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Purifying Photon Indistinguishability through Quantum Interference
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Indistinguishability between photons is a key requirement for scalable photonic quantum technologies.
We experimentally demonstrate that partly distinguishable single photons can be purified to reach near-
unity indistinguishability by the process of quantum interference with ancillary photons followed by
heralded detection of a subset of them. We report on the indistinguishability of the purified photons by
interfering two purified photons and show improvements in the photon indistinguishability of 2.774(3)% in
the low-noise regime, and as high as 10.2(5)% in the high-noise regime.
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The generation of pure single photons is a fundamental
requirement for emergent technologies in photonic quan-
tum communication and quantum information processing
[1-3]. Deterministic single-photon sources utilizing two-
level emitters offer a pathway for on-demand photon
generation in multiphoton applications. They have been
realized in various platforms, such as color centers in
diamonds [4,5], organic molecules [6], trapped atoms [7],
and quantum dots [8]. One of the key requirements for
photon sources is the capability to generate highly indis-
tinguishable photons [9] in order to realize multiphoton
interference—a core process in photonic quantum tech-
nologies [10]. Epitaxially grown quantum dots (QD)
can generate highly indistinguishable photons due to the
ability to precisely engineer their semiconductor environ-
ment [11-13], and have recently enabled quantum inter-
ference experiments with an increasing number of photons
[14—18]. Nonetheless, partial distinguishability remains a
central noise mechanism that can pose challenges in the
development of emitter-based photonic systems at the scale
required in practical applications [19].

In solid-state quantum emitters, photon distinguishabil-
ity arises from either fast (compared to the photon lifetime)
physical processes such as pure dephasing due to inter-
actions with phonons in the environment [see Fig. 1(a)],
and slow processes (i.e., slower than the photon lifetime)
such as spectral diffusion due to interactions with charges
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and polarization drifts [11,20]. The standard approach to
mitigating such noise contributions has so far been to
reduce the temperature in order to reduce the number of
phonons, develop ultra-low-noise chip devices with very
low electrical noise, and to reduce the emission lifetime (via
the Purcell effect) in order to reduce the interaction time
with the acoustic phonon modes [20]. Recent works
have proposed a different mitigation strategy by using
linear optical circuits and ancillary photons to purify single
photons once they have been emitted [21,22]. Purification
is a well-known concept in quantum information process-
ing; it consists of consuming multiple copies of noisy
quantum states to obtain a single output state where the
noise is suppressed [23]. Its applications include the
purification of entanglement [23,24] and of “magic states”
for universal fault-tolerant quantum computation [25].
Sparrow and Marshall have adapted this concept to purify
single indistinguishable photons by processing multiple
partially distinguishable and unentangled photons through
quantum interference in linear-optical circuits [21,22].

In this work, we report the experimental demonstration
of linear-optical purification of photon indistinguishability.
We use a solid-state QD as a quantum emitter and tune
both the fast and slow contributions in order to control
the partial distinguishability of the emitted photons. The
generated photons are subsequently processed with a
fiber-based linear-optical interferometer to purify single

© 2024 American Physical Society
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FIG. 1. Purification schemes. (a) Dephasing processes in
quantum dots add distinguishability to the emitted photons.
(b) Linear-optical circuits, based on cascaded Hong-Ou-
Mandel-type quantum interferometers, for purifying indistin-
guishable photons considered in this work for n = 2 photons
(top) and an arbitrary photon number n = N (bottom).
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indistinguishable photons. The indistinguishability of the
purified photons is analyzed by simultaneously implement-
ing two copies of the purification circuit and performing
quantum interference between the purified output photons.
By tuning the noise contributions in the QD system, we test
the purification protocol both where the dominant distin-
guishability contributions are fast processes, as well as
cases where slow noises are dominant. In all cases, the
results show significant improvement of the indistinguish-
ability of the purified photons compared to the initial ones,
showing the strong potential of this approach for devel-
oping ultra-low-noise photonic quantum technologies.
Indistinguishability purification circuits.—The protocols
we experimentally investigate exploit the difference in the
statistics of indistinguishable and distinguishable photons
interfering on a beam splitter to amplify the indistinguish-
able components of the quantum state. In particular, we
implement the linear-optical purification circuits schema-
tized in Fig. 1(b), which was originally proposed by
Sparrow [21] and further refined by Marshall [22]. It works
as follows: according to the Hong-Ou-Mandel (HOM)
effect, indistinguishable photons bunch when interfering
on a balanced beam splitter (BS), while distinguishable
photons only do so half of the time [26]. Therefore by
heralding on the absence of the detection of a photon in one
output port of the beam splitter (indicating that there are

