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We investigate interfacial instability in a lifting Hele-Shaw cell by experiments and theory. We
characterize the unexplored transition from stable to unstable patterns under a wide range of controlling
parameters. Surprisingly, we find that the perturbation growth rate-based criterion for the onset of
instability from linear stability theory is too strict by over 3 orders of magnitude. To reconcile this striking
discrepancy, we propose a new criterion based on perturbation amplitude, which is in excellent agreement
with the experimental results. We further show that the fingering pattern evolves to produce a hierarchical
fluid structure and derive a theoretical equation to predict the fingering evolution.
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The displacement of one fluid by another immiscible,
less viscous fluid is a ubiquitous process, often featuring
interfacial instabilities and forming intriguing patterns [1–
5]. This process occurs widely in biological structures,
geophysical processes, and industrial applications and can
become rather complex when the confining space is
undergoing deformation, especially in cell growth [6,7],
pulmonary airway closure and reopening [8,9], oil and gas
extraction [10,11], and adhesive interlayer debonding
[12,13]. Hence, it is of scientific significance and techno-
logical importance to understand and control pattern for-
mation in deformation-driven interfacial flows.
Interfacial patterns in the classical Hele-Shaw-type

experiments are often studied with a focus on the onset
of instability characterized by finger-shaped interface
propagation. Many strategies have been proposed to sup-
press the interface stability, including tilting geometry [14–
16], elastic membrane boundary [17–19], time-dependent
flow rate [20–22], and time-dependent flow geometry [23].
Of particular interest is the lifting Hele-Shaw setup (where
the top plate is lifted with a constant velocity) due to its
relevance to applications in adhesion strength problems
[12,24–27]. The lifting configuration has been studied for
both Newtonian [12,13,24,28–31] and non-Newtonian
fluids [25–27,32–35]. For Bingham fluids, the competition
of viscous and yield stresses dictates the stability, and an
energy-based criterion was recently shown to explain the
stability transition [35]. For Newtonian fluids, the interface
instability is typically assessed through linear stability
analysis by inspecting the perturbation growth rate Λ or
perturbation amplitude ζ [14,22,29,36]; for systems with

constant Λ, the criterion Λ < 0 guarantees interfacial
stability. It is commonly believed that stable patterns are
practically not attainable for Newtonian fluids in lifting
Hele-Shaw configurations [35], and, thus, most of the
previous studies focus only on characterizing the unstable
pattern by analyzing the number of viscous fingers [12,13].
However, Λ can vary with time t and even change sign,
which renders the description based on constant Λ invalid.
The experimental transition between stable and unstable
patterns in lifting Hele-Shaw cells remains unexplored.
In this Letter, we address the stability problem in lifting

Hele-Shaw cells through a comprehensive set of carefully
controlled experiments [Fig. 1(a)] and theoretical analysis.
We experimentally capture the transition from macroscop-
ically stable to unstable interfacial patterns for Newtonian
fluids. In contrast to the common belief, macroscopically
stable patterns are observed in a wide range of experimental
parameters, even when the system has a positive Λ.
Through theoretical calculations of spatiotemporal dynam-
ics of Λ and ζ, we elucidate the mechanism of pattern
transition. For flow configurations with a time-evolving Λ,
the interfacial stability is better characterized by the
perturbation amplitude. We further propose a new ampli-
tude-based criterion to predict the onset of instability.
Moreover, we provide a simple analytical expression,
which accurately predicts the evolution of finger numbers
for the unstable patterns. This work lays a solid foundation
for controlling interfacial morphologies in a confined
geometry which undergoes large deformation or expansion.
We develop an experimental protocol of interface

dynamics in a lifting Hele-Shaw cell where the top plate
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is lifted by a precise stepper motor at a constant velocity
[37]. We systematically vary the initial gap b0 (0.2–
0.6 mm), the lift velocity vL (0.1–8 mm=s), the fluid
viscosity μ (50, 100, and 200 mPa · s), and the flow cell
size R0 (25, 30, and 40 mm). Silicone oil (density ρ ¼
0.963 g=cm3 and interfacial tension σ ¼ 21 mN=m with
air) is used as the fluid between the gap. The static contact
angle of the fluid on the quartz plates tested by a drop shape
analyzer (Krüss, DSA25) approaches 0°.
We first establish an experimental pattern diagram

