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We construct a kinetic model for matter-radiation interactions whose hydrodynamic gradient expansion
can be computed analytically up to infinite order in derivatives, in the fully nonlinear regime, and for
arbitrary flows. The frequency dependence of the opacity of matter is chosen to mimic the relaxation time
of a self-interacting scalar field. In this way, the transient sector simulates that of a realistic quantum field
theory. The gradient series is found to diverge for most flows, in agreement with previous findings. We
identify, for the model at hand, the mechanism at the origin of the divergence, and we provide a successful
regularization scheme. Additionally, we propose a universal qualitative framework for predicting the
breakdown of the gradient expansion of an arbitrary microscopic system undergoing a given flow. This
framework correctly recovers all previously known instances of gradient expansion divergence. As a new
prediction, we show that the gradient expansion diverges when the energy-dependent mean free path is
unbounded above.
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Introduction.—The most pressing open question in
relativistic fluid mechanics is: “How far can we push
hydrodynamics before it breaks down?” [1–20].
Let us make this question precise. The Knudsen number

Kn ¼ λ=L is the ratio between the particles’mean free path
λ (defining the microscopic scale) and the characteristic
length scale L of the flow of interest [21,22]. It is common
knowledge [23] that, if Kn → 0, we can model the system
as an ideal fluid, while when Kn≳ 1, we need to rely on
microphysics. Thus, there is some value of Kn∈ ð0; 1� at
which hydrodynamics stops working. Can we identify it
precisely?
The answer depends on which hydrodynamic theory one

is using. The ideal fluid breaks down at any finite value of
Kn, since it is nondissipative, and it predicts that waves
survive forever. These issues are fixed in Navier-Stokes
theory, whose breakdown is conventionally set at Kn ¼ 0.1
[24]. However, one may try to do even better. Most
derivations of hydrodynamics from kinetic theory
[25,26] and holography [27,28] express the stress-energy
tensor Tμν of a fluid as a formal power series in Kn, known
as the “gradient expansion” [24,29],

TμνðKnÞ ¼ Tμν
ID þ Tμν

1 Knþ Tμν
2 Kn2 þ � � � ; ð1Þ

where the zeroth order is the ideal fluid, the first order is
Navier-Stokes, the second order is the Burnett equation
[30], and higher orders correspond to fluid theories with
higher derivative corrections. One hopes that, by adding
more and more powers of Kn, the regime of applicability of
hydrodynamics will expand more and more, increasing the
accuracy of hydrodynamics for all Kn up to the radius of
convergence Kn⋆ of the series (1). Following this line of

thought, it would then be natural to conclude that such
radius Kn⋆ is what ultimately marks the rigorous break-
down of hydrodynamics [31].
Unfortunately, reality turns out to be more complicated.

First, there are indications that, in most realistic scenarios,
Kn⋆ ¼ 0 [10,13,32]. This means that, if we keep adding
higher and higher orders in Kn, at some point the region of
applicability of (1) shrinks instead of expanding. Second,
Eq. (1) makes sense only if the function TμνðKnÞ is analytic
in Kn. In principle, there may be nonsmooth corrections
like Kn3=2 [33], or nonperturbative corrections like e−1=Kn

[34]. Therefore, the breakdown scale of hydrodynamics
remains unknown.
The dream of any fluid theorist would be to have a

microscopic model where TμνðKnÞ can be computed
exactly for arbitrary flow, at arbitrary Kn, in the fully
nonlinear regime, and where all the terms Tμν

n in the series
(1) have exact analytical formulas. Such model should have
realistic interactions, to ensure that the dependence of Tμν

on Kn mimics the behavior of some microscopic quantum
field theory. Finally, one should be able to extract from it
general lessons about the expansion (1). In this Letter, we
provide a model that fulfills all these requirements. Note
that we work in Minkowski space, with signature
ð−;þ;þ;þÞ, and adopt natural units: c ¼ ℏ ¼ kB ¼ 1.
The kinetic model.—Our model setup is a radiation-

hydrodynamic system [35–41], namely, a fluid mixture
comprised of two substances: a material medium M with
negligibly short mean free path (i.e., KnM ≡ 0), and a
diluted radiation gas R with a finite, possibly large, mean
free path (i.e., KnR > 0) [42,43]. The former is modeled as
an ideal fluid, with a well-defined temperature TðxαÞ and
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flow velocity uμðxαÞ. The latter can exist in far-from-
equilibrium states, and we must track its kinetic distribution
function fpðxαÞ [44,45] (p ¼ momentum). The total stress-
energy tensor is the sum of a material nonviscous part and a
radiation part:

Tμν ¼ Tμν
M þ

Z
d3p

ð2πÞ3p0
fppμpν: ð2Þ

The radiation particles do not interact with each other, but are
randomly absorbed and emitted by the medium (neglecting
scattering). Thus, Boltzmann’s equation is of relaxation type
[35,46]. Taking the relaxation time to be τp ¼ −uμpμ=g
(with g > 0 ¼ const, for simplicity), we have

pμ
∂μfp ¼ −uμpμ

feqp − fp
τp

¼ gðfeqp − fpÞ: ð3Þ

Since τp grows linearly with −uμpμ, our medium is opaque
at low frequencies, and transparent at high frequencies [35].
The function feqp is the value that fp would have if the
radiation was in local equilibrium, with the temperature T
and flow velocity uμ of the medium. Depending on the
statistics, one has feqp ¼ ðe−uμpμ=T − bÞ−1, b∈ f0;�1g [47].
The backreaction of the radiation on the motion of the
medium follows from the conservation law ∂μTμν ¼ 0

which, combined with (2) and (3), gives

∂μT
μν
M ¼ −g

Z
d3p

ð2πÞ3p0
ðfeqp − fpÞpν: ð4Þ

Why this model?.—The relaxation time τp ∝ “energy”
mimics the transient behavior of a scalar field theory with
ϕ4 interaction [48]. This choice ensures that the gradient
expansion (1) will exhibit “realistic” (i.e., QFT inspired)
scaling with powers of KnR ¼ maxfKnM;KnRg ¼ Kn.
Note that, in QCD plasmas, τp scales as a fractional power
of the energy [49], while the present model is closer to the
kinetics of Yukawa’s meson theory [50,51].
Our main reason for relying on radiation hydrodynamics

(rather than dealing with ideal gases) is that it allows the
introduction of momentum-dependent relaxation times, as in
(3),without violating any conservation law [52]. Furthermore,
within radiation hydrodynamics, the relaxation-time approxi-
mation is exact (by Kirchhoff’s law [53]), if the medium has
negligibly short equilibration timescale [35,36]. By contrast,
in ideal gases, equations like (3) are a pretty crude approxi-
mation of the Boltzmann collision integral.
Note that the fields T and uμ have unambiguousmeanings

in our model, as they characterize the local state of the
medium, establishing a natural “hydrodynamic frame” [29].
Indeed, providing initial data for the “matter þ radiation”
system requires specifying the initial states for both the
radiation gas and the medium separately, so that ffp; T; uμg
are independent dynamical degrees of freedom. This is

convenient, since we do not need to worry about matching
conditions [25] (i.e., no integral constraint relatesT anduμ to
fp at a given time).
Linear response properties.—Linearizing Eqs. (2) and

(3), and looking for solutions ∝ eikμx
μ
, we obtain

δTμν ¼ δTμν
M þ

Z
d3p

ð2πÞ3p0

ðfeqp;TδT þ feqp;uρδu
ρÞpμpν

1þ ig−1pαkα
: ð5Þ

For kα ¼ ðω; 0; 0; 0Þ, the integrand is singular whenever
ω ¼ −ig=p0, which approaches ω ¼ 0 for p0 → ∞. Thus,
the linear-response Green function of the stress-energy
tensor has a branch cut that touches the origin of the
complex ω-plane. This is a known feature of ϕ4 [54,55] and
other relativistic systems [51], including, probably, QCD
plasmas. Hence, the spectral properties of the present
model agree with current expectations.
Analytic solution.—Equations like (3) can be solved

analytically in the nonlinear regime [35]. Fixed an event xα

and a momentum pα, consider the worldline

xαðξÞ ¼ xα −
pα

g
ξ; ð6Þ

where ξ is the optical depth. Traveling along (6), at fixed
momentum pα, Eq. (3) becomes an ordinary differential
equation, −ḟpðξÞ þ fpðξÞ ¼ feqp ðξÞ, which has unique
solution for initial data at past infinity:

fpðxαÞ ¼
Z þ∞

0

e−ξfeqp

�
xα −

pα

g
ξ

�
dξ: ð7Þ

Plugging (7) in (2), we obtain an exact formula for the total
stress-energy tensor:

Tμν ¼ Tμν
M þ

Z
d3p

ð2πÞ3p0
pμpν

Z þ∞

0

feqp

�
xα −

pα

g
ξ

�
e−ξdξ:

ð8Þ
This is the function “TμνðKnÞ” we were looking for. It
remains valid at all orders in derivatives of the fluid fields
fT; uμg, which enter (8) through feqp ¼ ðe−uμpμ=T − bÞ−1.
We may interpret (8) as an “infinite-order hydrodynamic
constitutive relation,” where Tμν is a nonlocal functional of
T and uμ, see Fig. 1.
The ideal fluid is recovered in the infinite-opacity limit

(g → þ∞), since xαðξÞ → xα, and the total stress-energy
tensor Tμν becomes that of a conglomerate fluid, where
matter and radiation comovewith velocity uμ and both have
temperature T:

Tμν
ID ¼ Tμν

M þ
Z

d3p
ð2πÞ3p0

feqp pμpν

¼ ðεþ PÞuμuν þ Pημν: ð9Þ
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The energy density εðT;…Þ and the pressure PðT;…Þ are
the sum of matter and radiation parts in thermal equilib-
rium, where the matter contributions may depend on
additional state variables besides T, including, possibly,
some chemical potential.
Gradient series.—Let us evaluate the derivative expan-

sion of (8). If feqp ðxμÞ is an entire function of xμ, we can
express the integrand of (7) as a Taylor series

feqp ðξÞ ¼
Xþ∞

n¼0

ξn

n!

�
d
dξ

�
n
feqp ð0Þ; ð10Þ

where d=dξ ¼ −g−1pα
∂α is the derivative along the para-

metric line (6). We note that d=dξ ∼ Kn, due to the
following chain of estimates (L is the hydrodynamic scale):

d
dξ

¼ −
pα

∂α

g
∼

T
gL

∼
−uμpμ

gL
¼ τp

L
∼
λ

L
¼ Kn: ð11Þ

Hence, each nth term in the series (10) corresponds to the
power Knn in the Knudsen expansion. Plugging (10) into
(8), and performing the integral in ξ, we can express the
total stress-energy tensor as the sum of the ideal part (9) and
a viscous part, namely, Tμν ¼ Tμν

ID þ Πμν, with

Πμν ¼
Xþ∞

n¼1

ð−gÞ−n∂α1…∂αn

Z
d3p

ð2πÞ3p0
feqp pμpνpα1…pαn :

ð12Þ
This is the gradient series we were looking for. Again, no
approximation was made, besides the assumptions of the
kinetic model. The integrals in (12) are the moments of the
equilibrium distribution function feqp , all of which can be
evaluated analytically.
Let us discuss some notable properties of (12): (i) All the

components of Πμν are in general nonzero, including

Πμνuμuν. Thus, the “material frame,” where temperature
and flow velocity are those of the medium, does not
coincide with the Landau or the Eckart frame, as noted
in [43]. (ii) All the contributions to (12) contain factors of
the form ∂ðμ1∂μ2…∂μkβνÞ, with βν ¼ uν=T. It follows that
Πμν vanishes whenever βν is a Killing vector, namely,
∂ðμβνÞ ¼ 0, which is the condition of global thermodynamic
equilibrium [56–59]. (iii) If we truncate Πμν at finite
order n ≥ 1 (with Maxwell-Boltzmann statistics, i.e.,
feqp ¼ eβρp