two bunched photons in the other mode), the amplitude of
the indistinguishable component of the photons state is thus
enhanced as the distinguishable part is less likely to provide
such a measurement event. A purified single photon can
subsequently be extracted from the two bunched photons in
a heralded manner by probabilistically splitting them with
an additional BS and detecting a single photon in one of the
output arms. This constitutes the n = 2 case illustrated in
Fig. 1(b), where two photons are used to create an output
photon with improved indistinguishability. The method can
be generalized by repeated HOM interferences followed by
zero-photon detection in order to further purify the indis-
tinguishable component of the state, as also illustrated in
Fig. 1(b) corresponding to the case where N single photons
are applied. In this scheme, the improvement comes at the
expense of a reduced success probability according to [21]

n—1)! n?
Pocoess = (2211 ) : ? (1)

i=2 !

The success probability is 25% for the n = 2 case and
decreases exponentially for higher n.

This decrease can be mitigated by changing the reflec-
tivity of the final beam splitter, and further optimized by
using different interferometers with different heralding
patterns [22]. Moreover, because the detection also pro-
vides a heralding of success, multiplexing techniques can
then be used to turn the heralded probabilistic process into
near deterministic [27].

Experimental setup.—A schematic of the full experi-
mental setup, which implements two copies of the n = 2
purification circuits and performs quantum interference
between the two purified outputs, is shown in Fig. 2.
Deterministic single-photon generation is achieved from a
neutral exciton of an InAs QD embedded in photonic
crystal waveguide (PCW), detailed in the bottom left inset
of Fig. 2. The QD is pumped resonantly with a pulsed laser,
spectrally shaped with a home-built folded 4-f system, to
set a bandwidth of ~90 pm and match the QD wavelength
A =938.4 nm. Electrical tuning of the QD, facilitated by
low-noise electrical contacts, stabilizes the charge state,
ensuring emission on the desired transition and minimizing
spectral diffusion due to residual charge noise [12,28]. The
single photons are emitted in the PCW and fiber coupled via
a shallow-edged grating and a cryocompatible objective
lens. An etalon with a bandwidth of 32 GHz can be
employed as a frequency filter to optimize the indistin-
guishability of emitted photons by removing the undesired
phonon-induced spectral sideband. Pumping the QD with
resonant 7 pulses at a repetition rate of 80 MHz yields
single photons at a measured rate of 16.1 MHz (with an
85% efficient detection system), corresponding to a 23.7%
fiber-coupled efficiency of the single-photon source,
and purity of 1 — ¢ (0) = (97.21 4 0.01)%. The photon
stream is then converted into four streams of simultaneous
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FIG. 2. Experiment schematic. The single-photon source (inset) is an InAs QD coupled to a GaAs PCW, gated via metal electrical
contacts (depicted in gold), kept at 4 K inside a cryostat. An etalon serves as a frequency filter, eliminating phonon side bands to
maximize photon indistinguishability. The emitted single-photon stream is routed into four spatial modes through a free-space
demultiplexer, generating sets of four simultaneous input photons. Fiber-based temporal delays precede a final free-space setup,
ensuring precise polarization control and enabling artificial delays before the purification stages. (Center) Two copies of the
indistinguishability purification circuit are implemented through fiber beam splitter (BS), and the outputs interfere at a final BS to test
the indistinguishability of purified photons. (Right) Output configurations are measured through six superconducting nanowire single-
photon detectors (SNSPDs) and a time-to-digital converter (TDC) to process their time tags.

photons in different spatial modes through a time-to-space
demultiplexing module. As shown in Fig. 2, it consists
of three resonantly enhanced electro-optic modulators
(EOMs) and polarizing beam splitters (PBSs) arranged
in a treelike structure [29,34] to route the photons in four
different output modes and with different fiber lengths to
compensate for the temporal delays. At this stage, we detect
four-photon coincidences at a rate of 3.2 kHz. An addi-
tional free-space coupling is introduced before feeding into
the fiber-based HOM interferometers to precisely control
the polarization of photons via half- and quarter-wave
plates (HWP and QWP, respectively).