(Fig. 1) in the phase space of b0 and vL. Additional results
under other experimental parameters are presented in [37].
The stable patterns are characterized by nearly circular
interface during lifting. In the unstable patterns, a variety of
features emerge, ranging from wiggly interfaces to promi-
nent fingering and to treelike fluid structures. The interface
in the unstable case experiences at early times a finger
growth stage and at late times a decay stage due to
considerable stretch of fluid in the gap direction [Fig. 1(b)].
We mainly focus on the first stage in this work. Generally,
unstable patterns emerge under high lift velocities, small
initial gaps, and high fluid viscosities. In this circumstance,
the interface perturbations with large growth rates develop
into viscous fingers of air, extending in the radial direction,
leading to increasing interface perimeter length LP. In
contrast, for the stable patterns the amplitude of interface

perturbations does not grow into macroscopically observ-
able sizes, and the evolution of perimeter length coin-
cides with the circumference of a shrinking circle; i.e., LP

decreases with time as LP ¼ 2πR0½b0=bðtÞ�1=2 according to
fluid mass conservation, RðtÞ2bðtÞ ¼ R2

0b0, where RðtÞ is
the equivalent interface radius (Fig. S1 [37]).
The transition between stable and unstable patterns is

evident. Based on visual inspection, the boundary between
the two regimes is delineated [Fig. 1(c)]. For example,
when b0 ¼ 0.5 mm, the interface shifts from a smooth
circle to noticeable wiggles as vL increases from 0.5 to
1.0 mm=s. The perimeter length and interfacial curvature
are further used as quantitative metrics of instability. For
convenience, we define the normalized perimeter length
ΓðtÞ ¼ LPðtÞ=2πRðtÞ and the normalized interfacial cur-
vature κ�ðtÞ ¼ κðtÞRðtÞ, where the interfacial curvature κðtÞ
is obtained by using an image-based algorithm [11].
Undoubtedly, Γ and κ�ðtÞ being 1 at all times means an
absolutely stable interface. Unless otherwise specified,
κ�ðtÞ is the minimum of curvature along the interface,
which generally refers to the maximum fluctuation (finger-
ing tip) in an experiment. Just above the transition, e.g.,
when vL ¼ 1 mm=s and b0 ¼ 0.5 mm, the maximum of
ΓðtÞ, Γmax ¼ 1.02, and the minimum of κ�ðtÞ, κ�ðtÞmin ¼
−5.47. In this case, the perturbation growth toward the
liquid interior exceeds the original interfacial curvature of

FIG. 1. (a) Schematic of experimental apparatus. (b) Evolution of interface for a stable pattern (upper row) and a typical unstable
pattern (bottom row), marked in (c) by green squares. (c) Fluid morphologies for different initial gap b0 and lift velocity vL. The blue line
separates the stable and unstable patterns. The images are taken at times corresponding to b=b0 ¼ 2 for the stable patterns and the
maximal extent of fingering hierarchical structure (b=b0 ¼ 1.9 − 2.3) for the unstable patterns, respectively.
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the system, and the interface manifests itself as an unstable
morphology. Additionally, statistical results of κ�ðtÞmin are
summarized in Fig. S3 [37], which shows that κ�ðtÞmin is
less than zero in the unstable patterns. Thus, the condition
of κ�ðtÞmin ¼ 0 reasonably well divides the patterns in
terms of stability.
Previous studies have shown that a modified capillary

number 1=τ0 is an important parameter governing fingering
characteristics [28,29]; 1=τ0 ¼ 12μvLR3

0=σb
3
0, proportional

to the product of the capillary number Ca� ¼ μvr=σ and the
square of aspect ratio q0 ¼ R0=b0 with vr ¼ vLR0=2b0
being the radial velocity of equivalent interface. Here, we
show that 1=τ0 also controls the stability transition, as
characterized by the maximum perimeter length Γmax,
which is a global measure of interface morphology. As
shown in Fig. 2(a), Γmax stays close to 1 until 1=τ0 reaches a
critical value 1=τexp0;c ¼ 1.40 × 104, beyond which Γmax

starts to rise sharply. We further plot all experimental
observations in a phase diagram in the parameter space of
Ca� and q0 [Fig. 2(b)], where the theoretical prediction,
close to 1=τexp0;c , indeed separates the two regimes. It is
worth pointing out that previous experimental studies
[12,13,28,29] explored only the unstable regime.
Additionally, cavitation as studied in Refs. [38–41] was
not observed in our experiments.
We adopt the linear stability theory based on the gap-

averaged flow equations to probe the interface evolution
and instability mechanism. The perturbed interface evolves

in the linear regime by an azimuthal Fourier mode with
wave number n: Rðθ; t0Þ ¼ Rðt0Þ½1þP

