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3Institut de Physique Théorique, Université Paris Saclay, CNRS, 91191 Gif-sur-Yvette, France

(Received 26 March 2024; accepted 2 June 2024; published 15 July 2024)

Various observables in different four-dimensional superconformal Yang-Mills theories can be computed
exactly as Fredholm determinants of truncated Bessel operators. We exploit this relation to determine their
dependence on the ’t Hooft coupling constant. Unlike the weak coupling expansion, which has a finite
radius of convergence, the strong coupling expansion is factorially divergent, necessitating the inclusion of
nonperturbative, exponentially small corrections. We develop a method to systematically compute these
corrections and discuss the resurgent properties of the resulting transseries.
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Introduction.—The Tracy-Widom distribution is a
powerful tool to analyze a wide range of complex systems
in physics. Discovered in the study of the statistics of the
spacing of eigenvalues in random matrices, it was soon
recognized to describe various phenomena in different
fields, including quantum chaos, directed polymers, the
Kardar-Parisi-Zhang equation, turbulence, etc. The univer-
sality of the Tracy-Widom distribution highlights the
underlying connections between seemingly different physi-
cal phenomena [1].
It was recently recognized [2] that the Tracy-Widom

distribution describes a special class of observables in
interacting four-dimensional superconformal N ¼ 2 and
N ¼ 4 Yang-Mills theories (SYM) with the SUðNcÞ gauge
group. They include the free energy on a sphere, vacuum
expectation values of circular Wilson loops, correlation
functions of infinitely heavy half-BPS operators, and flux
tube correlations. A remarkable feature of these observ-
ables [denoted as F ðgÞ] is that, for an arbitrary ’t Hooft
coupling constant λ ¼ g2YMNc and to leading order in 1=Nc,
they can be expressed as determinants of certain semi-
infinite matrices

eF ðgÞ ¼ det
1≤n;m<∞

½δnm − KnmðgÞ�: ð1Þ

The dependence on the coupling constant g ¼ ffiffiffi
λ

p
=ð4πÞ is

encoded in the properties of the matrixKnmðgÞ. Surprisingly,
it exhibits a universal form across all observables

KnmðgÞ ¼
Z

∞

0

dxψnðxÞχ
� ffiffiffi

x
p
2g

�
ψmðxÞ; ð2Þ

where the functions ψnðxÞ satisfy the orthogonality con-
dition

R
∞
0 dxψnðxÞψmðxÞ ¼ δnm and are given by the

normalized Bessel functions

ψnðxÞ ¼ ð−1Þn ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ l − 1

p
J2nþl−1ð

ffiffiffi
x

p Þ= ffiffiffi
x

p
: ð3Þ

The parameter l is a non-negative integer. The function
χ(

ffiffiffi
x

p
=ð2gÞ) serves as a cutoff function in the integral (2). It

suppresses the contribution from large x, and is convention-
ally called the symbol of the matrix. Its explicit form and
the corresponding value of l depend on the choice of the
observable.
The function (1) is known in the mathematical literature

as a Fredholm determinant of the truncated Bessel
operator [3]. It depends on the symbol function χðxÞ in
a nontrivial way. For χðxÞ ¼ θð1 − xÞ, the determinant (1)
yields the Tracy-Widom distribution; it describes the
eigenvalue spacing at the hard edge of the Laguerre unitary
ensemble [4]. It can be computed explicitly in terms of
solutions to the Painlevé V equation [5].
In application to the four-dimensional SYM theories,

we encounter the symbol functions of different forms:
In planarN ¼ 4 SYM, the expectation value of the circular
Wilson loop is described by (1) and (2) for χWðxÞ ¼
−ð2πÞ2=x2 and l ¼ 2 [6]. The flux tube correlations
correspond to χf:t:ðxÞ ¼ 2=ð1 − exÞ and l ¼ 0, 1 [7–9].
The four-point correlation function of infinitely heavy half-
BPS operators depends on two cross ratios (y and ξ), and it
equals the square of the octagon form factor [10,11]. This

