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We introduce twisted unitary t-groups, a generalization of unitary t-groups under a twisting by an
irreducible representation. We then apply representation theoretic methods to the Knill-Laflamme error
correction conditions to show that twisted unitary t-groups automatically correspond to quantum codes
with distance d ¼ tþ 1. By construction these codes have many transversal gates, which naturally do not
spread errors and thus are useful for fault tolerance.
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Introduction.—There is a rich history of connections
between classical t-designs (both spherical and orthogonal)
and classical information theory [1]. Similarly, there are
many applications of quantum t-designs (both complex
projective and unitary) to quantum information theory,
including tomography [2,3], randomized benchmarking
[4], cryptography [5], and chaos [6].
However, until now, no connection has been made

between quantum t-designs and quantum error correcting
codes, despite the fact that there are deep connections
between classical t-designs and classical error-correcting
codes, such as the theorem of Assmus and Matteson [1,7].
Among quantum t-designs, unitary t-designs are espe-

cially commonplace in the quantum information literature,
and in the special case that a unitary t-design G forms a
finite group it is called a unitary t-group. Unitary t-groups
are well studied [8–11].
In forging a connection between quantum t-designs

and quantum error correcting codes we first review unitary
t-groups using tools from representation theory; similar
techniques were introduced in [9–11]. We then define
twisted unitary t-groups and argue that they are a natural
generalization of unitary t-groups under a “twisting”
by λ, an irreducible representation (irrep) of G. In the
special case that λ is the trivial irrep 1, twisted unitary
t-groups are equivalent to the regular notion of unitary
t-groups.
Application.—Our main application of twisted unitary

t-groups is in constructing quantum codes that naturally
have many transversal logical gates. A logical gate for an n
qudit quantum code is called transversal if it can be
implemented as U1 ⊗ � � � ⊗ Un, where each unitary Ui
acts on a single physical qudit. As an application of twisted
unitary t-groups we show that they induce quantum codes
with distance d ¼ tþ 1, and that the corresponding quan-
tum codes can have very large groups of transversal gates:
for each g∈G the physical gate g⊗n implements the logical
gate λðgÞ. A logical gate implemented by the physical gate
g⊗n acts on each physical qudit separately and so does not

spread errors between physical qudits, for this reason such
gates are likely to be useful for fault tolerance.
We highlight our application via two examples. In our

first example we show that the unitary 5-group 2I, the
binary icosahedral subgroup of SU(2), forms a twisted uni-
tary 2-group with respect to a particular two-dimensional
irrep. This yields n-qubit codes for all odd n ≥ 7 of distance
d ¼ 3 (meaning these codes can correct an arbitrary single
error). Each of these codes implements all of 2I trans-
versally. In our second example, we show that the unitary
3-group Σð360ϕÞ, a maximal subgroup of SU(3) (and well
studied in the high energy literature [12–14]), forms a
twisted unitary 1-group with respect to two distinct three-
dimensional irreps. These yield n-qutrit quantum codes of
distance d ¼ 2 for all n ≥ 5 not divisible by 3. Each of
these codes implements all of Σð360ϕÞ transversally. For
both our examples an encoding circuit can be obtained
using [15].
Motivation.—Since transversal gates do not propagate

errors between physical qudits, and thus are often useful for
fault tolerance, it is desirable to have as many transversal
gates as possible. However the Eastin-Knill theorem [16]
shows that a nontrivial (d ≥ 2) code can have only finitely
many transversal gates. So the best we can do is find codes
whose transversal gates form a maximal finite subgroup.
When a maximal group of transversal gates is achieved, for
example the Clifford group, the next step is a fault tolerant
implementation of a single gate τ outside of the group G.
The most popular method for implementing τ in a fault
tolerant fashion is by using magic state distillation [17],
however, this is considered expensive [18,19]. It is there-
fore crucial for fault tolerant gate synthesis to minimize the
number of τ gates that are needed.
It was proven in [20] that 2I, together with a particular τ