ζ�nðt0Þ expðinθÞ�,
where t0 ¼ vLt=b0 ¼ b=b0 − 1 is the dimensionless time;
the individual dimensionless perturbation amplitudes ζ�nðt0Þ
and the corresponding growth rate Λðn; t0Þ are calculated
as [37]

ζ�nðt0Þ ¼
ζnð0Þ
Rðt0Þ exp

�Z
t0

0

Λðn; t0Þdt0
�
; ð1Þ

Λðn; t0Þ ¼ 1

sðn; t0Þ
�

1

2ð1þ t0Þ ½jnj − sðn; t0Þ�

−
π

4
τ0ð1þ t0Þ7=2jnjðn2 − 1Þ

�
; ð2Þ

respectively, where ζnð0Þ is the initial interfacial (noise)
amplitude at t0 ¼ 0; sðn; t0Þ is associated with the contri-
bution of the viscous normal stress arising from radial velo-
city gradients [29,36], sðn; t0Þ ¼ 1þ δð1þ t0Þ3ðn2 − jnjÞ=
6q20, and δ ¼ 1 (δ ¼ 0) when the normal stress is (not)
considered.
We further examine the criterion to predict the onset of

interface instability. Equation (2) indicates that Λ decreases
with t0. The finger decay stage of the unstable patterns at the
later time proves this point, because the fluid viscous stress
decays fast: fvis ∼ 12μvrR=b2 ¼ 6μvLR2

0b0=ðb0 þ vLtÞ4.
Thus, the maximum of the perturbation growth rate occurs
at t0 ¼ 0; i.e., one needs only to check if Λðn; 0Þ < 0,
which results in the absolute stability threshold 1=τ0;c ¼ 3π
[42]. We confirm by numerical computation that the inter-
face is indeed stable for 1=τ0;c < 3π [Fig. 2(c)]. Surpri-
singly, this threshold is several orders of magnitude smaller
than the experimentally observed 1=τexp0;c . The onset of fin-
gering occurs at much larger values of 1=τ0 [Fig. 2(c)]; for
example, even when 1=τ0 ¼ 7.31 × 103 (vL ¼ 0.5 mm=s
and b0 ¼ 0.5 mm) with positive Λðn; 0Þ, the interface
maintains macroscopically smooth at all times without
apparent fingers.
This remarkably large discrepancy suggests that the

growth rate-based stability criterion fails to predict the
pattern transition. To reconcile this issue, we employ
the linear stability theory to probe the spatiotemporal
dynamics of growth rate and amplitude of perturbation.
We compute the interface evolution with an initial pertur-
bation which has a random noise amplitude ζnð0Þ and an
n-dependent random phase angle [29,43]. ζnð0Þ can be
reasonably assumed to obey an exponential distribution:
ζnð0Þ ¼ kζR0 expð−aζnÞ, where kζ is a coefficient mainly
controlled by the cell roughness and aζ is a wave number
coefficient reflecting the response of perturbations with
different wave numbers. By comparing with experimental
results of interfacial patterns and finger growth statistics, we
set kζ ¼ 1.9 × 10−4 and aζ ¼ 0.1, which are justified by
the experimental conditions (more details and parameter

FIG. 2. (a) Maximum of normalized interfacial perimeter Γmax
as a function of 1=τ0. (b) Phase diagram of interface stability in
the space of capillary number Ca� and aspect ratio q0. The filled
and open symbols denote the stable and unstable patterns,
respectively, and the corresponding experimental images are
listed in Fig. S2 [37]. Experimental data from Ref. [13] are also
included. The blue dashed line represents the theoretical pre-
diction 1=τ0;c ¼ 1.35 × 104 through Eq. (4), separating the stable
from the unstable regime. (c) Interfacial morphologies at different
values of 1=τ0. The image for 1=τ0 < 3π is obtained by numeri-
cally computed interface evolution. The other images represent
the experimental cases circled in (b).
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sensitivity analysis in [37]). Figures 3(a) and 3(b) show that
the simulated interfacial shapes and perimeter lengths are
consistent with the experimental observations for the mac-
roscopically stable and the fingering patterns. Thus, the
linear stability theory is effective in calculation of the growth
and amplitude of perturbation, especially at the early stage.
At the later stage with highly developed fingering patterns,
the predicted interfacial morphologies deviate slightly from
that of the experiments.
We further show the growth and amplitude of perturba-