ρ
), the principal part of the conservation law

∂μTμν ¼ 0 (regarded as a dynamical equation for βν) is

1

ð−gÞn
Z

feqp d3p
ð2πÞ3p0

pμpνpρpα1…pαn∂α1…∂αn∂μβρ: ð13Þ

The associated characteristic polynomial [60] is

PðζαÞ ¼ det

�Z
feqp d3p
ð2πÞ3p0

ðpαζαÞnþ1pνpρ

�
: ð14Þ

For n odd, the matrix in the determinant is positive definite
for all ζα. Thus, the evolution equation is elliptic, making
all odd-order truncations acausal, unstable, and ill-posed
[61–63].
Divergence of the gradient series.—Let us show that (12)

is usually divergent. We can estimate the order of magni-
tude of each term of the series by making the formal
replacements ∂α → 1=L and feqp → e−p

0=T . Then, Eq. (12)
becomes (ignoring constant factors)

Πμν

T4
∼
X
n

�
T
gL

�
n
ðnþ 3Þ!; ð15Þ

which is factorially divergent.
Let us now repeat the above calculation, assuming that

the medium cannot produce radiation particles whose
energy exceeds some large cutoff scale Λ ≫ T, thereby
restricting integrals in d3p to the sphere p0 ≤ Λ. Then, the
series (15) becomes

Πμν

T4
∼
X
n

�
T
gL

�
n
γðnþ 4;Λ=TÞ; ð16Þ

where γ is the lower incomplete Gamma function, which
becomes ðnþ 3Þ! if we send Λ → þ∞ at fixed n. Instead,
let us evaluate the series for finite Λ ≫ T. At large n, the
addends scale like�

T
gL

�
n
γðnþ 4;Λ=TÞ ∼

�
Λ
gL

�
n e−Λ=TðΛ=TÞ4

n
: ð17Þ

If gL > Λ, the series converges. Furthermore, the large-n
part of the series adds up to

−e−Λ=T
�
Λ
T

�
4

ln

�
1 −

Λ
gL

�
; ð18Þ

which is negligible in the limit Λ ≫ T.

FIG. 1. Visual representation of Eq. (8), viewed as a nonlocal
constitutive relation Tμν½T; uα�. The value of TμνðxÞ receives
contributions from all events y on the past light cone of x
(although closer events contribute more). The information about
fTðyÞ; uαðyÞg is transported directly to x by radiation particles
emitted at y, which have probability e−ξ ¼ e−gðx0−y0Þ=p0

to reach x
before being absorbed.
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The above argument shows that the divergence of the
gradient expansion comes from fictitious particles that
carry unreasonably large energy. We can prove that such
particles are unphysical by showing that the exact for-
mula (8) is unaffected by the cutoff Λ. Called Tμν

Λ the
regularized stress-energy tensor, we have

Tμν − Tμν
Λ

T4
¼

Z
p0≥Λ

d3p
ð2πÞ3p0

pμpν

T4

Z þ∞

0

feqp ðξÞe−ξdξ

∼
Z
p0≥Λ

d3p
ð2πÞ3

p0e−p
0=T

T4
∼
�
Λ
T

�
3

e−Λ=T; ð19Þ

which tends to zero when Λ ≫ T. This estimate shows that
the cutoff Λ can be used as a practical tool, to regularize the
gradient expansion (12), and restore agreement with (8).
One only needs to make sure that gL > Λ ≫ T.
Unfortunately, this also requires Kn ¼ T=ðgLÞ ≪ 1. This
suggests that adding higher derivative terms may not
significantly expand the regime of applicability of hydro-
dynamics. Instead, it may just lead to a refinement of the
accuracy of hydrodynamics, within the same interval 0 ≤
Kn≲ 0.1 where Navier-Stokes is already valid. Indeed,
several previous studies seem to support the present
conclusion [16,30,64,65].
A quick example.—We can check the consistency of the

estimates (18) and (19) with an example. Take uμ ¼
ð1; 0; 0; 0Þ and TðtÞ ∝ 1 − a sinðt=LÞ, with a → 0.
Linearizing in a, and defining Kn ¼ T=ðgLÞ, the value of
Π00ð0Þ according to (8) and (12) is given by, respectively,

Exact∶
Π00

aT4
¼

Z þ∞

0

dz
2π2

Knz5e−z

1þ Kn2z2
; ð20Þ

Expand∶
Π00

aT4
¼

X
n odd

ð−1Þn−12
2π2

Knnðnþ 4Þ!; ð21Þ

Cutoff∶
Π00

aT4
¼

X
n odd

ð−1Þn−12
2π2

Knnγ

�
nþ 5;