gate, is the optimal universal gate set for qubits in the sense
that this gate set can quickly approximate any gate in SU(2)
while minimizing the number of expensive τ gates that are
needed. Therefore, our first example of 2I transversal codes
is well motivated.
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Why is the 2I universal gate set optimal? Unfortunately
the work in [20] is for the qubit case and there is no rigorous
proof generalizing it to qudits (although some work
towards SU(3) has already been accomplished [21]). But
one heuristic is that 2I is a unitary 5-group whereas every
other subgroup of SU(2) is at most a unitary 3-group. This
means 2I is more “spread out” than the other subgroups and
so an approximation algorithm does not have to use as
many τ gates in order to reach the more hidden recesses
of SU(2). The largest unitary t-group in SU(3) is in fact
Σð360ϕÞ. It is a unitary 3-group whereas all other sub-
groups of SU(3) are at best unitary 2-groups. Thus if we
apply the same logic as before, we expect that Σð360ϕÞ
plays a role in the optimal universal gate set for qutrits, but
more work needs to be done to rigorously prove this claim.
Disclaimer.—The codes we find using our methods are

in general nonadditive, meaning they are not equivalent
to any stabilizer code. In particular this means that the
standard fault tolerant methods of decoding and correcting
errors for stabilizer codes [22] cannot be used. There are
methods for decoding and correcting nonadditive codes, for
example, one can just measure the error space projectors
and then undo the error with an appropriate unitary, but also
more advanced techniques exist [23–25]. However, the jury
is still out regarding how fault tolerant those nonadditive
decoding methods are (if at all). Our hope is that our work
could be used to understand the structure of nonadditive
codes in more detail and help spur new research toward
fully fault tolerant nonadditive codes.
Review of unitary t-groups.—Let UðqÞ be the unitary

group of degree q. A finite subgroup G of UðqÞ is called a
unitary t-group [26] if

1

jGj
X

U∈G

ðU ⊗ U�Þ⊗t ¼
Z

UðqÞ
ðU ⊗ U�Þ⊗tdU; ð1Þ

where the integral on the right is taken with respect to the
unit-normalized Haar measure (if G is merely a finite subset
rather than a finite subgroup then this is called a unitary
t-design).
On the right-hand side, U is a q × q matrix in the

Fundamental (or defining) representation F of UðqÞ. On the
left hand side, U is a q × q matrix in the restricted
representation of F to G, denoted by F↓ or f (sometimes
called the branching rules in physics [27]). In our con-
vention, we write representations with respect to UðqÞ
using bold capital letters and we use the superscript ↓, or
the corresponding bold lower-case letter, to denote the
restriction to the finite subgroup G. It follows that Eq. (1) is
equivalent to

1

jGj
X

g∈G

ðf ⊗ f�Þ⊗tðgÞ ¼
Z

UðqÞ
ðF ⊗ F�Þ⊗tðgÞdg: ð2Þ

Here F� is the dual representation of F given simply by the
complex conjugate.
At this point we begin freely using concepts such as the

character of a representation, inner product of characters,
isotypic decomposition and isotypic projector, all of which
are reviewed in the Supplemental Material [28].
Let 1 denote the trivial irrep for both UðqÞ and G. The

character of this irrep is 1 for all g. Thus we can multiply
through by 1 on both sides to reveal that Eq. (2) is simply a
projector equation:

Πðf⊗f�Þ⊗t

1 ¼ ΠðF⊗F�Þ⊗t

1 : ð3Þ

That is, a unitary t-group is such that the projector of
the UðqÞ-representation ðF ⊗ F�Þ⊗t onto the trivial irrep 1
must be the same as the projector of the G-representation
ðf ⊗ f�Þ⊗t onto the trivial irrep 1.
If we take the trace of both sides then we are counting the

multiplicity of 1 in the isotypic decomposition of the tensor
product via an inner product of characters. Because f is a
branched version of F, and the trivial irrep cannot branch
further, the multiplicity on the left is greater than or equal
to the multiplicity on the right. That is, for any subgroup
G of UðqÞ we have

h1; ðff�Þti ≥ h1; ðFF�Þti: ð4Þ

And equality holds if and only if G is a unitary t-group. This
is an inner product of characters where f and F denote the
characters corresponding to the representations f and F. We
will continue to write the corresponding nonbold letters to
represent characters.
Note that one can move characters within the inner

product at the expense of a complex conjugation. Thus
Eq. (4) says hft; fti ≥ hFt; Fti, or kftk ≥ kFtk. Again
equality holds if and only if G is a unitary t-group. Note that
for a character f of a finite group it is standard to call hf; fi
the norm, rather than call it the norm squared, and to denote
it by kfk ≔ hf; fi.
Now notice that ðF ⊗ F�Þ⊗t is a reducible UðqÞ repre-

sentation and can be decomposed as

ðF ⊗ F�Þ⊗t ¼ ⨁
R∈ Et

ðmRÞR: ð5Þ

Here R is an irRep of UðqÞ and Et is the set of all UðqÞ
irreps that appear with nonzero multiplicity mR.
As an example of the notation consider U(2). Then using

