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With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool
for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to
experimentally characterize the multiphoton spatial wave function including the entangled amplitude and
phase information at different evolutionary stages. However, there is no effective method to measure it.
Quantum state tomography is costly, and quantum holography requires additional references. Here, we
introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measure-
ment of the biphoton spatial wave function. The joint probability distribution of photon pairs at the back
focal plane of a microlens array is measured and used for amplitude extraction and phase reconstruction.
In the experiment, we observe that the biphoton amplitude correlation becomes weak while phase
correlation shows up during free-space propagation. Our work is a crucial step in quantum physical and
adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or
topological patterns.

DOI: 10.1103/PhysRevLett.133.033602

Introduction.—The photon is a promising system in
fundamental quantum physics and applied quantum tech-
niques [1]. Its spatial degree of freedom is the core of
high-dimensional quantum communication and quantum
imaging [2], including ghost imaging [3], imaging with
undetected photons [4], image distillation [5], and super-
resolution imaging [6,7]. Developing experimental meth-
ods to characterize the entangled multiphoton states is a
basic task [8]. For the spatial state (sometimes called the
wave function [9]), direct coincidence counting can reveal
only the joint probability distribution (JPD), i.e., the
squared modulus of the wave function [10], while effective
phase measurement methods will become useful in various
applications like information encoding [11], biomedical
phase imaging [12], and aberration cancellation. Moreover,
photons are prone to various evolution and modulation
processes, so observing the state dynamics is even more
exciting and challenging.
Researches on biphoton phase measurement can be

inspired by classical methods. A prominent type is holog-
raphy [13], which needs a reference beam for interference.
It has the highest accuracy and is very suitable for charac-
terizing transparent objects. In quantum optics, polarization
entanglement enables phase-shifting holography [14–16],
and biphoton interference has been employed to measure
the biphoton spatial wave function [17]. However, the
reference beam may contain aberrations and is not always

available. Starting from Zernike’s phase contrast micros-
copy [18], one type of reference-free method is selecting a
part of the unknown field as the reference, including
some weak measurement methods [9,19,20]. Our group
used the setup devised by Kocsis et al. [21] to obtain
the phase gradient distribution [22] for phase reconstruc-
tion [23,24] and named it the weak measurement wavefront
sensor [25,26]. Like some shearing methods, it is an
interference of the original beam with a slightly displaced
one. Then, our group extended it to the multiphoton
case [27], which requires JPD measurement of photons.
However, weak measurement methods require a high
signal-to-noise ratio, which is difficult for biphoton fields
in experiments. There are other methods which do not need
any reference. State tomography [28] requiring a huge
number of projection bases is possible but impractical.
Here, we consider the celebrated Shack-Hartmann wave-
front sensing (SHWS) [29], which uses a microlens array
to project the phase gradient at each aperture to the
displacement of the focused spot [25,30]. Supplemental
Material [31] introduces basic concepts of SHWS.
In this proof-of-principle work, we introduce and

implement quantum SHWS (QSHWS) by measuring
the JPD of photon pairs from spontaneous parametric
down-conversion (SPDC) [32,33] at the focal plane of
the microlens array. To our knowledge, this is the first
single-measurement and reference-free biphoton phase
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measurement method. As for the JPD measurement, tradi-
tional scanning and coincidence counting method [10] is
time consuming. In 2018, Defienne et al. demonstrated
that it can be calculated from multiple frames taken by an
electron-multiplying charge-coupled device (EMCCD) or
single-photon avalanche photodiode array camera [34–36],
which we refer to as the multiple frame method. Then,
we focus on the biphoton propagation dynamics as an
example. Chan, Torres, and Eberly [37] derived that SPDC
photon pairs would be less correlated in position after
free-space propagation [38] while phase correlation
shows up. We use QSHWS to measure the biphoton state
after free-space propagation and show they agree with
theoretical predictions using double-Gaussian approxima-
tion [33,37,39,40]. Furthermore, we use a spatial light
modulator (SLM) to encode a hyperbolic paraboloid
(saddle) phase pattern for detection. Finally, we describe
potential applications of QSHWS in biphoton physical [41]
and adaptive optics [42,43].
Theory.—We consider photon pairs with a definite

polarization and wavelength. Denoting the spatial wave
function as ψðρ1; ρ2Þ and its phase ϕðρ1; ρ2Þ ¼
argψðρ1; ρ2Þ, when the postselected position of photon 1
ρ1 takes all the values inside a microlens aperture S1, the
conditional state of photon 2 is generally mixed, described
by the reduced density matrix ϱ̂2 ¼