form factor is given by (1) and (2) for χoctðxÞ ¼ ðcosh yþ
cosh ξÞ=ðcosh yþ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ξ2

p
Þ and non-negative inte-

ger l [12–15]. In N ¼ 2 SYM, the free energy on the
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sphere and the circular Wilson loop can be computed
using localization [16]. The leading nonplanar corrections
to both quantities are given by (1) and (2) for χlocðxÞ ¼
−1=sinh2ðx=2Þ and l ¼ 1, 2 [6,17].
The presented examples only hint at the broader appli-

cability of (1) and (2). We anticipate that the function F ðgÞ
when evaluated for various symbol functions χðxÞ, will
enter the calculation of other important observables in
four-dimensional gauge theories.
In this Letter, we describe a systematic approach to

finding the dependence of the function (1) on the coupling
constant for a sufficiently smooth symbol function χðxÞ.
Weak coupling expansion.—At weak coupling, changing

the integration variable in (2) as x → ð2gÞ2x and expanding
the integrand at small g, one obtains KnmðgÞ ¼
O(ðg2Þnþmþl−1). This enables us to expand the determi-
nant (1) in powers of the matrix

F ðgÞ ¼ −trK −
1

2
trðK2Þ − 1

3
trðK3Þ þ…; ð4Þ

where trðKLÞ ¼ Oðg2Lðlþ1ÞÞ. The leading term in (4) is
given by [15]

trK ¼ g2ðlþ1Þ X∞
k¼0

ð−g2Þk qlþkþ1ð2lþ 2kÞ!
k!ð2lþ kÞ!ðlþ kþ 1Þ!2 ; ð5Þ

where qk ¼ 2k
R∞
0 dx x2k−1χðxÞ is a moment of the symbol

function. For this integral to be well defined, the function
χðxÞ has to vanish sufficiently fast at infinity. One can
verify that all the previously defined symbols, except
χWðxÞ, exhibit the behavior χðxÞ ∼ ce−x, where the nor-
malization constant is cf:t:¼−2, coct ¼ 2ðcosh yþ cosh ξÞ,
and cloc ¼ −4.
For χWðxÞ ¼ −ð2πÞ2=x2, it follows from (2) that

KnmðgÞ ∼ g2. As a result, the relation (5) is replaced with
trK ¼ −aðπgÞ2, where a¼16

P
n≥1

R
∞
0 dxψ2

nðxÞ=x¼4=l.
In this case, the weak coupling expansion (4) can be
resummed to all orders leading to the exact result [6]

FWðgÞ ¼ log
�
ΓðlÞð2πgÞ1−lIl−1ð4πgÞ

�
; ð6Þ

where Il−1 is a modified Bessel function of the first kind.
The relation (6) holds for any coupling constant.
As follows from (6), eFWðgÞ is an entire function of the

coupling constant. For the remaining symbols satisfying
χðxÞ ∼ ce−x as x → ∞, the weak coupling expansion (4)
exhibits a finite radius of convergence. Indeed, replacing
the moments in (5) with their large k behavior qk ∼ cð2kÞ!,
we obtain

trK ∼ ð−1Þl c
4π

log ðg2 − g2⋆Þ; ð7Þ

where g2⋆ ¼ −1=16, or equivalently, λ⋆ ¼ −π2. Repeating
the same analysis for trðKLÞ, one finds that each term of the
expansion (4) has a logarithmic singularity at g2 ¼ g2⋆,
leading to

F ðgÞ ∼ κ log ðg2 − g2⋆Þ; ð8Þ
where κ ¼ arcsinðc=2Þðarcsinðc=2Þ − ð−1ÞlπÞ=ð2π2Þ.
Strong coupling expansion.—The strong coupling

expansion of (1) takes the form [2]