Λ
T

�
; ð22Þ

where Eq. (22) is the same as (21), corrected with cutoff
Λ=T < Kn−1 (for convergence of the series). We observe in
Fig. 2 the breakdown of the gradient expansion at order 70
(higher orders explode at smaller Kn). The cutoffΛ restores
agreement with (8) at all orders, within an error that survives
at largen and increaseswithKn. This fixes the breakdown of
the regularised gradient series at Kn ∼ 0.1, which is pre-
cisely when Navier-Stokes ceases to hold [24].
Origin of the divergence.—We now provide a general

explanation for the divergence of the gradient expansion,
which applies to the present model and to most other
models in the literature.
Let A be a density of interest, located at x. By causality,

the event x receives influence from all events y in the causal
past J−ðxÞ of x [66]. Information is transported from y to x

by messengers (e.g., particles or excitations), each having
an associated energy (or frequency) E. Thermalization
erases the messenger’s memory about y over a timescale
τðEÞ. Thus, we can schematically write

A ¼
Z þ∞

0

dE
Z
J−ðxÞ

d4y σAðE; yÞe−ðx0−y0Þ=τðEÞ; ð23Þ

where σAðE; yÞ quantifies how many messengers with
energy E are emitted from y, and “how much A” they
carry. The Knudsen expansion (10) corresponds, in this
general setting, to a Taylor expansion of σAðE; yÞ around x.
Since, in the light cone, jxj − yjj ≤ x0 − y0, we may write,
schematically (recall: ∂α → 1=L),

σAðE; yÞ ∼
X
n

σAðE; xÞ
n!

�
x0 − y0

L

�
n
: ð24Þ

Plugging (24) into (23), and taking the series outside the
volume integral, we obtain, up to n-independent factors,

A ∼
Z þ∞

0

dE σAðE; xÞ
X
n

�
τðEÞ
L

�
nþ1

: ð25Þ

FIG. 2. Upper panel: Exact viscous density Π00ðt ¼ 0Þ accord-
ing to (20) (dashed) compared to the nonregularized gradient
series (21) (red) truncated at n ¼ 70, and the regularized series
(22) (blue) with n → ∞ and cutoff scale Λ=T ¼ ðKnþ 0.01Þ−1.
Lower panel: Convergence test at Kn ¼ 0.05 (same colors).
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Nowwe see the problem: If τðEÞ is unbounded above, fixed
any L, there is some energy E such that τðEÞ > L, and the
geometric series in (25) diverges for such E. This implies
that we were not allowed to exchange the series in n with
the integral in d4y, and, in general, [67]

A

�Xþ∞

n¼0

σA;n

�
≠
Xþ∞

n¼0

A½σA;n�: ð26Þ

This is precisely the issue with our analytical model. The
relaxation time τp ¼ −uμpμ=g diverges at high energies,
and we cannot take the series (10) outside the integral (8).
The introduction of the energy cutoff resolves the problem
because, if Λ=T < Kn−1, the series (25) converges for all
E ≤ Λ, since (see Fig. 1)

τðEÞ
L

¼ E
gL

≤
Λ
gL

¼ Λ
T
Kn < 1: ð27Þ

The same conclusions apply to all kinetic models of QCD
plasmas [49,68,69], whose τðEÞ (∝ Eq, with q > 0)
diverges at large E (i.e., for jets). According to (25), the
gradient series of all such quark-matter models has a jet-
induced divergence, since, fixed L, τðEÞ ≫ L when
E → ∞.
With similar reasoning, we can also predict the break-

down of all gradient expansions due to stochastic fluctua-
tions [33]. In fact, long-wavelength hydrodynamic
fluctuations can transport information from y to x, and
have decay timescale τðEÞ ∼ E−2 (with E ¼ frequency),
which diverges at small E. This generates an infrared (i.e.,
low E) divergence in (25), consistently with [33].
In the Supplemental Material [70], the above claims are

shown to hold (as rigorous statements) within linear-
response theory.
General flows.—In the above estimates, we always

assumed that ð∂Þn → 1=Ln. This means that our results
apply to sinusoidal and exponential flows, or finite super-
positions thereof. However, different flows attribute differ-
ent weights to each derivative. In Bjorken expansion [77],
where everything scales like ðy0Þ−1, the correct formal
replacement is ð∂Þn → n!=Ln, and (25) becomes

