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The inherent irreversibility of quantum dynamics for open systems poses a significant barrier to the
inversion of unknown quantum processes. To tackle this challenge, we propose the framework of virtual
combs that exploits the unknown process iteratively with additional classical postprocessing to simulate the
process inverse. Notably, we demonstrate that an n-slot virtual comb can exactly reverse a depolarizing
channel with one unknown noise parameter out of nþ 1 potential candidates, and a 1-slot virtual comb can
exactly reverse an arbitrary pair of quantum channels. We further explore the approximate inversion of an
unknown channel within a given channel set. A worst-case error decay of Oðn−1Þ is unveiled for
depolarizing channels within a specified noise region. Moreover, we show that virtual combs can
universally reverse unitary operations and investigate the trade-off between the slot number and the
sampling overhead.
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Introduction—Suppose a physical apparatus is provided
that is guaranteed to perform some unknown process N . It
can be regarded as a black box with no more prior
information. Is it possible to simulate the inverse of this
process by employing this black box multiple times? For
such a task of executing a desired transformation basedon the
given operations, the most comprehensive method entails
using a quantum network [1]. Formally, the problem here is
to construct a feasible quantum network C, connected to the
black box N for n times, to perform its inverse satisfying
CðN⊗nÞ∘N be the identity channel, where such a quantum
network is generally an n-slot quantum comb [1,2]. The
significance of this task lies in revealing fundamental
capabilities and properties of quantum operations [3,4],
insights to quantum algorithm design [5–7], and applications
to quantum error cancellation [8]. Understanding the power
of quantum channels can shed further light on theoretical and
applied quantum physics [9,10].
A simple strategy is to apply process tomography to

obtain the full matrix representation, which is usually
resourceful [11,12]. If the unknown process is restricted
to unitary operations, numerous works have been carried
out to explore efficient methods that can implement the
inverse of any unknown unitary (see, e.g., [13–21]).
Recently, deterministic and exact protocols for reversing
any unknown unitary have been discovered for qubit case
[22] and arbitrary dimensions [23], indicating full knowl-
edge of the process through tomography is not necessary
for this task. Nevertheless, how to extend such protocols to

cases where the process is a general quantum channel
remains an open question.
The challenge of reversing general unknown quantum

processes is twofold. First, the inverse map of a quantum
channel is generally not a physical process as it is not even
positive. Such unphysical inverse maps fall under a broader
scope of quantum operations, specifically Hermitian-
preserving and trace-preserving linear maps. Second, even
though we know that all such linear maps are simulatable
via sampling quantum operations and postprocessing
[24,25] or measurement-controlled postprocessing [26],
implementing the inverse map via existing methods
unavoidably requires the complete description of the
quantum process.
In this Letter, to explore the full potential of reversing an

unknown quantum process, we introduce the notion of
virtual combs by lifting the positivity requirement on
quantum combs. Physically, a virtual comb corresponds
to sampling quantum combs with positive and negative
coefficients and performing postprocessing. We find an
affirmative answer that simulating the inverse of an
unknown channel can be achieved with a virtual comb
under certain conditions. Taking into account the unknown
channel belonging to a given set without any prior
information about its specific identity, we find that for
two arbitrarily given quantum channels, the exact inverse
could always be realized with a 1-slot virtual comb without
knowing which specific channel is provided. For depola-
rizing channels, we unveil the remarkable capability of an
n-slot virtual comb to exactly reverse a depolarizing
channel with an unknown noise parameter among nþ 1
possible candidates (see Fig. 1). Intriguingly, we also
establish a no-go theorem, elucidating the impossibility
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of a virtual comb to universally reverse an arbitrary
quantum channel with finite uses of the channel.
Beyond exact inversion, our investigation extends to

approximately reversing unknown quantum channels
through virtual combs. For depolarizing channels within
an arbitrary noise region, we find a protocol with worst-case
error decay ofOðn−1Þ usingn calls of the channel. Notably, it
shows the potential application of virtual combs in error
cancellation, where our protocol works for mitigating depo-
larizing noises without requiring prior knowledge of noise
parameters. Furthermore, virtual combs are applied to
reverse unknown unitary operations. We show that a 1-slot
virtual comb suffices to reverse any d-dimensional unitary
operation and explore its relationship with the previous
unitary inversion problem. Our findings offer fresh perspec-
tives on the interplay between information reversibility and
irreversibility in quantum dynamics and provide new ave-
nues for higher-order quantum transformations.
Exact channel inversion—Since the inverse of a quantum

channel is not necessarily completely positive and a
legitimate quantum comb must adhere to be completely
positive [27], to explore the inversion task and fully explore
the power of supermaps, we introduce the virtual comb as
follows.
Definition 1: Virtual comb—Let C0; C1;…; Cl−1 be quan-

tum combs. An affine combination of them C̃ ¼ P
l−1
i¼0 ηiCi

is called a virtual comb where
P

l−1
i¼0 ηi ¼ 1, ηi ∈R, ∀ i.