The purification circuits are implemented with optical fibers
and involves two fiber beam splitters for each copy of the
scheme, with the purified photons interfering in a final BS.
We characterized the optical losses induced by the purification
setup to be of 1 dB. These are mainly due to fiber connectors
between the beam splitters. Because the overall circuit is
based on cascaded HOM interferometers, which are phase
insensitive, no active phase stabilization is required. The
photons are finally directed to six superconducting-nanowire
single-photon detectors (SNSPDs, average 85% system effi-
ciency) to measure the output configurations.

Results.—To analyze the improvement in indistinguish-
ability induced by the purification, we first assessed the raw
HOM visibility by interfering only two demultiplexed
photons (inputs 1 and 4 in Fig. 2) by blocking inputs 2
and 3. Inputs 2 and 3 are then unblocked to implement the
full circuit to test quantum interference between purified
photons and extract their purified indistinguishability (see
Supplemental Material [30] for details).

The purification protocol was tested in different exper-
imental configurations of the QD, each with a different

value of partial distinguishability between the emitted
photons. The data from each configuration are shown
in Fig. 3. In the first configuration [“no etalon” label in
Fig. 3(b)], we test the protocol in a high-noise scenario by
removing the etalon filter after the QD, which results in
higher distinguishability due to the presence of incoherent
spectral sidebands. This is indeed manifested in a measured
low raw HOM visibility of V; = 0.5829(1), as depicted in
Fig. 3(a)(lower). When the purification protocol is imple-
mented, the visibility of HOM interference between
the purified photons was increased to V, = 0.685(5) as
depicted in Fig. 3(a)(upper), marking a significant
improvement of 10.2(5)%. The purple curve is both
narrower and has a lower maximum than the red curve,
suggesting that both the dynamics and the amplitude of
the distinguishable components are altered. The width of
the peak nonetheless only changes due to the lower
heralding probability of photons far away from the center
position, as the effect can also be seen on the side peaks.
It can thus not be concluded that the purified photons
have different properties than the raw ones, except for a
lower distinguishable component.

In a second QD configuration [“optimal” label in
Fig. 3(b)], the etalon was added to test the protocol in a
low-noise environment where most phonon-induced noise
is filtered out. The initial raw HOM visibility was measured
to be V, = 0.9050(1), which is then improved to V, =
0.9327(1) using the purified photons. As discussed in the
Supplemental Material [30], we estimate that in this case
the remaining noise contributions limiting the visibility are
dominated by spurious multiphoton terms arising by the
finite g (0) of the QD, while contributions due to partial
distinguishability is mostly removed via the purification.
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FIG. 3. Purification results for fast noise processes. (a) Two-photon correlation measurement results for HOM experiments with raw

(top) and purified (bottom) photons. (Inset) Normalized central peaks for both cases, showing an improved suppression for the purified
(purple) case. (b) Obtained improvements in visibility for three configurations of the QD source with different noise levels. The curves
show the theoretical estimates for different noise models, as described in the main text. The error bars (only shown when exceeding the
size of the markers) are calculated via Monte Carlo error propagation assuming Poissonian photon statistics.

We tested one additional scenario [“suboptimal” label in
Fig. 3(b)], where we keep the etalon but intentionally
detune the voltage applied to the QD from its optimal value.
Applying a voltage that is closer to the edge of the charge
plateau increases the probability of cotunneling of carriers
to the contacts. This experimental condition induced a
slight reduction in raw HOM visibility to Vj = 0.8332(1),
which is then enhanced to visibility of V, = 0.9090(5)
through purification.

The data histograms which are the base for the sub-
optimal and optimal configuration results are shown in the
Supplemental Material [30].

In Fig. 3 we also plot the theoretical estimations of
the indistinguishability for the purified photons as a
function of the raw visibilities, and used in addition
three different models for predicting the partial distin-
guishability of the photons. The first model, which
we call the “multipermanent model” [dotted curve in
Fig. 3(b)], assumes a constant state overlap and ortho-
gonality between the distinguishable components of each
photon, as outlined in [35]. A second considered model,
based on the minimum purity model [MP, dashed curve in
Fig. 3(b)] of Ref. [21], assumes that the internal degrees
of freedom of all photons are in the same mixed state
whose finite purity is the cause for distinguishability.
Finally, we introduce a physically motivated model,
denoted as the pure-dephasing model [PD, solid curve
in Fig. 3(b)], that considers the noise processes inherent
in a QD environment and incorporates higher-order
indistinguishability instances (e.g., 3 and 4-photon con-
tributions). The theoretical curves give slightly different
expected improvements but are in good agreement with
the observed measurements. For a comprehensive explan-
ation and discussion of these diverse models, please refer
to the Supplemental Material [30].