F ðgÞ ¼ −gA0 þ
1

2
A2
1 log gþ Bþ fðgÞ þ ΔfðgÞ; ð9Þ

where the coefficients depend on the symbol function and
parameter l. The first three terms on the right-hand side
of (9) follow from the Szegő-Akhiezer-Kac formula for
the truncated Bessel operator [15]. The two remaining
terms in (9) describe corrections vanishing at large g.
The function fðgÞ is given by an asymptotic series

fðgÞ ¼
X∞
k¼1

Akþ1

2kðkþ 1Þ g
−k: ð10Þ

The expansion coefficients can be found to any order using
the method of differential equations [5,18,19]. The first few
coefficients look as [14,15]

A0 ¼ 2I0; A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
β − l2

q
;

A2 ¼ −
ð4l2

β − 1Þ
4

I1; A3 ¼ −
3ð4l2

β − 1Þ
16

I21;

A4 ¼ −
ð4l2

β − 1Þ½16I31 þ ð4l2
β − 9ÞI2�

128
…: ð11Þ

Here the notation lβ ¼ lþ β was introduced, where β
defines the behavior of the symbol function at the origin
1 − χðxÞ ∼ bx2β as x → 0. For the symbol functions defined
above, we have βloc ¼ −βoct ¼ 2βf:t: ¼ −1. The expression
for the coefficient B in (9) is more involved, and it can be
found in [15].
The functions In ¼ InðχÞ are defined as

InðχÞ ¼
Z

∞

0

dx
π

ðx−1∂xÞn
ð2n − 1Þ!! x∂x log½1 − χðxÞ�; ð12Þ

where n ≥ 0. For the symbols under consideration, they can
be expressed in terms of odd Riemann zeta values

Ilocn ¼ −Ioctn ¼ 2If:t:n ¼ ð−1Þn−1ð1 − 22−2nÞ 2ζ2n−1
π2n−1

: ð13Þ

Here the octagon function Ioctn is evaluated for ξ ¼ y ¼ 0.
We will use this specific case throughout our analysis.
In general, for any value of ξ and y, the function Ioctn can be
expressed in terms of ladder integrals [15].
Notice that all coefficients (11), except A1, depend on

the parameters l and β only through their sum lβ. For
lloc ¼ loct þ 2 we have lloc

β ¼ loct
β and, in virtue of (13),

the coefficients satisfy Aloc
k ¼ ð−1Þkþ1Aoct

k for k ≥ 1.
Together with (10), this leads to [2]

flocðgÞ ¼ foctð−gÞ: ð14Þ
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This relation is formal because the expansion coefficients
Ak grow factorially at large k. As a consequence, the
series (10) is only asymptotic, and it is plagued with Borel
singularities.
For the strong coupling expansion (9) to be well defined,

it has to be supplemented with the nonperturbative,
exponentially small corrections ΔfðgÞ. For the symbol
functions introduced above, they take the form of the
transseries [2,20]

ΔfðgÞ¼
X
n≥1

ðgae−8πgx1Þn
�
AðnÞ
1 þ

X∞
k¼1

AðnÞ
kþ1

2kðkþ1Þg
−k
�
; ð15Þ

where a ¼ 0 for the flux tube and a ¼ 1 in the other cases,
while x1 is a solution to χð2iπx1Þ ¼ 1 closest to the origin
[see (22) and (23) below]. Our next step is to develop a
systematic method to compute the expansion coefficients

AðnÞ
kþ1 and then investigate the resurgent properties of the

series (15).
Nonperturbative corrections.—Truncated Bessel opera-

tor: It is advantageous to represent the semi-infinite matrix
(2) as defining the matrix elements Knm ¼ hψnjKχ jψmi of
an integral operator

KχϕðxÞ ¼
Z

∞

0

dyKðx; yÞχ
� ffiffiffi

y
p
2g

�
ϕðyÞ; ð16Þ

where ϕðxÞ is a test function, and Kðx; yÞ is given by an
infinite sum of normalized Bessel functions (3), Kðx; yÞ ¼P

n≥1 ψnðxÞψnðyÞ.
The determinant of the semi-infinite matrix in (1)

coincides with a Fredholm determinant of the operator (16)