We remark that the name “virtual comb” is bestowed for
two reasons: first, its functionality extends beyond that of a
conventional comb; second, its virtual nature considering
negative values of ηi is manifested through its feasibility,
achieved by sampling its quasiprobability decomposition
and subsequent postprocessing.
Now we first focus on a scenario where the quantum

process is guaranteed to be within a set of depolarizing

channels characterized by varying degrees of noise. We
show that the exact inversion of all channels in this set can
be achieved with explicit construction of the virtual comb.
Furthermore, we establish a no-go theorem for this task,
which highlights the limitations in process reversibility
imposed by quantum mechanics.
Specifically, the unknown channel belongs to a family of

d-dimensional depolarizing channels with m elements
fDp1

;Dp2
;…Dpm

g, where Dpð·Þ ¼ ð1 − pÞð·Þ þ pId=d
is a depolarizing channel with a noise parameter p. The
task is to implement the inverse of an arbitrary channel Dpi

by querying the unknown channel n times. Based on this
setting, we present our main result as follows.
Theorem 1: Depolarizing channel inversion—For any

n ≥ 1, let Dp1
;…;Dpnþ1

be nþ 1 d-dimensional depolariz-
ing channels with distinct noise parameters p1;…; pnþ1 ∈
½0; 1Þ. There exists an n-slot virtual comb C̃ satisfying

C̃ðD⊗n
pi

Þ ¼ D−1
pi
; ∀ i ¼ 1;…; nþ 1: ð1Þ

The main idea is to utilize the symmetry condition,
whereby C̃ðD⊗n

pi
Þ can be decomposed into a combination of

the identity channel and the depolarizing channel. Based on
this, we can formulate Eq. (1) into a linear system, and
derive a solvability condition and the corresponding con-
struction for the virtual comb. Detailed proofs of the
theorems in this manuscript are deferred to [28].
Theorem 1 unveils an intrinsic application of the virtual
comb framework, enabling the exact inversion of a family
of depolarizing channels. Remarkably, the protocol applies
to a set of noises, and the number of distinct channels
within the set that it can exactly reverse increases with the
number of slots.
To highlight the unique power of reversing a family of

depolarizing channels with unknown noises provided by
virtual combs, we note that such an exact channel inversion
task cannot be accomplished via a quantum comb, even
probabilistically. We defer the detailed statement and proof
to [28].
Significantly, we also obtain a no-go theorem that no

n-slot virtual comb can be universally capable of exactly
reversing every set of nþ 2 channels. This is indicated by
the fact that the theoretical maximum for an n-slot virtual
comb to reverse a collection of depolarizing channels
exactly is limited to nþ 1.
Theorem 2—For any n ≥ 1, let Dp1

;…;Dpnþ2
be nþ 2

d-dimensional depolarizing channels with distinct noise
parameters p1;…; pnþ2 ∈ ½0; 1Þ. There is no n-slot virtual
comb C̃ such that C̃ðD⊗n

pi
Þ ¼ D−1

pi
, ∀ i ¼ 1;…; nþ 2.

Theorem 2 exposes the inherent limit in reversing an
unknown channel, affirming that virtual combs with finite
slots cannot achieve the inversion of arbitrary unknown
quantum channels.
Approximate channel inversion—Although Theorem 2

imposes restrictions on achieving the exact inversion for

FIG. 1. Schematic diagram of reversing depolarizing channels
with unknown parameters via a 2-slot virtual comb. A virtual
comb is represented as a quasiprobabilistic mixture of quantum
combs C̃ ¼ P

l−1
j¼0 ηjCj where Cj is a quantum comb. The systems

of a quantum comb Cj are labeled as P, I i, Oi, F . Given a
depolarizing channel Dpi