R
S1
dρ1hρ1jψihψ jρ1i

and its function in the position basis ϱ2ðρ02; ρ2Þ ¼
hρ02jϱ̂2jρ2i ¼

R
S1
dρ1ψðρ1; ρ02Þψ�ðρ1; ρ2Þ (corresponding to

the mutual coherence function [25,44–46]). If a single-
photon pure state is used, from the spot centroid dis-
placement Δρ from the center of another aperture S2 at
the camera, the phase gradient at S2 is calculated by
ð2π=λÞ sin½arctanðΔρ=fSHÞ�, where fSH is the micro-
lens focal length. However, using the mixed state ϱ̂2,
the measured phase gradient becomes [25,47] (see
Supplemental Material [31] for a full derivation)

R
S2
dρ2Im∇1ϱ2ðρ2; ρ2ÞR
S2
dρ2ϱ2ðρ2; ρ2Þ

¼
R
S1
dρ1

R
S2
dρ2jψðρ1; ρ2Þj2∇2ϕðρ1; ρ2ÞR

S1
dρ1

R
S2
dρ2jψðρ1; ρ2Þj2

: ð1Þ

When the aperture is sufficiently small, S1 and S2 can
be approximated by points ρ1 and ρ2, and Eq. (1) becomes
the partial phase gradient k2ðρ1; ρ2Þ ¼ ∇2ϕðρ1; ρ2Þ.
Exchanging ρ1 and ρ2 yields another partial gradient
k1ðρ1; ρ2Þ ¼ ∇1ϕðρ1; ρ2Þ. The joint phase can be recon-
structed by line integral [27]:

ϕðρ1;ρ2Þ ¼
Z ðρ1;ρ2Þ

ð0;0Þ
k1ðρ01;ρ02Þ · dρ01 þ k2ðρ01;ρ02Þ · dρ02: ð2Þ

For the amplitude part, with the measured JPD ΓSHðρ1; ρ2Þ
at the microlens focal plane, assuming each microlens is

lossless and its incoming beam does not escape its
aperture, the JPD of two apertures Γðρ1; ρ2Þ ≈R
S1
dρ01

R
S2
dρ02ΓSHðρ01; ρ02Þ (here, S1 and S2 are centered

by ρ1 and ρ2, respectively), which equalsR
S1
dρ01

R
S2
dρ02jψðρ01; ρ02Þj2. The reconstructed wave func-

tion is, thus,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðρ1; ρ2Þ

p
exp½iϕðρ1; ρ2Þ�.

If the two photons are indistinguishable ψðρ1; ρ2Þ ¼
ψðρ2; ρ1Þ, only one phase gradient distribution can be
measured. Without loss of generality, let it be k1ðρ1; ρ2Þ.
Then, k2ðρ1; ρ2Þ ¼ k1ðρ2; ρ1Þ, and the reconstructed
ϕðρ1; ρ2Þ has exchange symmetry.
Experimental setup.—The experimental setup is shown

in Fig. 1. A pump laser at 405 nm is incident on a β-barium
borate (BBO) crystal. Degenerate near-collinear type-I
SPDC photon pairs pass through two Fourier lenses, get
reflected by a SLM, pass through another Fourier lens, and
arrive at the microlens array. The width of each microlens is
0.3 mm. An imaging lens is inserted at the midpoint of the
microlens array and the EMCCD sensor. See Supplemental
Material [31] for details.
Data processing.—In one measurement, the EMCCD

takes multiple frames, and a threshold determines whether
pixels of each frame have at least one photon. In the
multiple frame method, the JPD is calculated by the
covariance of the counts at two pixels, which, however,
suits only for biphoton states with narrow conditional
probability distributions (CPDs, with the position of one