F ðgÞ ¼ log detð1 − KχÞ: ð17Þ
Using the method of differential equations [5,18,19],
one can show that the function F ðgÞ satisfies the
equation [8,14,15]

∂gF ðgÞ¼−
1

2

Z
∞

0

dzz∂zχðzÞq2ðz;gÞ∂z∂g logqðz;gÞ; ð18Þ

where qðz; gÞ is an auxiliary function. It is defined as a
matrix element of the resolvent of the truncated Bessel
operator (16)

qðz; gÞ ¼ hxj 1

1 − Kχ
jϕ0i; z ¼ ffiffiffi

x
p

=ð2gÞ; ð19Þ

where ϕ0ðxÞ ¼ Jlð
ffiffiffi
x

p Þ is a reference state.
The function (19) has the following properties. It is an

entire function of z for any g and has a parity qð−z; gÞ ¼
ð−1Þlqðz; gÞ. In addition, it satisfies an infinite system of
integral equationsZ

∞

0

dx(1 − χðxÞ)J2nþl−1ð2gxÞqðx; gÞ ¼ 0; ð20Þ

where n ≥ 1, as well as a differential equation [14,15]
�ðg∂gÞ2 þ 4g2x2 − l2 þ 2g2∂2gF ðgÞ�qðx; gÞ ¼ 0: ð21Þ

Notice that this equation involves F ðgÞ, which depends on
qðx; gÞ in a nontrivial way [see (18)].
By combining relations (18), (20), and (21), we can

compute the derivative ∂gF ðgÞ for any coupling constant g.
Asymptotic solution: To solve the Eqs. (20) and (21) at

strong coupling, we perform a Wiener-Hopf-type decom-
position of the symbol function

1 − χðxÞ ¼ bx2βΦðxÞΦð−xÞ; ð22Þ
where β is a (half) integer. The functionΦðxÞ is normalized
as Φð0Þ ¼ 1, and it takes the form

ΦðxÞ ¼
Y
n¼1

1 − ix
2πxn

1 − ix
2πyn

: ð23Þ

It is analytic in the upper half plane and has an infinite set
of poles and zeros located at x ¼ −2iπxn and x ¼ −2iπyn,
respectively. The symbol function (22) is represented by the
parameters b; β; xn; yn (with n ≥ 1).
The symbol functions introduced above have the

form (22), e.g.,

ΦlocðxÞ ¼
1

ΦoctðxÞ
¼ ½Φf:t:ðxÞ�2 ¼ π

�
Γð1 − ix

2πÞ
Γð1

2
− ix

2πÞ
�
2

: ð24Þ

Notice that the poles and zeros of the first two functions
are double degenerate. Moreover, the poles of one coincide
with the zeros of the other, and vice versa, e.g., xoctn ¼
ylocn ¼ n and yoctn ¼ xlocn ¼ n − 1

2
[21].

Equations (20) and (21) play complementary roles in
determining the function qðx; gÞ: The former can be used to
derive the correct ansatz for qðx; gÞ at strong coupling, and
the latter serves the purpose of fixing all the remaining
unknown parameters within the chosen ansatz.
The integral equation (20) can be solved at strong

coupling using an approach presented in [2]. The resulting
expression for qðx; gÞ looks as

qðx; gÞ ¼ e2igx

Φð−xÞ hðx; gÞ þ ð−1Þl e
−2igx

ΦðxÞ hð−x; gÞ: ð25Þ

The coefficient function hðx; gÞ is given by a transseries
running in powers of e−8πgxn , where the parameters xn are
defined in (23). For the cases in (24), xn becomes an integer
multiple of x1, leading to the strong coupling expansion of
hðx; gÞ being

hðx; gÞ ¼
X
n≥0

e−8πgx1n
X
k≥0

hðnÞk ðxÞg−k−1=2: ð26Þ

The requirement for qðx; gÞ to be an entire function of x
imposes an additional constraint on the function hðx; gÞ.