with an unknown parameter pi

out of three distinct choices, C̃ can exactly reverse Dpi
by

C̃ðD⊗2
pi
Þ∘Dpi

¼ id for i ¼ 1, 2, 3.
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arbitrary quantum channels with a determined virtual
comb, the approximate inversion is not prohibited. In
approximate inversion, given a set of quantum channels
Θ ¼ fðpi;N iÞgi where pi is the prior probability for N i,
we want to find an n-slot virtual comb that can make
C̃ðN⊗n

i Þ∘N i as close to the identity channel “id” as
possible. With an n-slot virtual comb C̃, the average error
for reversing the channel set Θ can be expressed as

enaveðC̃;ΘÞ ¼
1

2

Xm
i¼1

pi

���C̃ðN⊗n
i Þ∘N i − id

���⋄;

where kFk⋄ ≔ supk∈NsupkXk1≤1kðF ⊗ idkÞðXÞk1 denotes
the diamond norm of a linear operator F. The worst-case
error is defined as

enwcðC̃;ΘÞ ¼ max

�
1

2

���C̃ðN⊗n
i Þ∘N i − id

���⋄∶ N i ∈Θ
�
:

Note that for any two Hermitian-preserving and trace-
preserving maps N 1, N 2 from system A to B, the
completely bounded trace distance can be evaluated by
semidefinite programming (SDP), which is a powerful tool
in quantum information [29–31]. Then the optimal average
error for approximately reversing quantum channels within
the set Θ is determined via an SDP, the details of which are
provided in [28].
Based on the numerical calculations of the SDP, we

present intriguing results for reversing general quantum
channels. The numerical calculations are implemented in
MATLAB [32] with the interpreters CVX [33,34] and QETLAB

[35]. In each experiment, we generate m random qubit-to-
qubit quantum channels by the proposed measures in [36],
e.g., generating random Choi operators, and calculate the
average error of approximately reversing them (with equal
prior probability) via 1-slot virtual combs by SDP. Then we
apply the computer-assisted proofs given in Ref. [37] to
construct a feasible solution for the virtual combs. It is
worth noting that when m ≤ 13, we observe that the
average errors across 1000 experimental iterations remain
consistently below a tolerance of 1 × 10−5 whenever the
channels are invertible. However, intriguingly, when
m ≥ 14, the average errors increase up to the first decimal
place, indicating that no virtual comb could achieve near-
exact inversion for all these channels. Therefore, we
conjecture an upper limit of 13 elements in the channel
set for reversing quantum channels using virtual combs.
Notably, we present a theorem demonstrating that the exact
inversion is always achievable for any pair of quantum
channels.
Theorem 3: General channel inversion—For any two

invertible quantum channels N 1, N 2, there exists a 1-slot
virtual comb C̃ satisfying C̃ðN iÞ ¼ N −1

i , ∀ i ¼ 1, 2.

Theorem 3 highlights the remarkable capability of a 1-slot
virtual comb to reverse an arbitrary given pair of quantum
channels, even when the input and output systems of the
channels have different dimensions.
For depolarizing channels, we now consider that the

noise levels are not a few fixed values but fall within a
specified range ½p1; p2�. As an n-slot virtual comb C̃ could
exactly reverse nþ 1 distinct noise level, using the
unknown channel more times is surely to enhance perfor-
mance. Here, we show that as the number of slots in the
virtual comb (or the calls for the channel) increases, the
worst-case error in channel inversion diminishes at least at a
rate of Oðn−1Þ.
Theorem 4—Let 0 ≤ p1 < p2 ≤ 1, the minimum worst-

case error of approximately reversing a depolarizing
channel Dp with p∈ ½p1; p2� using an n-slot virtual comb
is at most Oðn−1Þ.
This result can be simply understood as follows: by

Theorem 1, we can exactly reverse a depolarizing channel
whose noise parameter is from fp1 þ ðp2 − p1Þk=ngnk¼0

via an n-slot virtual comb. Then, in a continuous case, we
demonstrate that the worst-case error is at most Oðn−1Þ
within each interval. Based on this scheme, we present the
upper bounds of the minimum worst-case error for the
cases p1, p2, which are (0, 0.2), (0, 0.4), and (0, 0.6) in
Fig. 2. A detailed explanation can be found in [28]. As the
number of calls to the unknown channel increases, perfor-
mance rapidly converges to exact for all these channels.
Application to error cancellation of unknown de-

polarizing noises—The task of reversing an unknown
quantum channel is interlinked with quantum error can-
cellation. In quantum information processing, estimating
the expectation value Tr½Oρ� for a given observableO and a
quantum state ρ plays an essential role [38]. In practice, a
state ρ is inevitably affected by noise that is modeled by