FIG. 1. The experimental setup. A 405-nm, horizontally po-
larized laser beam is shaped by two lenses and an iris. Then, it
pumps a BBO crystal to produce collinear type-I SPDC photon
pairs and is filtered out by a long-pass interference filter (IF). Two
Fourier lenses (L1 and L2) project the photons from the BBO to
the SLM. Then another Fourier lens (L3) projects the photons
to the microlens array. A bandpass IF at ð810� 5Þ nm selects
degenerate SPDC photon pairs. An imaging lens (L4) images
the photons from the focal plane of the microlens array to the
EMCCD sensor. The microlens array, L4, and EMCCD can be
displaced by a distance. The inset shows the basic idea of
quantum Shack-Hartmann wavefront sensing.
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photon given) due to its signal-to-noise ratio [35,38]. Also,
photon intensity or sensor efficiency fluctuation results in a
positive background in the calculated JPD, so a successive
frame formula is mainly used in subsequent works
[5,15,43], which will cause more noise in the JPD [7],
and the background removal is not effective in our experi-
ments. We develop a brightness separation formula where
frames registering too many or few photons are discarded,
and the background is basically eliminated.
Single-pixel CPDs of pixels within an aperture are

summed to obtain the aperture CPD, but direct summation
will distort the result. We choose to divide the aperture into
several 4 × 4-pixel segments, sum CPDs over each segment
first, and reduce the noise before being summed for the
final aperture CPD. Figure 2 illustrates the processes.
Finally, the centroid positions of the spots are calculated
from the aperture CPD and converted to the phase gradient
distribution.
An algorithm is required to realize the phase

reconstruction in Eq. (2). For the four-dimensional phase
distribution, the traditional zonal and modal methods [24]
which require large matrix operations is difficult to imple-
ment. We adapt the method based on random point
spreading and averaging in Ref. [27]. Supplemental
Material [31] provides all details of data processing.
Biphoton propagation dynamics.—Using the microlens

array, the biphoton position anticorrelation after three
Fourier lenses with the SLM off can be observed easily,
as shown in Fig. 3(a). The anticorrelation is not aperture
to aperture, because its center is not a grid point of the
microlens array.
However, the phase cannot be reconstructed without

magnification for biphoton states with strong position

correlation (see discussion below). To demonstrate the
phase measurement, we need states with wider CPDs.
Because of the immaturity of arbitrary two-photon inter-
action and modulation, more general correlated phase
patterns cannot be generated experimentally. We choose
to measure the correlated phase of propagated SPDC
photon pairs. Before propagation, their wave function
can be approximated by a double-Gaussian function
(unnormalized) [33,37,39,40]:

ψdGðρ1; ρ2Þ ¼ exp

�
−
jρ1 þ ρ2j2

4σ2þ
−
jρ1 − ρ2j2

4σ2−

�
: ð3Þ

In the momentum space (angular spectrum [48]), it is the
Fourier transform of Eq. (3):

ψ̃dGðq1; q2Þ ¼ exp

�
−
σ2þjq1 þ q2j2

4
−
σ2−jq1 − q2j2

4

�
: ð4Þ

After propagating a distance z, a phase exp½−izðjq1j2 þ
jq2j2Þ=ð2kÞ� is added to the angular spectrum and, thus,
σ2� → σ2� þ iz=k, where k ¼ 2π=λ and λ ¼ 810 nm.
Substituting the new complex σ2� into Eq. (3) yields the
new wave function with phase correlation. When z ¼
kσþσ−, the photons have no amplitude correlation, and
entanglement exists only in the phase [37]. The amplitude
correlation direction switches when z > kσþσ−.