[31] we can compute

ð2 ⊗ 2�Þ⊗1 ¼ 1 ⊕ 3; ð6Þ

ð2 ⊗ 2�Þ⊗2 ¼ ð2Þ1 ⊕ ð3Þ3 ⊕ 5; ð7Þ

ð2 ⊗ 2�Þ⊗3 ¼ ð5Þ1 ⊕ ð9Þ3 ⊕ ð5Þ5 ⊕ 7: ð8Þ
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Here (and elsewhere), parenthesis indicate multiplicity, for
example, ð2Þ1 is shorthand for 1 ⊕ 1. Then we see that
E1 ¼ f1; 3g; E2 ¼ f1; 3; 5g; E3 ¼ f1; 3; 5; 7g. More gener-
ally for U(2), we have Et ¼ f1; 3; 5;…; ð2tþ 1Þg.
Returning to the general case UðqÞ, we can take Eq. (2)

and insert the decomposition from Eq. (5) to obtain

⨁
R∈ Et

ðmRÞ
1

jGj
X

g∈G

R↓ðgÞ ¼ ⨁
R∈ Et

ðmRÞ
Z

UðqÞ
RðgÞdg: ð9Þ

Here R↓ denotes the restriction of R to G. Thus we see that
G is a unitary t-group if and only if

1

jGj
X

g∈G

R↓ðgÞ ¼
Z

UðqÞ
RðgÞdg ∀ R∈ Et: ð10Þ

Inserting the trivial character 1 into both sides, we see that
this is an equality of projectors ΠR↓

1 ¼ ΠR
1 for all R∈ Et.

However, notice that when R ¼ 1 this equality is trivially
satisfied (because 1↓ ¼ 1). On the other hand, when R ≠ 1
the right-hand side is the zero matrix 0, that is,

ΠR↓

1 ¼ 0 ∀ R∈ Et∶ R ≠ 1: ð11Þ

In a similar fashion as before we can take the trace of both
sides to get that for any G,

h1; R↓i ≥ 0 ∀ R∈ Et∶ R ≠ 1; ð12Þ

with equality if and only if G is a unitary t-group. As before
R↓ is the character corresponding to the representation R↓.
A summary of all the equivalent conditions derived

above can be found in the Supplemental Material [28] but
for our purposes, the most useful perspectives on unitary
t-groups are the two we highlight below.
Lemma 1.—G ⊂ UðqÞ is a unitary t-group if and only if

either of the following equivalent conditions are satisfied:
(1) kftk ¼ kFtk,
(2) h1; R↓i ¼ 0, ∀ R∈ Et, R ≠ 1.
For small t, we can compute kFtk to obtain even simpler

criteria for identifying a unitary t-group (cf. [9]).
Lemma 2.—Suppose G ⊂ UðqÞ.

(1) G is a unitary 1-group⇔ kfk ¼ 1 (i.e., f is irreducible),
(2) G is a unitary 2-group ⇔ kf2k ¼ 2.
Proof.—The fundamental representation F of UðqÞ

is irreducible, so kFk ¼ 1. It is well known that when
F is the fundamental representation of UðqÞ, then
F ⊗ F� ¼ 1 ⊕ Ad where Ad is the adjoint irrep of
SUðqÞ. Then kF2k ¼ kFF�k which can be evaluated as
k1þ Adk ¼ 2 where Ad is the adjoint character. Note that
we have used the irreducibility ofAdwhich is equivalent to
the fact that SUðqÞ is a simple Lie group. ▪