After demonstrating successful purification for the case
of a fast physical process, in particular phonon-induced
dephasing, we test the purification protocol in the presence
of slow errors as well. In this case, we deliberately altered the
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FIG. 4. Purification results for slow noise processes. (a) Puri-
fication in the presence of polarization-induced distinguishability
contributions implemented by rotating the HWP of inputs 1
and 3. (b) Experimental purified indistinguishabilities (purple
markers) for various raw HOM visibilities (red markers). The
theoretical upper and lower bounds are the expected improved
values in the cases where the polarizations of inputs 1 and 3 are
rotated in the same or opposite directions, respectively.
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polarization of one input photon per purifier, as illustrated in
Fig. 4(a), and again evaluated the HOM visibility before and
after purification. The results, shown in Fig. 4(b), compare
our experimental data (in purple) with a simulation illustrat-
ing the application of the purification protocol to photons
with different polarizations. The polarization of the photons
after going through multiple fiber BSs is transformed in
randomized by temperature drift and bending of the fibers,
and thus setting for a specific transformation is not
attempted. The upper bound comes when the photons’
polarization is rotated in the same direction of the Bloch
sphere, while the lower bound comes when they are rotated
in opposite directions. Both cases are illustrated in the upper
side of Fig. 4(b), and the associated curves are plotted
together with the measured raw and purified HOM visibil-
ities. Representative histograms used to generate three of the
data-points from the figure are shown in the Supplemental
Material [30]. The observed data again show significant
improvements in the indistinguishability and compatible
with the theoretical bounds described above, demonstrating
the realization of a successful purification protocol for both
slow and fast noise contributions.

It is important to mention that when comparing success
probabilities of individual instances, spectral filtering can
give a better performance than purification. However, there
are essential differences between the two approaches that
result in different advantages. First, filtering is a loss
process. Its probabilistic nature is fundamental and there
is no way to recover it as a near-deterministic operation. In
contrast, our approach can be implemented through multi-
plexing of heralded events. Secondly, spectral filtering is
effective in reducing distinguishability for certain noise
sources (e.g. spectral detuning, phonon sidebands, spectral
correlations in spontaneous photon sources) but is ineffec-
tive in correcting most incoherent processes, such as pure
dephasing. Remarkably our scheme is not facing this
limitation, making it operationally distinct from spectral
filtering by being able to purify also incoherent processes.

Conclusions.—We have demonstrated a new type
of purification process in quantum optical systems: the
purification of partially distinguishable photons through
quantum interference. Significant indistinguishability
improvements are observed already for a small purification
circuit involving n = 2 input photons. We remark that the
demonstrated capability to mitigate both fast and slow
noise processes is in strong contrast to previous noise
mitigation techniques, e.g., environment monitoring in
solid-state emitters [36] and time-resolved measurement
techniques [37,38], which only work for slow noises (e.g.,
spectral diffusion and frequency mismatch in the above
examples, respectively). The versatility of the approach
highlights its relevance for any quantum photonic platform.
In fact, the same approach can be straightforwardly used to
purify photons also from other types of photon emitters,
including atoms [7] and heralded photon sources [39].

The purification protocols come at the cost of
additional ancillary photons and, when relevant, multi-
plexing circuits to turn their probabilistic nature into near
deterministic. These are functionalities already required in
photonic quantum computing architectures based on single
photons [40]. The hardware overhead of the purification
protocols is anyway likely largely dominated in practice by
the overheads required in other parts of the architecture,
such as in photonic entanglement generation circuits [41]
and quantum error correction [42,43]. Furthermore, the
purification circuits implemented here can be significantly
improved by modulating the reflectivities of the BSs or
using discrete Fourier-transform interferometers [21,22],
enabling significantly higher success probabilities and
indistinguishability improvements. Our study provides
new and versatile experimental tools to purify photons
and mitigate fundamental noise processes that ultimately
may limit the scaling-up of photonic quantum technologies
based on quantum emitters.
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