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We show that strong subadditivity provides a simple derivation of the g theorem for the boundary
renormalization group flow in two-dimensional conformal field theories. We work out its holographic
interpretation and also give a derivation of the g theorem for the case of an interface in two-dimensional
conformal field theories. We also geometrically confirm strong subadditivity for holographic duals of
conformal field theories on manifolds with boundaries.
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Introduction—Strong subadditivity (SSA) [1,2]

SAB þ SBC − SABC − SB ≥ 0; ð1Þ
is a fundamental property which explains the nature of
quantum information in the form of certain monotonicity
relation, analogous to the second law of thermodynamics.
For example, SSA shows that the conditional mutual
information is non-negative. Here, we write the entangle-
ment entropy for the subsystem A as SA. To define SA, we
introduce the reduced density matrix ρA by tracing the
density matrix for the whole system over the complement
of the region A and then consider its von Neumann
entropy SA ¼ −TrρA log ρA.
SSA also plays an important role in quantum field

theories (QFTs) as it offers a universal property for the
degrees of freedom under the renormalization group (RG)
flow. Indeed we can derive the c theorem [3] in two-
dimensional (2D) QFTs and the F theorem [4] in 3D QFTs
from the SSA relation (1). The a theorem in 4D QFTs was
shown via a more elaborate method in [5].
Let us briefly recount the entropic c theorem in the 2D

case [3]. Consider the entanglement entropy SA for an
interval A. We write its Lorentz invariant length as jAj ¼ l,
and then the entropy becomes a function of l, which is
expressed as SAðlÞ. It is also useful to rewrite SSA (1) as

SA þ SB ≥ SA∪B þ SA∩B; ð2Þ

where we regard AB and BC in (1) as A and B, respectively.
By taking advantage of the relativistic invariance of 2D

QFT, we can choose the subsystems A;B;A∩B, and A ∪ B
as in Fig. 1. If we set jA ∩ Bj ¼ l1 and jA ∪ Bj ¼ l2, then
we find jAj ¼ jBj ¼ ffiffiffiffiffiffiffi

l1l2
p

. Thus, SSA (2) leads to the
inequality 2SAð

ffiffiffiffiffiffiffi
l1l2

p Þ ≥ SAðl1Þ þ SAðl2Þ, which implies
that SA is concave as a function of log l:

d
dl

�
l
dSAðlÞ
dl

�
≤ 0: ð3Þ

The entanglement entropy for 2D CFT vacua is known to
take the form SA ¼ ðc=3Þ logðl=ϵÞ, where c is the central
charge and ϵ is the UV cutoff [6]. Therefore, we can regard
CðlÞ ¼ 3l½dSAðlÞ=dl� as an effective central charge at the
length scale l. In this way, the inequality (3) shows the c
theorem, which states that the degrees of freedom mono-
tonically decrease under the RG flow.
Even though the c theorem was originally derived using

the more traditional field-theoretic method [7], the above
SSA argument provides us with a much simpler derivation
and shows that at its essence lies the monotonicity of
quantum information.
The purpose of this Letter is to extend this beautiful

and geometrical derivation of the important monotonicity
of QFTs, using the entanglement entropy, to cases with

FIG. 1. The setup of deriving entropic c theorem.
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boundaries or defects when their bulk theories are con-
formally invariant.
Entropic derivation of the g theorem for BCFTs—

Consider a 2D CFT on a 2D Lorentzian flat spacetime,
whose coordinates are denoted by ðx; tÞ and put a timelike
boundary at x ¼ 0 by limiting the spacetime to the right
half plane x ≥ 0. When the boundary condition at x ¼ 0
preserves a half of the bulk conformal invariance, this
theory is called a boundary conformal field theory
(BCFT) [8].
It is known that the entanglement entropy for an interval

Awhich stretches from the boundary x ¼ 0 to a point x ¼ ξ
at any time t ¼ t0, takes the form [9]