A ∼
Z þ∞

0

dE σAðE; xÞ
X
n

�
τðEÞ
L

�
nþ1

n!; ð28Þ

which diverges independently from the value of τðEÞ. This
explains why Israel-Stewart hydrodynamics has divergent
gradient expansion in Bjorken flow [7], despite having only
one relaxation time. We also understand why Borel
summation gives correct predictions in Bjorken flow [3].
By Borel-summing the series (28), we obtain [78]

Xþ∞

n¼0

�
τðEÞ
L

�
nþ1

n!¼B P:V:
Z þ∞

0

e−t=τðEÞ

L − t
dt; ð29Þ

which has precisely the form of the spacetime integral in
(23), with σAðyÞ that decays like 1=y0. This suggests that
Borel summation “undoes” the gradient expansion, whose
existence was not justified in the first place, and it
reconstructs the original (correct) integral (23) from which
the gradient expansion was (improperly) derived.
The same reasoning can be generalized to arbitrary

flows. For example, suppose that the Taylor expansion
of σAðyÞ has finite radius of convergenceR. Then, for large
n, we have, schematically, ð∂Þn → n!=Rn [79], and

A ∼
Z þ∞

0

dE σAðE; xÞ
X
n

�
τðEÞ
R

�
nþ1

n!: ð30Þ

This explains why, in most realistic flows, where TðxαÞ and
uμðxαÞ are not entire functions, the gradient expansion is
factorially divergent [32]. The general validity of this
argument within linear-response theory is demonstrated
in the Supplemental Material [70].
Conclusions.—Our analysis reveals what infinite-order

hydrodynamics looks like. The stress-energy tensor is still a
functional of the fluid fields fT; uαg, just like in finite-order
hydrodynamics. However, such a functional Tμν½T; uα� is
non-local at infinite order [80]. By causality, TμνðxÞ
depends solely on the restriction of T and uα within the
past lightcone of x. Furthermore, by dissipation, it is mostly
affected by past events that are close to x, as it loses
memory of the far past.
Starting from these observations, we proposed a simple

explanation of why the gradient series (1) often diverges: In
a nutshell, the construction of the gradient series amounts to
interchanging the Taylor series of the fields fT; uαg with
the spacetime integral defining Tμν½T; uα�. This delicate
exchange of limits is often not allowed. In fact, the nth term
of a Taylor expansion diverges like ∼tn at past infinity, and
the usual theorems for exchanging limits and integrals (like
the dominated convergence theorem [67]) do not apply.
In some cases, Borel resummation “brings the series
back inside Tμν,” and it reconstructs the correct functional
Tμν½T; uα�.
So, when does hydrodynamics break down? From our

analytical example, one can give two answers, depending
on the definition of the word “hydrodynamics.”
Definition 1: Broad.—Hydrodynamics is the ability to

express the conserved currents in terms of the fluid
variables alone, e.g., Tμν ¼ Tμν½T; uα�.
Using this definition, we find that hydrodynamics never

breaks down, at any Kn, provided we know the near past of
the fluid (“near past” ≈ “few mean free paths ago”).
Unfortunately, according to Definition 1, solving hydro-
dynamics amounts to solving ∂μTμν½T; uα� ¼ 0, which is, in
general, a convoluted integrodifferential equation.
Definition 2: Narrow.—Hydrodynamics is the ability to

express the conserved currents as local functions of the
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fluid fields and a finite number of derivatives thereof,
e.g., Tμν ¼ TμνðT; uα; ∂T; ∂uα;…; ∂nT; ∂nuαÞ.
In our model, nature conspires to break the validity of the

whole gradient expansion at the same breakdown scale of
Navier-Stokes (Kn ∼ 0.1). Thus, higher derivative correc-
tions do not expand the applicability of the gradient
expansion beyond first order.
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