Going further, G ⊂ UðqÞ is a 3-group if and only if
kf3k ¼ 6, for q ≥ 3, or kf3k ¼ 5, for q ¼ 2 [9]. The
classification of unitary t groups given in [32] shows that
no t-groups exist for t > 3, with the exception of the binary
icosahedral subgroup 2I of U(2), which is the only unitary
4-group and the only unitary 5-group.
Twisted unitary t-groups.—In Eq. (2), the left hand side

can be thought of as a sum with respect to the uniform
weight 1=jGj. But more generally we can take the sumP

g∈GWðgÞðf ⊗ f�Þ⊗tðgÞ with respect to any normalized
weight W. If

X

g∈G

WðgÞðf ⊗ f�Þ⊗tðgÞ ¼
Z

UðqÞ
ðF ⊗ F�Þ⊗tðgÞdg; ð13Þ

it is standard to call G a weighted t-group [8].
Let λ be an irrep of G with corresponding character λ.

Then there is a natural weight

WλðgÞ ¼
1

jGj λ
�ðgÞλðgÞ ¼ 1

jGj jλðgÞj
2: ð14Þ

Note that because λ is irreducible then Wλ is normalized:P
g∈GWλðgÞ ¼ kλk ¼ 1. And when λ is one-dimensional

then WλðgÞ ¼ 1=jGj and so we recover the usual (un-
weighted) definition of unitary t-groups. When we use the
weight Wλ we will call G a twisted unitary t-group with
respect to λ or, equivalently, a λ-twisted unitary t-group.
We can adapt Lemma 1 to this scenario, for a proof see [28].
Lemma 3.—G ⊂ UðqÞ is a λ-twisted unitary t-group if

and only if either of the following equivalent conditions are
satisfied:
(1) kλftk ¼ kFtk,
(2) hλ�λ; R↓i ¼ 0, ∀ R∈ Et, R ≠ 1.
Notice that part (2) of Lemma 3 implies part (2) of

Lemma 1, so every λ-twisted unitary t-group is also a
unitary t-group. To see this implication, it is enough
to observe the tensor product of an irrep with its dual
always contains a unique trivial subrepresentation, i.e.,
there is a unique way to write λ� ⊗ λ ¼ 1 ⊕ ξ for some
representation ξ. Thus hλ�λ; R↓i ¼ h1; R↓i þ hξ; R↓i and
so hλ�λ; R↓i ¼ 0 implies h1; R↓i ¼ 0.
We can also adapt Lemma 2 to the λ-twisted case.
Lemma 4.—Suppose G ⊂ UðqÞ. Let λ be an irrep of G.

(1) G is a λ-twisted unitary 1-group⇔ kλfk ¼ 1 (i.e., λ ⊗ f
is irreducible),
(2) G is a λ-twisted unitary 2-group ⇔ kλf2k ¼ 2.
This lemma is the reason we have dubbed these “twisted”

unitary t-groups. The irrep λ latches onto the fundamental
irrep f (or powers thereof) and twists. When λ is the trivial
irrep 1 then no such twisting occurs and we reproduce the
usual concept of unitary t-groups. A similar phenomenon
can be found in twisted Gelfand pairs [33] and twisted
wavefunctions from induced representations [34].
Quantum codes.—The Knill-Laflamme (KL) conditions

[35] state that a quantum code has distance d ¼ tþ 1
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if and only if

hψ jEjϕi ¼ cEhψ jϕi; ð15Þ

for all errors E of weight t or less and all codewords
jψi; jϕi. In other words, we can correct bt=2c errors or
detect t errors. Note that usually t denotes the number
of errors that can be corrected, but in order for us to
preserve the t in unitary t-design we had to resort to a
convention where t denotes the number of errors that can be
detected.
Consider a finite subgroup G of UðqÞ. Suppose all

codewords jψi transform in an irrep λ of G (where we
think of lambda as the irrep of the logical codespace). In
particular the codespace will have dimension jλj, the
dimension of the irrep λ. And suppose some error E
transforms in a representation R of UðqÞ, which branches
to the representation R↓ of G. Then the tensor pro-
duct hψ j ⊗ E ⊗ jϕi transforms in the representation
λ� ⊗ R↓ ⊗ λ of G. The contraction of any tensor is always
an invariant, thus hψ jEjϕi is an invariant and so must
transform in the trivial representation 1 or the null repre-
sentation 0.
But if λ� ⊗ R↓ ⊗ λ does not contain a copy of the trivial