SA ¼ c
6
log

2ξ

ϵ
þ log g; ð4Þ

where ϵ is the UV cutoff and log g is called the boundary
entropy.
Even if we deform the subsystem (called A0) such that it

ends on ðξ; t0Þ and a boundary point x ¼ 0 at a time
t0 − ξ < t < t0 þ ξ, which is within the domain of depend-
ence of A (and its mirror), the entanglement entropy does
not change, i.e., SA ¼ SA0 . See Fig. 2 for a sketch. This is
true for any relativistic field theory with a boundary and is
due to the complete reflection at the boundary.
Now, we break the conformal invariance at the boundary

by a relevant boundary perturbation
R
dtOðt; x ¼ 0Þ. The

basic property that the degrees of freedom at the boundary
monotonically decrease under the boundary RG flow is
known as the g theorem [10]. The g theorem argues that the
boundary entropy log g in (4) as a function of length scale,
so-called the g function, is monotonically decreasing under
the boundary RG flow. This theorem was proved by
examining the boundary RG flow in [11], by using a
symmetry argument in [12], and by calculating the relative
entropy in [13,14]. For higher dimensional versions of g
functions, refer to [12,15–25].
Below, we would like to present another simpler deri-

vation of the g theorem directly from SSA. Consider the

Lorentzian setup of Fig. 3 and the implication of SSA:

ΔS ≔ SA þ SB − SA∪B − SA∩B ≥ 0: ð5Þ

We write the entanglement entropy SA for an interval A as
Sðx1; t1; x2; t2Þ, whose end points are set to be P1∶ ðx1; t1Þ
and P2∶ ðx2; t2Þ. When P1 is situated at the boundary
x1 ¼ 0, then the entanglement entropy SA only depends on
x2 as we already explained in Fig. 2, and we write this
as SdisðxÞ.
Now we choose the subsystems such that each of the

spacelike intervals A;B; A ∪ B, and A ∩ B connects two
points on the two null lays which intersect at the point ðs; sÞ
and such that they satisfy jAjjBj ¼ jA ∪ BjjA ∩ Bj, as
illustrated in Fig. 3. Then, their entanglement entropies
are described by

SA∪B ¼ Sdisð2s − wÞ; SA∩B ¼ Sðu; u; 2s − v; vÞ;
SA ¼ Sdisð2s − vÞ; SB ¼ Sðu; u; 2s − w;wÞ; ð6Þ

where we assume w < v < s and s > 0. Below, we
appropriately choose the values of s, u, v, and w to obtain
the tightest bound from SSA.
First, we take the limit u → s, where B and A ∩ B

become lightlike, which is equivalent to the zero width or
equally the UV limit. We can understand this by regarding
the two-point function of twist operators, which computes
the entanglement entropy as a four-point function via the
mirror method, which is factoring into a square of two-
point functions of null-separated twist operators. More-
over, this claim is also obvious in the holographic dual of
BCFTs [26–28], where the extremal surface dual to SA is
localized near the boundary.
Therefore, in this limit, we can approximate SB and SA∩B

by their values in the CFT vacuum ignoring the presence of
the boundary at x ¼ 0:

SB ≃
c
3
log

jBj
ϵ

¼ c
6
log ½4ðs − uÞðs − wÞ=ϵ2�;

SA∩B ≃
c
3
log

jA ∩ Bj
ϵ

¼ c
6
log ½4ðs − uÞðs − vÞ=ϵ2�: ð7Þ

FIG. 2. Sketches of subsystem A and A0 entanglement entropy
in a 2D BCFT on a half plane x > 0. Since they have the same
domain of dependence (blue region), we find SA ¼ SA0 .

FIG. 3. The Lorentzian setup for the SSA in a 2D BCFT.
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Thus, ΔS defined in (5) is evaluated to be

ΔS ¼ Sdisð2s − vÞ − Sdisð2s − wÞ þ c
6
log

s − w
s − v

: ð8Þ

Next, we take the value of v very close to w by setting
v ¼ wþ δ, where δ is an infinitesimally small and positive
constant. Then (8) can be rewritten as

ΔS ¼ δ

�
−
dSdisðξÞ

dξ

����
ξ¼2s−w

þ c
6

1

s − w

�
: ð9Þ

Finally, by assuming w < 0 and taking s to be very small
such that s ≪ jwj, we find that the SSA ΔS ≥ 0 gives the
tightest bound:

ξ
dSdisðξÞ

dξ
≤
c
6
; ð10Þ

where ξ ≃ −w > 0 takes an arbitrary positive value.
Now we define the entropic g function gðξÞ at the length

scale x by

log gðξÞ ≔ SdisðξÞ −
c
6
log

2ξ

ϵ
; ð11Þ

such that it gives the boundary entropy at each fixed point
following the formula (4). Then SSA (10) leads to the
inequality:

d
dξ

log gðξÞ ≤ 0: ð12Þ

This completes the derivation of the entropic g theorem.
Our proof has the crucial advantage that we only use the

SSA property of entanglement entropy, which reveals the
essential reason why the g theorem holds. The earlier
quantum information theoretic proof [13,14] requires
calculations of relative entropy between the IR and UV.
In our approach, we only need the ground state wave
function and its boosts. Therefore, it has tractable counter-
parts in lattice theories or quantum many-body systems.
One more benefit is that since our formulation of the g
function involves only entanglement entropy, it is directly
connected to holography as we will see later.
Entropic g theorem for interface CFTs—Next, we extend

our previous derivation of the g theorem to interfaces in 2D
CFTs. Consider a 2D CFT with central charge c on the
ðx; tÞ plane and place an interface along x ¼ 0 as depicted
in Fig. 4. If the interface preserves half of the bulk
conformal symmetry, a so-called interface CFT [29–31],
then the entanglement entropy SintðξÞ for the interval −ξ ≤
x ≤ ξ at any time t0 takes the form

SintðξÞ ¼
c
3
log

2ξ

ϵ
þ log gI; ð13Þ

where the constant log gI is the interface entropy. When we
consider a relevant perturbation localized on the interface,

the entropic g theorem for interface CFTs claims that the
entropic g function

log gIðξÞ ¼ SintðξÞ −
c
3
log

2ξ

ϵ
; ð14Þ

is monotonically decreasing as a function of ξ. Refer to [32]
for an earlier attempt toward an entropic g theorem. The
main improvement in this article from [32] is to apply SSA
to a setup which is symmetric about the interface which
allows us to give a complete derivation of g theorem. This is
because the g function in the interface CFT becomes
ambiguous if we allow asymmetric choices of the interval.
Refer also to [33] for an interesting implication from SSA
when one of the end points of the interval A is chosen to sit
at the interface.
Our argument goes in parallel with our previous one in

BCFTs. By doubling the setup of Fig. 2, we choose the
subsystems depicted in Fig. 4. We have two copies of
the boosted subsystems, each of which is identical to the
ones A; B;… in Fig. 2, named as A1; B1;… and A2; B2;….
Then we set A ¼ A1 ∪ A2 and B ¼ B1 ∪ B2 in the SSA
relation (5). In the u → s limit, this inequality leads to

ΔS ¼ Sintð2s − vÞ − Sintð2s − wÞ þ c
3
log

s − w
s − v

; ð15Þ

which is a straightforward extension of (8). As in the BCFT
case, we further consider the limit v → w and s ≪ jwj, and
we finally obtain

ξ
dSintðξÞ

dξ
≤
c
3
; ð16Þ

which is equivalent to the g theorem ½d log gIðξÞ=dξ� ≤ 0.
We would like to mention that the above analysis can be

straightforwardly extended to the case where the CFT in the
left and right half have different central charges c1 and c2.
We just need to simply replace c with ðc1 þ c2Þ=2.

FIG. 4. The Lorentzian setup for the SSA in a 2D interface
conformal field theory. The horizontal dotted intervals provide
the g function.
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Holographic SSA and the null energy condition—The
anti–de Sitter/conformal field theory (AdS/CFT) correspon-
dence argues that gravity on a dþ 1 dimensional AdS space-
time is equivalent to a d dimensional CFT [34–36]. In AdS/
CFT, we can calculate the entanglement entropy SA in a geo-
metrical way, known as the holographic entanglement
entropy (HEE) [37–39]. It is computed from the area of an
extremal surface ΓA, denoted by jΓAj, which ends on the
boundary of and is homologous to the subsystemA in AdS as

SA ¼ jΓAj
4GN

; ð17Þ

where GN is the Newton constant in the AdS gravity.
Interestingly, this HEE allows us to derive SSA in a more
geometrical way [40,41], which essentially follows from the
triangle inequality in classical geometry.
We can extend the AdS/CFT correspondence to the

gravity dual of a CFT on a manifold with boundaries by
introducing end-of-the-world (EOW) branes [26–28],
called the AdS/BCFT correspondence. On the EOW brane,
we impose the Neumann boundary condition