PHYSICAL REVIEW LETTERS 133, 031601 (2024)

031601-3



It follows from the condition that the product ½1 − χðxÞ�
qðx; gÞ has to vanish for x → −2πixn [see (22) and (23)].
Depending on the explicit form of xn in (24), we have to
distinguish two cases. For xoctn ¼ nx1, we replace qðx; gÞ
with (25) and (26) to get from the above condition (for
n ≥ 1),

lim
x→−2iπnx1

hðnÞk ðxÞΦðxÞ ¼ ð−1Þlþ1hð0Þk ð2iπnx1ÞΦð2iπnx1Þ:

ð27Þ
For xlocm ¼ ð2m − 1Þx1, the relation (27) holds for odd
n ¼ 2m − 1. For even n ¼ 2m, the right-hand side of (27)
should vanish in order to avoid the appearance of unphys-
ical poles of qðx; gÞ at x ¼ −4iπmx1.
The left-hand side of (27) is different from zero only if

hðnÞk ðxÞ has a pole at x ¼ −2iπnx1. Equation (27) expresses
the residues of hðnÞk ðxÞ at this pole in terms of the

“perturbative” coefficient function hð0Þk ð2iπnx1Þ.
Substituting (25) and (26) into (21) yields additional

relations for the coefficient functions hðnÞk ðxÞ. Solving these
relations allows us to determine the coefficient functions

hðnÞk ðxÞ and subsequently compute the expansion coeffi-
cients in the transseries (15).
As a first step, we plug (9) and (25) in (21) and equate

to zero the coefficients of 1=gk and e−8πgx1n. For n ¼ 0, this

gives hð0Þk ðxÞ in terms of the coefficients Að0Þ
m ≡ Am (with

m ≤ k) defined in (10) and (11). For n ¼ 1, we find that

hð1Þk ðxÞ has poles at x ¼ −2πix1. Their residues depend on

the coefficients Að1Þ
m (withm ≤ k). Substituting the resulting

expressions for hð0Þk ðxÞ and hð1Þk ðxÞ into (27) we obtain the
relations between the Að1Þ and Að0Þ coefficients. Following
the same procedure for n ≥ 2, we can iteratively compute

all coefficients AðnÞ
m in terms of the leading coefficients Am

defined in (11).
To carry out the above procedure, we have to specify the

symbol function (22) and (23).
Results.—In the case of the flux tube, for l ¼ 0 and

lβ ¼ −1=2, we find from (11) that A0 ¼ −π=2, A2
1 ¼ 1=4,

and An ¼ 0 for n ≥ 2. According to (24), the function
Φf:t:ðxÞ has zeros at x1 ¼ 1=2 and xn ¼ ð2n − 1Þx1. Going
through the calculation, we determined the coefficients

AðnÞ
1 ¼ ð1 − 3ð−1ÞnÞ=ð8nÞ and AðnÞ

k≥2 ¼ 0, and finally
obtained from (9) and (15)

F f:t:ðgÞ ¼
gπ
2
þ 1

8
log

�
gπ
2

�
þ
X
n≥1

AðnÞ
1 e−4πgn

¼ 3

8
log coshð2πgÞ − 1

8
log

sinhð2πgÞ
2πg

ð28Þ

in agreement with the known exact result [2]. Similar
formulas can be obtained for higher l’s too.

For the two remaining symbols, the perturbative part
of (9) is given by the asymptotic series foctðgÞ and flocðgÞ
depending on loct and lloc, respectively. For lloc ¼
loct þ 2, they are related to each other by the sign change
of the coupling constant [see (14)]. The calculation of the
nonperturbative correction (15) becomes more intricate
compared to the previous case because the zeros xoctn and
xlocn are double degenerate. This can be handled by slightly
splitting them a bit away, performing the calculations and
taking the coinciding limit carefully.
To save space, we present only the first few terms of the

transseries (15) evaluated for lloc ¼ 2 and loct ¼ 0. For the
octagon, we find [22]