representation 1 in its isotypic decomposition (i.e.,
h1; λ�R↓λi ¼ 0), then the only option is that hψ jEjϕi ¼
0 and thus the KL condition is satisfied for the error E. We
have proven the following lemma.
Lemma 5.—Suppose a code transforms in an irrep λ of G

and an error E transforms in an irrep R of UðqÞ. If
h1; λ�R↓λi ¼ 0 then the KL conditions are automatically
satisfied for the error E.
Notice that Lemma 5 does not apply to R ¼ 1 because

h1; λ�1λi ¼ kλk ≠ 0. However, in the R ¼ 1 case the KL
conditions are also automatically satisfied. The idea is that
if E transforms trivially with respect to G then E commutes
with the action of G and thus, by Schur’s lemma, E acts
proportional to the identity on irreps of G, i.e.,
Ejϕi ¼ cEjϕi. Then hψ jEjϕi ¼ cEhψ jϕi. Note that here
the KL condition may be satisfied in a degenerate manner,
cE ≠ 0, whereas for the errors in Lemma 5 we always have
cE ¼ 0. This proves the following lemma.
Lemma 6.—If a code transforms in an irrep λ of G and if

an error E transforms in the trivial irrep 1 then the KL
conditions are automatically satisfied for the error E.
Using these two lemmas we derive our main result.
Theorem 1.—If G is a λ-twisted unitary t-group

then every subspace of f⊗n that transforms in λ is a
jλj-dimensional quantum code with distance d ≥ tþ 1
and transversal gate group G ¼ λðGÞ.
Proof.—Recall that Et is the set of all irreps in the

isotypic decomposition of ðF ⊗ F�Þ⊗t. So any error E of
weight t or less can be decomposed as E ¼ P

R∈ Et ER

where ER is E projected onto the R-isotypic subspace of

ðF ⊗ F�Þ⊗t. By Lemma 3 we have that hλ�λ; R↓i ¼ 0, and
equivalently h1; λ�R↓λi ¼ 0, for everyR∈ Et,R ≠ 1. So we
can apply Lemma 5 to conclude that hψ jERjϕi ¼ 0 for
every R∈ Et, R ≠ 1. We are left with

hψ jEjϕi ¼
X

R∈ Et

hψ jERjϕi ¼ hψ jE1jϕi ¼ cE1
hψ jϕi; ð16Þ

where the final equality follows from Lemma 6.
When λ is a subrepresentation of f⊗n then the transversal

gate f⊗nðgÞ ¼ g⊗n is a logical gate implementing λðgÞ on
the codespace. Thus all gates from G ≔ λðGÞ, the image of
the representation λ, can be implemented transversally. ▪
In the two examples below, the way that we use this

theorem is via Lemma 4. That is, we simply check if
kλfk ¼ 1 or kλf2k ¼ 2 to see if G is a λ-twisted unitary
1-group or a λ-twisted unitary 2-group, respectively.
For higher orders of t, one must invoke Lemma 3 and
use branching rules UðqÞ↓G (see the Supplemental
Material [28]).
A good heuristic when applying this theorem is to pick a

“large” G inside of UðqÞ and pick a λ which is either
faithful or almost faithful (i.e., the kernel of the represen-
tation λ should be small). That way the image G ¼ λðGÞ is
a very large transversal gate group. From this perspective,
Theorem 1 is a method to construct designer quantum
codes having a certain transversal gate group (cf. [36]).
Example 1: 2I qubit codes.—Let us apply our theorem to

the binary icosahedral group G ¼ 2I in U(2), which is a
unitary 5-group. The character table can be found in the
Supplemental Material [28] which is taken directly from
GAP [37] as PerfectGroup(120). GAP labels the
irreps as χ i where i ranges between 1 and 9. There are two
two-dimensional irreps, χ 2 and χ 3, and we will take f ¼ χ 2
as our fundamental irrep.
Suppose our code transforms in the other two-dimen-

sional irrep: λ ¼ χ 3. Then one can check in GAP that
kλfk ¼ 1 and kλf2k ¼ 2 (we provide a code snippet in the
Supplemental Material [28]). Using Lemma 4 we see that
2I is a χ 3-twisted unitary 2-group. So by Theorem 1, any
subspace that transforms in χ 3 will be a code with distance
d ¼ 3 and will implement 2I transversally. This supersedes
the codes found in [38].
As a canonical example, suppose we encode a qubit,

