org/10.1038/ncomms14055
https://doi.org/10.1029/2000JC000683
https://doi.org/10.1029/92JC01195
https://doi.org/10.5670/oceanog.2022.122
https://doi.org/10.1175/JCLI-D-21-0152.1
https://doi.org/10.1175/JCLI-D-21-0152.1
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1038/s41467-021-27641-6
https://doi.org/10.1038/s41467-021-27641-6
https://doi.org/10.1126/science.251.4997.1054
https://doi.org/10.1029/2004JC002318
https://doi.org/10.1175/JPO-D-18-0243.1
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1029/2018GL080006
https://doi.org/10.1029/2018GL080006
https://doi.org/10.1175/2008JPO3485.1
https://doi.org/10.1038/s41558-022-01545-9
https://doi.org/10.1038/s41558-022-01545-9
https://doi.org/10.1175/JPO-D-18-0141.1
https://doi.org/10.1126/science.aaf5529
https://doi.org/10.1175/1520-0469(1975)032%3C0003:TEODTC%3E2.0.CO;2
https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/10.1175/1520-0442(1993)006%3C1957:OFFTDO%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006%3C1957:OFFTDO%3E2.0.CO;2
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1175/BAMS-D-14-00176.1
https://doi.org/10.1175/BAMS-D-14-00176.1
https://doi.org/10.5194/os-10-29-2014
https://doi.org/10.1126/science.1255575