Kab − Khab ¼ 8πGNT
ðEÞ
ab ; ð18Þ

where hab; Kab, and TðEÞ
ab are the induced metric, extrinsic

curvature, and matter energy stress tensor on the EOW
brane. The HEE in AdS/BCFT is again given by the
formula (17) with an important addition that the extremal
surface ΓA can end on an EOW brane [26,27]. This can be
viewed as a change in the homology constraint such that ΓA
is homologous to A relative to the EOW brane.
For a 2D CFT defined on a space with a boundary, its

gravity dual is given by a region of 3D AdS (AdS3)
surrounded by an EOW brane. Assuming the pure gravity
theory in the bulk, we can always choose the metric to be
that of the pure AdS3

ds2 ¼ dz2 − dt2 þ dx2

z2
: ð19Þ

We specify the profile of EOW brane by z ¼ zðxÞ such that
zð0Þ ¼ 0 as in Fig. 5, assuming that it is static. The gravity
dual is given by the region z < zðxÞ. The cutoff ϵ of the z
coordinate is identified with the UV cutoff ϵ of the dual
CFT. When zðxÞ ∝ x, the boundary preserves the con-
formal invariance, i.e., becomes a 2D BCFT. In general, the
nontrivial profile of zðxÞ encodes the detailed information
of the boundary RG flow (see, e.g., [42] for an example).
Let us calculate the HEE by using this 3D holographic

setup and compare it with our previous arguments for the g
theorem. When the subsystem A is given by an interval
which stretches from the boundary x ¼ 0 to a point x ¼ ξ at
any time, the HEE SA is given by

SdisðξÞ ¼
c
6
jΓPj: ð20Þ

For this, let us calculate the length of the geodesic ΓP,
which connects between a given point P on the AdS
boundary ðz; xÞ ¼ ðϵ; ξÞ and a point Q on the EOW brane,
described by ðz; xÞ ¼ ðzðaÞ; aÞ. The value of a is fixed by
minimizing ΓP as a function of a. Notice that since the
EOW brane is static, ΓP is on a constant time slice, leading
to SA ¼ SA0 in Fig. 2.
Since the geodesic ΓP is orthogonal to the EOW brane at

Q and is given by a part of a circle in ðx; zÞ plane, we find
the relation between ξ and a:

ξ ¼ a −
zðaÞ
żðaÞ þ zðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

żðaÞ2
s

; ð21Þ

and the length of the geodesic is computed as

jΓPj ¼ log

�
2zðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ żðaÞ2

p
ϵð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ żðaÞ2

p
þ 1Þ

�
: ð22Þ

For example, if we set zðxÞ ¼ λx, then we find

Sdis ¼
c
6
jΓPj ¼

c
6
log

2ξ

ϵ
−
c
6
log

�
1

λ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

λ2

r �
; ð23Þ

which leads to the standard form of the entanglement
entropy (4) in 2D BCFT.
For a generic profile z ¼ zðxÞ, we obtain

6

c
ξ
∂SdisðξÞ

∂ξ
− 1 ¼ az0ðaÞ − zðaÞ

zðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðaÞ2

p : ð24Þ

The non-negativity of this quantity is equivalent to the SSA
condition (10). Indeed, we can find that (24) is non-negative

if we assume the null energy condition, i.e., TðEÞ
ab n

anb ≥ 0

for any null vector na in AdS3. The null energy condition on
the EOW brane leads to the condition z00ðxÞ ≤ 0 as shown
in [26,27], where a holographic g theorem was derived. This
allows us to guarantee az0ðaÞ − zðaÞ ≤ 0. This is found as
follows: first, in the UV limit a → 0, we expect the boundary
to become conformal, which means zðaÞ ∝ a, leading to