transforming in χ 3, into an nth tensor power of qubits,
transforming in χ⊗n

2 . In order for a code to be present, we
need the multiplicity of χ 3 in χ⊗n

2 to be at least 1, i.e., we
need to find n such that hχ3; χn2i > 0. The smallest code
occurs when n ¼ 7 and the multiplicity is hχ3; ðχ2Þ7i ¼ 1,
meaning that this code is unique (for more on unique codes
see the Supplemental Material [28]). Since χ 3 only occurs
in odd tensor powers the next smallest code occurs
when n ¼ 9, and the multiplicity is 8. This means there
is a CP7-moduli space worth of nonequivalent codes (see
Supplemental Material [28]). Going further, there is a
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CP43-moduli space of codes in n ¼ 11 qubits and a CP208-
moduli space of codes in n ¼ 13 qubits. In fact there are χ 3
codes for all odd n ≥ 7.
Example 2: Σð360ϕÞ qutrit codes.—As another example

consider G ¼ Σð360ϕÞ in U(3), a unitary 3-group that
appears in the high-energy physics literature [12–14]. The
character table, a GAP code snippet, and branching rules
can be found in the Supplemental Material [28]. The irrep
χ 1 ¼ 1 is the trivial irrep and there are four different three-
dimensional irreps, labeled χ 2, χ 3, χ 4, and χ 5. We will take
the fundamental irrep to be f ¼ χ 2.
Suppose our code transforms as λ ¼ χ 3. Then one can

check in GAP that kχ 3χ 2k ¼ 1. Thus by Lemma 4, Σð360ϕÞ
is a χ 3-twisted unitary 1-group. So by Theorem 1, any
subspace that transforms in χ 3 will be a code with distance
d ¼ 2 and will implement Σð360ϕÞ transversally. Let us find
a qutrit code transforming in χ 3 within a tensor product of n
qutrits f⊗n. Again we simply look for n such that
hχ3; χn2i > 0. Thus we have proven that there are codes in
n ¼ 7; 10; 13; 16; 19;…, i.e., whenever n≡ 1 mod 3 for
n ≥ 7. The smallest code transforming in χ 3 encodes 1 qutrit
into 7 qutrits, detects any single error, and transversally
implements any gate from Σð360ϕÞ.
However, unlike 2I, for Σð360ϕÞ there is also another

good logical irrep. Let λ ¼ χ 4. One can check that Σð360ϕÞ
is a χ 4-twisted unitary 1-group and there are codes
whenever n≡ 2 mod 3 and n ≥ 5. The smallest code here
is actually better, it occurs when n ¼ 5 and the multiplicity
is hχ4; ðχ2Þ5i ¼ 1, meaning that this code is unique (for
more on the history of this code [39,40] and unique codes
in general see the Supplemental Material [28]). All the
codes in this family encode 1 qutrit into n qutrits and detect
any single error while implementing Σð360ϕÞ transversally.
Conclusion.—This Letter establishes a novel and

significant connection between quantum t-designs, speci-
fically twisted unitary t-groups, and quantum error-
correcting codes. By introducing twisted unitary t-groups,
which generalize unitary t-groups through the incorpora-
tion of irreducible representations, we provide a framework
for constructing quantum codes with many transversal
gates, which naturally do not spread errors and thus are
useful for fault tolerance. Two illustrative examples involv-
ing the unitary 5-group 2I in SU(2) and the unitary 3-group
Σð360ϕÞ in SU(3) highlight the practicality and versatility
of our approach, yielding n-qubit and n-qutrit quantum
codes with impressive transversal gates. Both of these
codes have transversal gate groups which are maximal,
lacking only a single gate outside of the respective groups
2I and Σð360ϕÞ to achieve universality.
It is the hope of the authors that this work, on top of

previous work on quantum error correcting codes outside
the stabilizer framework [36,38,41–44], will spur a robust
inquiry into quantum circuits to implement error correction,
fault tolerant measurements, fault tolerant gates, and

general fault tolerant circuit design, all for nonaddi-
tive codes.
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