tion for the macroscopically stable case in Figs. 3(c)–3(e)
and for an unstable case in Figs. 3(f)–3(h), which is solved
by using Eqs. (1) and (2). The growth rate of perturbation
Λðn; t0Þ for a small wave number decreases from positive
values to negative values with time t0, which causes the
perturbation amplitude ζ�nðt0Þ to increase first and then
decrease. The variation of perturbation amplitude is con-
sistent with the experimental observation of the growth and
decay of fingering [Fig. 1(b)]. Additionally, comparison
between Figs. 3(c) and 3(f) shows that the perturbations of
the unstable case have larger growth rates with a longer

positive duration than the macroscopically stable case.
Thus, perturbations of large amplitude for a broad range
of wave numbers exist in the unstable case, resulting in
large observable fingers. The simulated maximum finger
length normalized by the equivalent radius, Lf=R, is
consistent with the experiments [Figs. 3(e) and 3(h)].
The inward-growing fingers of air leads to negative local
interfacial curvature at the fingering tip. Hence, one can
link the occurrence of instability to the condition of
minimum local in-plane curvature along the interface being
equal to 0. To simplify the derivation of the criterion, here
we consider the contribution of the maximum amplitude
component (with wave number N) of perturbation to the
minimum local in-plane curvature and establish a new
perturbation amplitude-based criterion according to the
curvature formula κ� ¼ 1 − ζ� − ∂

2ζ�=∂θ2 normalized by
1=R [1]:

κ�minðζ�NÞ ¼ min
θ

�
1 − ζ�Ne

iNθ − ζ�N
∂
2eiNθ

∂θ2

�
¼ 0: ð3Þ

The minimum value κ�minðζ�NÞ corresponds to the con-
dition expðiNθÞ ¼ −1, and Eq. (3) can be simplified as
ðN2 − 1Þζ�N ¼ 1, whereN is the wave number of maximum
perturbation amplitude component, e.g., gray lines in
Figs. 3(d) and 3(g). When ignoring the viscous normal stress
(δ ¼ 0), substituting Eqs. (1) and (2) into ðN2 − 1Þζ�N ¼ 1

can give a semianalytical equation, from which the critical
value 1=τ0;c can be solved:

ðN2 − 1Þkζð1þ t0cÞ1=2 exp
�
−aζN þ lnð1þ t0cÞ

2
ðN − 1Þ

−
π

18
τ0;c½ð1þ t0cÞ9=2 − 1�ðN3 − NÞ

�
¼ 1; ð4Þ

where t0c is the time satisfying d½ðN2 − 1Þζ�N �=dt0 ¼ 0 [37].
Building upon the wavelength selection by maximizing the
amplitude [∂ζ�nðt0Þ=∂n ¼ 0] in previouswork [29] and further
simplifying for the condition δ ¼ 0, we derive a simplified
analytical equation to determine the maximum-amplitude
wave number N:

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
1þ 9½lnð1þ t0Þ − 2aζ�

πτ0½ð1þ t0Þ9=2 − 1�
�s
: ð5Þ

By substituting Eq. (5) into Eq. (4), one can iteratively
solve the set of equations to obtain a critical value of
1=τ0;c ¼ 1.35 × 104, which closely matches the experi-
mental threshold 1=τexp0;c ¼ 1.40 × 104. This excellent
agreement further confirms the validity of the new criterion
based on perturbation amplitude.
Focusing on the fingering morphology, we further probe

the hierarchical structure and evolution of the interfacial

FIG. 3. (a) Comparison of interfacial evolution (the lines
corresponding to times at t0 ¼ 0, 0.5, 1, 2, and 4) between
experimental observations and theoretical calculations. The
symbols represent the experimental conditions listed in (b).
(b) Evolution of interfacial perimeter length Γ in representative
experiments and simulations. (c)–(e) Maps of perturbation
growth rate Λðn; t0Þ and perturbation amplitude ζ�nðt0Þ and
evolution of normalized maximum finger length Lf=R for vL ¼
1 mm=s and b0 ¼ 0.4 mm. (f)–(h) The same as (c)–(e) but for
vL ¼ 0.1 mm=s and b0 ¼ 0.21 mm. The dashed lines in (c) and
(f) denote Λ ¼ 0, and the gray lines in (d) and (g) represent the
maximum of ζ�nðt0Þ.
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patterns. The hierarchical structure originates from the
competition during the growth of multiple fingers.
Limited by the geometric space, few fingers continue to
grow and eventually develop into dominant fingers, which
inhibits the growth of adjacent fingers and gives rise to a
dendritic liquid structure [insets in Fig. 4(a)]. We examine
the relationship between the hierarchical levels of the
structure and the corresponding number of fingers when
the number of hierarchical levels H reaches the maximum
in each experiment. Interestingly, the number of fingers NH