FIG. 2. Upper bounds on the minimum worst-case error for
reversing a depolarizing channel with an unknown noise para-
meter p∈ ½p1; p2�. The x axis represents the number of slots in a
virtual comb.
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a quantum channel N . Consequently, many methods have
been proposed to recover Tr½Oρ� against noises rather than
obtaining Tr½ON ðρÞ� [39–41].
One of the primary techniques employed is the prob-

abilistic error cancellation [25,39] wherein the key idea is
to represent the inverse map N −1 of the noisy channel as a
quasiprobabilistic mixture of quantum channels. A crucial
assumption in this protocol is that the noise is given
a priori; otherwise, a high-precision tomography of the
noise channel is required. In contrast, the scheme presented
in Theorem 4 shows the potential to achieve high-precision
error cancellation for certain unknown channels, e.g.,
depolarizing channels with unknown parameters within a
given range.
In general, any n-slot quantum comb C can be equiv-

alently realized by a sequence of quantum channels
fEjgnþ1

j¼1 with an ancillary system [1]. Thus, we can obtain
a set of channels fEijgj for each comb Ci in a decom-

position of a virtual comb C̃ ¼ P
i ηiCi. Given an unknown

quantum channel oracle N and a noisy state N ðρÞ, if
C̃ðN⊗nÞ ¼ N −1, then we can obtain Tr½Oρ� ¼ Tr½O
C̃ðN⊗nÞ∘N ðρÞ� by querying N , sampling quantum chan-
nels for each Ci and applying classical postprocess-
ing [25,41].
In each round out of S times sampling, we sample a

sequence of quantum channels fEsjgnþ1
j¼1 from fEijgij

with probability jηsj=γ, where γ ¼ P
i jηij. Apply

Es1;N ; Es2;…;N ; Es;nþ1 to the target state sequentially
to obtain Es;nþ1∘N ∘ � � � ∘Es2∘N ∘Es1∘N ðρÞ ¼
C̃sðN⊗nÞ∘N ðρÞ, and then measure each qubit on a com-
putational basis. We then denote λs as the measurement
outcome and obtain a random variable XðsÞ ¼ γ
sgnðηsÞλs ∈ ½−γ; γ�. After S rounds sampling, we calculate
the empirical mean value ζ ≔ ð1=SÞPS

s¼1 X
ðsÞ as an

estimation for the expectation value Tr½O C̃ðN⊗nÞ∘
N ðρÞ�. By Hoeffding’s inequality [42], to estimate the
expectation value within error ϵ with probability no less
than 1 − δ, the number of samples required to be
S ≥ 2γ2 logð2=δÞ=ϵ2. Hence, γ is known as the sampling
overhead. We note that the optimal sampling overhead can
be calculated by SDP as given in [28].
In particular, if we aim to cancel the effect of an

unknown depolarizing noise Dp from a set of distinct
noise parameters as described in Theorem 1, we have a
detailed protocol provided in [28], where we do not need to
implement quantum combs and instead relies on three types
of simple operations: (i) do nothing to the received state,
(ii) replace the received state with a maximally mixed state,
and (iii) apply the black box to the received state iteratively
for i times.
Application to universal unitary inversion—Now we

investigate a particular scenario where the quantum process
is known to be a unitary operation. Previously, several

works have studied the problem of reversing unknown
unitary operations, including deterministic nonexact pro-
tocol [17,18] and probabilistic exact protocols [19–21].
Notably, it is proved that the inverse operation U−1 cannot
be implemented deterministically and exactly with a single
use of U [17]. Recently, deterministic and exact protocols
were proposed, requiring four calls of U in a qubit case
[22], and Oðd2Þ calls for a general d-dimensional U [23].
In a virtual setting, it is interesting to ask whether a 1-slot
virtual comb is enough for reversing an arbitrary unknown
d-dimensional unitary channel Udð·Þ ¼ Udð·ÞU†

d or not.
Here, we find the answer is positive as the following result.
Proposition 5—For any dimension d, there exists a 1-slot

virtual comb C̃ that transforms all qudit-unitary channels Ud

into their inverses U−1
d , i.e., C̃ðUdÞð·Þ ¼ U†

dð·ÞUd.
Proposition 5 reveals that with a virtual comb, a

deterministic and exact protocol for any dimensions can
be achieved with just one call of the unitary. This result
gives an alternative way to simulate the inverse of unknown
unitary in practice with shallower circuits for estimating
expectation values. We point out that when there exists
depolarizing noise, i.e., the given channel is Ud∘Dp, the 1-
slot virtual comb will result in an overall operation as
U−1
d ∘Dp and the probabilistic error cancellation could be