(a)

(c) (d)

(b)

FIG. 2. Calculation of the aperture CPD. (a) The single-pixel
CPDs from the multiple frame method. (b) The sum of 16 CPDs
of a 4 × 4-pixel segment in (a). (c) Noise-reduced distributions
from (b). (d) The sum of all the distributions in (c), which is the
aperture CPD. The 7-cm propagation data are used as an example.
See Supplemental Material [31] for more distribution graphs.
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FIG. 3. Amplitude correlation and CPDs of SPDC photon pairs
with (a) no propagation; (b) 4-cm propagation; (c) 7-cm; and
(d) 10-cm. The first line is the x1, x2 distribution when the indices
(starting from 0) of y1, y2 are given. The other two are CPDs of
given apertures x1, y1.
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Previously, the biphoton JPD at intermediate distances
cannot be measured using the multiple frame method [38].
Now, we reconstruct the wave functions of SPDC photon
pairs propagating 4, 7, and 10 cm. Data of farther distances
are still limited by the signal-to-noise ratio. The position
correlation patterns and selected CPDs are shown in
Figs. 3(b)–3(d), where the anticorrelation becomes weaker
and CPDs become wider as z increases.
The theoretical phases of conditional wave functions are

approximately spherical waves at twice the actual propa-
gation distances, which can be explained in the next
section. First, we do not interpolate the phase gradient
distribution, and the reconstructed phase of conditional
wave functions at a near-center aperture are fitted by phases
of spherical waves at distances 8, 14, and 20 cm with
displacements to be determined as shown in Fig. 4(a). The
coefficients of determination (R2) characterizing the sim-
ilarity are also given, showing the reconstructed phases fit
well with theory where the JPD values are higher (other-
wise, the noise in the aperture CPDs distorts the phase
gradient). As the phases of the wave functions are quad-
ratic, their gradients are linear functions of the coordinates,
valid for linear interpolation.
Then, we reconstruct wave functions from the inter-

polated (10 times) JPDs of two apertures and gradient
distributions. Selected slices of them are shown in
Fig. 4(b), where the theoretical counterparts from Eq. (3)
are also plotted (σþ ≈ 13.43 μm, σ− ≈ 1.143 mm; see
Supplemental Material [31] for the calculation, which
includes Ref. [49] about the refractive indices of BBO).
Without interpolation, the phase patterns may be difficult to
recognize from phase values modulo 2π. In the conditional
wave functions, the center of the paraboloid phase pattern
is anticorrelated with the given point. In regions where
JPD values are higher, the reconstructed wave functions fit
well with the theory. If these wave functions are Fourier
transformed, the positive momentum correlation and the
global paraboloid phase can be observed, as shown in
Supplemental Material [31].
Note that a classically correlated photon pair has almost

no momentum correlation, so measuring the JPD in the
momentum space can tell whether they are entan-
gled [10,50]. In Supplemental Material [31], we give a
form of mixed two-photon state with position anticorrela-
tion and briefly analyze its propagation and the measured
values, compared with the entangled state above.
Phase modulation.—If a phase pattern ΦðρÞ is added on

the SLM, the biphoton wave function at the SLM is multi-
plied by exp½iΦðρ1Þ þ iΦðρ2Þ�. Letting the Fourier transform
of exp½iΦðρÞ� be GðρÞ ¼ R

dρ0 exp½iΦðρ0Þ − ikρ · ρ0=f3�,
where f3 is the focal length of the third Fourier lens, the
wave function at the microlens array becomes ψðρ1; ρ2Þ �
½Gðρ1ÞGðρ2Þ�. Assuming the photon pairs are originally
perfectly anticorrelated ψðρ1; ρ2Þ ¼ expð−jρ1j2=σ2−Þ×
δðρ1 þ ρ2Þ, it is