f

is largest at the intermediate hierarchy levels for the highly
developed fingering patterns [Fig. 4(a)]. This can be
explained by the combined effects of space restriction
(which means only a few dominant fingers are allowed at
low order and, thus, set an upper limit of finger size) and
capillary smoothening (which sets a lower limit).
Furthermore, for the unstable cases, the maximum order
number Hmax increases roughly linearly with logð1=τ0Þ
[Fig. 4(b)], indicating that the interface evolution is indeed
controlled by the parameter 1=τ0.
The derived analytical expression for the maximum-

amplitude wave number N is also used to predict the finger
number Nf. According to Eq. (5), a dimensionless char-
acteristic time can be defined as tζ¼τ0½ð1þt0Þ9=2−1�=
½lnð1þt0Þ−2aζ�, and Nf¼½1=3ð1þ9=πtζÞ�1=2. Figure 4(c)
shows that the variations of Nf with tζ for all experiments
well collapse and are well predicted. Note that the viscous
normal stress, arising from radial velocity gradients, is

ignored in order to derive the analytical expressions
[Eqs. (4) and (5)]. Nevertheless, the solutions demonstrate
sufficient accuracy for predicting the onset of instability
and number of fingers. The relative impact of normal stress
is further discussed in [37]. Additionally, this work does not
consider the rheological effects due to interface laden with
surfactants, particles, proteins, etc., which may contribute
to enhancing interfacial destabilization [31].
In summary, we present a systematic study of the inter-

facial stability in gap expansion-driven flow. Surprisingly,
we discover that macroscopically stable interfaces, previ-
ously considered unattainable practically, can be obtained
for a wide range of initial gaps and gap expansion rates. We
demonstrate that a modified capillary number 1=τ0 governs
the stability transition. The perturbation growth rate-based
criterion fails to predict the experimentally observed
transition from stable to unstable patterns, which occurs
at the threshold 1=τ0 ¼ 1.40 × 104. We propose a new
criterion based on perturbation amplitude and minimum in-
plane curvature to predict the onset of instability, which is
in excellent agreement with the experimental results. We
further show that the fingering pattern evolves to yield a
hierarchical liquid structure and derive a new, simple
analytical expression which captures the evolution charac-
teristics of fingering. These results pave the way for
controlling interfacial stability and fingering morphology
evolution, which are significant in a plethora of natural
processes and industrial applications. For instance, the
established threshold of stability can provide us with
suitable parametric combinations of fluid properties and
expansion rates for achieving interface stability while
impeding fingering growth, which can be tailored, e.g.,
to optimize adhesive performance and to improve flow
efficiencies in hydrofractures for oil and gas recovery.
Additionally, the formation and characteristics of dendritic
fingering structures may shed light on the hierarchical
branching process of bronchial tree [13] and alveolar
epithelial cell differentiation during lung development
[44]. Furthermore, this work can also provide critical
insights for the applications of amplitude-based criterion
in other flow configurations, e.g., by adjusting the pertur-
bation amplitude equations (1) and (2) to derive the
matching criterion. Further investigations need to address
the impacts of fluid rheology, interfacial tension, wettabil-
ity, surface roughness, and geometrical configuration.
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FIG. 4. (a) Finger number Nf for each hierarchical level H for
three cases. The insets show a representative image and the
corresponding schematic of hierarchy. (b) Variation of the
maximum number of hierarchical levels Hmax with 1=τ0. (c) Data
collapse of Nf with the dimensionless characteristic time tζ . The
pink line represents theoretical prediction.

PHYSICAL REVIEW LETTERS 133, 034003 (2024)

034003-5



*Contact author: zbyang@whu.edu.cn
†Contact author: csyfchen@whu.edu.cn

[1] L. Paterson, Radial fingering in a Hele Shaw cell, J. Fluid
Mech. 113, 513 (1981).

[2] S. Li, J. S. Lowengrub, J. Fontana, and P. Palffy-Muhoray,
Control of viscous fingering patterns in a radial Hele-Shaw
cell, Phys. Rev. Lett. 102, 174501 (2009).

[3] B. Sandnes, E. Flekkøy, H. Knudsen, K. Måløy, and
H. See, Patterns and flow in frictional fluid dynamics,
Nat. Commun. 2, 288 (2011).
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