ΔfoctðgÞ ¼
iπg0

4
e−8πg

�
1 −

7

4ð4πg0Þ −
63

32ð4πg0Þ2
�

þ ðπg0Þ2
32

e−16πg
�
1þ

81i
4
− 7

2

4πg0
þ − 1431i

32
− 3

4

ð4πg0Þ2
�
þ…;

ð29Þ
where we changed the expansion parameter to g0 ¼ gþ
logð2Þ=π to avoid the appearance of log(2). Similarly,

ΔflocðgÞ ¼ 2iπg00e−4πg
�
1þ 8 log 2þ 1

2

4πg00
þ 12 log 2 − 15

8

ð4πg00Þ2
�

þ 2ðπg00Þ2e−8πg
�
1þ 16 log 2þ 1

4πg00

þ 64log22þ 32 log 2 − 3

ð4πg00Þ2
�
þ…; ð30Þ

where g00 ¼ g − logð2Þ=π. The two couplings are related as
g0 → −g00 for g → −g. The transseries (29) and (30) has a
different form and does not satisfy the relation (14).
A close examination shows that the series in (29) and (30)

suffers from Borel singularities. Since the sum of functions
fðgÞ þ ΔfðgÞ in (9) must be unambiguous, there exist
highly nontrivial resurgence relations between the perturba-
tive series (10) and those appearing in (29) and (30).
Resurgence relations.—To investigate the resurgence

properties of the strong coupling expansion (9), we
performed a high-precision calculation of the first 400
terms of the perturbative series foctðgÞ. It proves convenient
to change the expansion parameter to g0 ¼ gþ logð2Þ=π.
Analysis of the numerical data revealed a factorial

behavior in the expansion coefficients

foctðgÞ ¼
X
n≥1

αn
ð4πg0Þn ; αn ∼ Γnþ1; ð31Þ

where Γnþ1 is the shorthand notation for Γðnþ 1Þ. We
therefore expect that a generalized Borel transformation

BδðsÞ ¼
X∞
n¼0

αn
snþδ

Γnþδþ1

ð32Þ
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should have singularity for real s. Indeed, we used the first
400 terms in (32) to construct the diagonal Padé approx-
imant for Bδ¼0ðsÞ. We observed that its poles condense on
the real axis for s < −1 and s > 2, indicating that the Borel
transform has cuts along the real axis that start at s ¼ −1
and s ¼ 2, and potentially extend to higher values as well.
Based on numerical studies, we can parametrize the large

order behavior of the coefficients (31) as

αn ¼
X
k≥0

ð−1Þn
�
að1Þk Γnþ1−k þ að2Þk

Γnþ2−k

2nþ2−k þ…

�

þ
X
k≥0

�
bð1Þk

Γnþ1−k

2nþ1−k þ bð2Þk
Γnþ2−k

4nþ2−k þ…

�
: ð33Þ

The terms on the first and second lines are of the form

ð−1ÞnaðpÞk Γnþp−k=pnþp−k and bðpÞk Γnþp−k=ð2pÞnþp−k,
respectively, with p positive integers. They produce cuts
of the Borel transform (32) at s ¼ −1;−2;… and s ¼
2; 4;… related to the locations of the nonperturbative
corrections (15). These are logarithmic cuts for δ ¼ 0
and square root cuts for half-integer δ.
Choosing δ ¼ 1

2
, we can desingularize the square root

cut of B1
2
ðsÞ at s ¼ −1 by a coordinate change in the Borel

plane [23,24]. This allowed us to extract the coefficients

að1Þk for k ¼ 0; 1;… with 65; 61;… digit precisions (see

Table I). Similarly, we extracted the coefficients bð1Þk with
42; 40;… digits precision from the behavior of B1

2
ðsÞ

around s ¼ 2. We found that these coefficients grow
factorially at large k,

bð1Þk ¼ −
2

π

�
cð2Þ0

Γkþ1

2kþ1
þ cð2Þ1

Γk

2k
þ cð2Þ2

Γk−1

2k−1
þ � � �

�
: ð34Þ

We extracted the coefficients að2Þk for k ¼ 0; 1; 2;… with
23; 20; 17;… digits precision from the behavior of B3

2
ðsÞ

around s ¼ −2 and the bð2Þk ; cð2Þk coefficients with 8; 6; 5;…
digits from the behavior around s ¼ 4.
We verify that in complete agreement with the resurgence

relations (see reviews [25,26] and references therein), the

ratio of the coefficients bð1Þk =bð1Þ0 and ðbð2Þk þ cð2Þk Þ=bð2Þ0

coincides with the coefficients of 1=ð4πg0Þk in the two
series on the first and second lines of (29), respectively.