used to mitigate this error. For the deterministic protocol,
the circuit is generally not transversal [22,23], thus the
depolarizing noise will accumulate and become difficult to
handle.
Furthermore, we analyze the query complexity of a

virtual protocol, specifically the number of times U needs
to be queried to obtain the expectation value Tr½OU−1

d ðρÞ�.
The optimal sampling overhead for an n-slot virtual comb
that can exactly reverse all d-dimensional unitaries can be
characterized via the following SDP:

νðd; nÞ ¼ min 2ηþ 1; ð2aÞ
s:t:Tr½C̃Ω� ¼ 1; ð2bÞ

C̃ ¼ ð1þ ηÞC0 − ηC1; η ≥ 0; ð2cÞ
C0;C1 are n-slot quantum combs; ð2dÞ

where Eq. (2b) ensures that C̃ is a desired map that can
exactly reverse an arbitrary unitary operation and Ω is a
d2ðnþ1Þ × d2ðnþ1Þ positive matrix called the performance
operator [17,43]. The detailed formula and numerical
results on the sampling overhead for small d and n are
provided in [28].
Notably, we find that the optimal sampling overhead for

the virtual comb that can exactly reverse unknown unitary
operations has a dual relationship with the problem of
finding the optimal average fidelity of reversing unknown
unitary operations by a quantum comb [43] as the following
theorem.
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Theorem 6—The optimal sampling overhead for the
n-slot virtual comb that can exactly reverse all d-dimensional
unitary operations satisfies

νðd; nÞ ¼ 2

Foptðd; nÞ
− 1; ∀ d ≥ 2; n ≥ 1; ð3Þ

where Foptðd; nÞ is the optimal average channel fidelity of
reversing all d-dimensional unitary operations with an n-slot
quantum comb.
Here, the optimal average channel fidelity is given by

Foptðd; nÞ ¼ maxTr½CΩ� where Ω is the performance
operator as appeared in Eq. (2b) and the maximization
ranges over all n-slot quantum combs with Choi operators
C [43]. When n ¼ 1, it has been shown that Foptðd; 1Þ ¼
2=d2 [17], leading to νðd; 1Þ ¼ d2 − 1. Although the
sufficient querying number of the unitary is governed by
ν2ðd; 1Þ, scaling as Oðd4Þ, worse than Oðd2Þ required by
the deterministic and exact protocol [23], it is worthwhile to
note that when the state or observable is given, the query
complexity could be significantly reduced. Specifically,
we find that to estimate the expectation value
Tr½ZU−1

d ðj0ih0jÞ�, the 1-slot virtual protocol has a better
performance in both average simulation error and standard
deviation under the same number of queries of the
unknown unitary. The details of the numerical analysis
to show this potential advantage are provided in [28].
Concluding remarks—In this Letter, we addressed the

problem of reversing an unknown quantum process by
introducing the virtual comb. Our theoretical analysis
demonstrated its ability and shows its potential to help
us further understand the properties and capabilities of
channels, combs, and virtual processes. One may already
notice that a qubit channel can be determined by 12
parameters, which coincides with our numerical result that
if the number of random qubit channels exceeds 13, no
perfect 1-slot virtual inversion protocol could be found.
In terms of applications, the examples we provided suggest
that the virtual combs may potentially become an alter-
native solution in specific experimental settings. It might
offer trade-offs in terms of query complexity, circuit depth,
and the number of auxiliary qubits; therefore, it is in-
triguing to conduct further analysis and construct concrete
circuits for specific experimental scenarios.
The virtual combs may also shed light on other research

directions for unknown processes, particularly in quantum
learning. By transmitting quantum states through an
unknown process, we can infer its characteristics and
replicate it or execute related tasks. Such studies have
been done for learning unitary gates [19,44,45], measure-
ments [46,47], and Pauli noises [48]. How to further extend
this setting to learning and using unknown channels
remains open. Moreover, virtual combs may also be useful
in transforming Hamiltonian dynamics [49,50], shadow

tomography [38], virtual resource manipulation [51], and
randomized quantum algorithms [52,53] for its unique
attributes regarding quantum memory effect, sampling,
and classical postprocessing.
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