�
Gðρ2Þ exp

�
−
jρ1 − ρ2j2

σ2−

��
�ðρ2Þ Gðρ1 þ ρ2Þ; ð5Þ

where the convolution performs only on ρ2 (see Supple-
mental Material [31] for its derivation). If σ− → þ∞
(the anticorrelated Einstein-Podolsky-Rosen state [51]),
the conditional wave function with a given ρ1 is
Gðρ2Þ �ðρ2Þ Gðρ1 þ ρ2Þ, which is the Fourier transform of
exp½i2Φðρ2Þ� displaced by −ρ1.
Adding a paraboloid phase ΦðρÞ ¼ −kzjρj2=ð2f23Þ on

the SLM can simulate the propagation of z. The Fourier
transform of exp½i2ΦðρÞ� is a spherical wave at 2z in
classical optics, and, thus, the conditional wave functions
take this form. If a saddle phase −aðx2 − y2Þ is added,

(a)

(b)

FIG. 4. (a) The reconstructed phase distributions of conditional
wave functions without interpolation. The given points for the
three conditional wave functions are indices (3,3), (4,4), and (4,3)
respectively. Dots are the reconstruction results, and curves are
theoretical phases with fitted displacement values. Dots away
from zero are omitted, as their CPDs are smaller and vulnerable to
errors. The R2 values are given. (b) Theoretical double-Gaussian
wave functions and experimentally reconstructed ones from
interpolated phase gradients. For each biphoton state, the condi-
tional wave function of x1, x2 with y1, y2 fixed at the center and
two conditional wave functions of x2, y2 with two given ðx1; y1Þ
points (the first point is the center, and the second one is on the
top right side, 0.3

ffiffiffi
2

p
mm from the center) are shown. See

Supplemental Material [31] for more conditional wave functions.
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it propagates forward in the x direction and backward in y,
resulting in the saddle phase in the conditional wave
functions. We choose the forward and backward distance
to be 7 cm. In the reconstructed phase as shown in Fig. 4(b),
the magnitudes at the x and y directions are slightly
different, which is possibly caused by a slight wavefront
curvature of the pump beam, the obliquity of the SLM,
or the deviation of the imaging lens magnification factor
from −1. As the latter two can be eliminated, this method
may be used to detect the low-order global phase of photon
pairs correlated in position, which is hard to measure
without propagation.
Discussion.—In this work, we introduced the quantum

Shack-Hartmann wavefront sensing method to reconstruct
the biphoton spatial wave function, developed the data
processing algorithms, and performed the experiments of
biphoton propagation dynamics and saddle phase modu-
lation. This method requires only one measurement and
is reference-free, but the spatial resolution is the major
shortcoming. Amplitude and phase patterns with higher
spatial complexities cannot be detected without magnifi-
cation. Although the CPD width limit in the multiple frame
method is greatly lowered with the microlens array, the
signal-to-noise ratio still hinders the detection of far wider
CPDs, which may be overcome by a time-stamping camera
like Tpx3Cam [17,50]. Recently, another wavefront sensor
based on spatial masking and diffraction with a high
resolution was invented [52], which may be considered
in quantum wavefront sensing in the future.
Classical SHWS has been widely used in fields like

astronomy, laser optics, and biomedical imaging, while
QSHWS can be applied in various tasks in the emerging
field of adaptive quantum optics [42,43]. The phase
information that lies in the second-order correlation can
be assisted in astronomical observation, multiphoton physi-
cal optics [41], and free-space quantum communication
against atmospheric turbulence. When studying multi-
photon interaction or modulation media like nonlinear
crystals and atom ensembles [53], the correlated phase
aberration cannot be measured classically, while QSHWS
may be the solution.
Theoretically, the single-pixel CPD shown in Fig. 2(a)

provides more information of the biphoton field, linking the
combination of the position and phase gradient of one
photon to that of the other. For example, it reveals some
properties of mixed states [44,45] and might be used for
information encoding and secret sharing. Although the
photon pairs are indistinguishable in our experiments, they
can be spatially separated or have different wavelengths.
This method is not limited to two photons [27]. If the
JPD of more photons can be measured, the multiphoton
wave function can also be reconstructed, leading to the
measurement of higher-order correlations. Finally, this
wavefront sensing technique can also be used in other
continuous-variable degrees of freedom, such as frequency,

by converting them into spatial entanglement [54,55],
as well as combining topology and entanglement [56] in
quantum optics.
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