This ensures that the ambiguities generated by Borel
singularities cancel in the sum foctðgÞ þ ΔfoctðgÞ. In par-
ticular, the imaginary part arising from integrating the Borel
transform slightly above the real axis,

foctðgÞ ¼ 4πg0
Z

∞eiε

0

dsB0ðsÞe−4πg0s; ð35Þ

cancels against the imaginary part coming from the non-
perturbative function ΔfoctðgÞ. Consequently, foctðgÞ þ
ΔfoctðgÞ approximates a real function of g.

We also observe that the ratio of the coefficients að1Þk =að1Þ0

and að2Þk =að2Þ0 (see Table I) coincide with the coefficients
of 1=ð4πg0Þk in the two series on the first and second lines
of (30), respectively. This property is an immediate
consequence of the relation (14), which implies that the
Borel transforms of flocðgÞ and foctðgÞ are related to
each other as Bloc

0 ðsÞ ¼ Boct
0 ð−sÞ. Thus, the discontinuity

of Boct
0 ðsÞ across the cuts at negative s has to match

nonperturbative corrections to the function ΔflocðgÞ.
This suggests that, for lloc ¼ loct þ 2, the transseries

foctðgÞ þ ΔfoctðgÞ and flocðgÞ þ ΔflocðgÞ define the
asymptotic expansion of the same function, FðgÞ and
Fð−gÞ, respectively, across the Stokes line at ReðgÞ ¼ 0.
We verified that our analytical results for F octðgÞ and

F locðgÞ [see (9)] agree with high-precision numerical
evaluation of the determinant (1) for various values of g.
By combining the weak and strong coupling expansions,
we can effectively determine the two functions for any
given value of the ’t Hooft coupling.
Finding nonperturbative corrections at strong coupling is

a notoriously difficult problem. Currently, there are very
few examples of resurgence in N ¼ 4 SYM [20,27–30].
Our results provide a systematic treatment and new insights
into the strong coupling regime of four-dimensional super-
conformal gauge theories, inviting further investigations
within the AdS/CFT correspondence. In a dual string
theory description, the obtained nonperturbative correc-
tions might arise from world-sheet instantons describing
specific world-sheet configurations that are intricately
linked with the observables under study. In addition, the
technique outlined above has important applications for
determining the asymptotic behavior of determinants of
Bessel operators (see, e.g., [3,31]).

TABLE I. The coefficients of the strong coupling expansion extracted from the generalized Borel transform.

að1Þ0 ¼ −1=32π að1Þ1 =að1Þ0 ¼ 8 log 2þ 1
2

að1Þ2 =að1Þ0 ¼ 12 log 2 − 15
8

að2Þ0 ¼ −i=1024π að2Þ1 =að2Þ0 ¼ 16 log 2þ 1 að2Þ2 =að2Þ0 ¼ 64ðlog 2Þ2 þ 32 log 2 − 3

bð1Þ0 ¼ −16=π bð1Þ1 =bð1Þ0 ¼ − 7
4

bð1Þ2 =bð1Þ0 ¼ −63=32

bð2Þ0 ¼ −256i=π bð2Þ1 =bð2Þ0 ¼ − 7
2

bð2Þ2 =bð2Þ0 ¼ − 3
4

cð2Þ0 ¼ 0 cð2Þ1 =bð2Þ0 ¼ 81i=4 cð2Þ2 =bð2Þ0 ¼ −1431i=32
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