FIG. 5. The calculation of geodesic length in AdS3=BCFT2.
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az0ðaÞ − zðaÞ ¼ 0 at a ¼ 0. Moreover, the derivative
½az0ðaÞ − zðaÞ�0 ¼ z00ðaÞ is nonpositive due to the null
energy condition. Thus, these manifestly show az0ðaÞ−
zðaÞ ≤ 0. In this way, SSA in the setup of Fig. 1 precisely
requires that the classical gravity satisfies the null energy
condition in the gravity dual.
Holographic SSA in static backgrounds—In the above

calculations of SSA, it was crucial that we considered the
Lorentzian setup taking advantage of boost operations in
relativistic QFTs. On the other hand, if we assume all
subsystems (A;…) and the dual extremal surfaces (ΓA;…)
are on the same time slice t ¼ t0, then we can show that the
HEE always satisfies SSA for any profile of the EOW
branes at t ¼ t0 as we show below (see also [43,44] for
earlier confirmation of SSA in particular examples). More
generally, this claim can also be applied to a setup with a
time reversal symmetry ðt − t0Þ → −ðt − t0Þ. Note that this
does not contradict the null energy condition because we
can compensate for the arbitrary shape of the EOW brane at
the specific time t ¼ t0 by choosing an appropriate time
evolution of the EOW brane profile such that the null
energy condition is maintained.
Since the essence of this argument does not depend on

the dimension, we will continue to focus on the specific
example of AdS3=BCFT2. Let A be an interval, whose end
points are given by ðx1; t1Þ and ðx2; t2Þ, its HEE SA is
computed as the minimum of the area of two configurations
of surfaces:

SA ¼ Min½Sconðx1; t1; x2; t2Þ; Sdisðx1Þ þ Sdisðx2Þ�; ð25Þ
where SdisðxÞ is the HEE for the disconnected geodesic (20)
and Scon is the HEE for the connected geodesic, given by

Sconðx1; t1; x2; t2Þ ¼
c
6
log ½ðx2 − x1Þ2=ϵ2 − ðt2 − t1Þ2=ϵ2�:

We take three subsystems A, B, and C on Σ. Recalling that
the entanglement wedge preserves the order of inclusion,
we have

EB ⊂ EAB; EBC ⊂ EABC; ð26Þ
where EA denotes the homology region which is the
entanglement wedge of A projected onto Σ. This leads
to the implication that the intersection EAB ∩ EBC is non-
empty. Therefore, the extremal surface ΓAB of subsystem
AB can be divided into three parts:

ΓAB ¼ Γð1Þ
AB ∪ Γð2Þ

AB ∪ γ: ð27Þ

The first one denotes the part containing EBC, i.e., Γ
ð1Þ
AB ≔

ΓAB ∩ EBC and the second one is the outer part. The last

one is the common part γ ≔ ΓAB ∩ ΓBC. Γ
ð1Þ
BC and Γð2Þ

BC are
defined similarly (see Fig. 6). Furthermore, for subsystem
B, QB denotes the parts of the EOW brane which enclose
EB. Namely, by the homology condition on the homology

region, we have

∂EB ¼ B ∪ ΓB ∪ QB: ð28Þ

We define E0
B as the intersection EAB ∩ EBC, then E0

B
satisfies the homology condition:

∂E0
B ¼ B ∪

�
Γð1Þ
AB ∪ Γð1Þ

BC ∪ γ
	
∪ ðQAB ∩ QBCÞ: ð29Þ

Because of the extremality of ΓB, we must have

jΓBj ≤ jΓð1Þ
ABj þ jΓð1Þ

BCj þ jγj: ð30Þ

Furthermore, X0
ABC ≔ EAB ∪ EBC also satisfies the homol-

ogy condition

∂E0
ABC ¼ ABC ∪

�
Γð2Þ
AB ∪ Γð2Þ

BC ∪ γ
	
∪ ðQAB ∪ QBCÞ; ð31Þ

thus we have

jΓABCj ≤ jΓð2Þ
ABj þ jΓð2Þ

BCj þ jγj: ð32Þ

Finally, by adding the two inequalities (30) and (32), we
have

jΓBj þ jΓABCj ≤
�jΓð1Þ

ABj þ jΓð2Þ
ABj þ jγj	 ð33Þ

þ �jΓð1Þ
BCj þ jΓð2Þ

BCj þ jγj	 ð34Þ

¼ jΓABj þ jΓBCj: ð35Þ

Therefore, SSA on Σ holds.
It is also possible to show that the monogamy of mutual

information [45] holds for the same setup of AdS/BCFTat a
time slice as we explain in Supplemental Material [46].

FIG. 6. An example of general EOW branes and extremal
surfaces.
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