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Quantum entanglement marks a definitive feature of topological states. However, the entanglement
spectrum remains insufficiently explored for topological states without a bulk energy gap. Using a combi-
nation of field theory and numerical techniques, we accurately calculate and analyze the entanglement
spectrum of gapless symmetry protected topological states in one dimension. We highlight that the
universal entanglement spectrum not only encodes the nontrivial edge degeneracy, generalizing the
Li-Haldane conjecture to gapless topological states, but also contains the operator content of the underlying
boundary conformal field theory. This implies that the bulk wave function can act as a fingerprint of both
quantum criticality and topology in gapless symmetry protected topological states. We also identify a
symmetry enriched conformal boundary condition that goes beyond the conventional conformal boundary
condition.
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Introduction.—Topological phases are novel many-body
states featuring nonlocal order parameters and unusual
entanglement properties. It is well understood that the
quantum entanglement structure is necessary to describe
these topological phases, since they fail to be distinguished
by local observables in the bulk. For instance, as noticed in
the famous Li-Haldane conjecture [1], the bulk entangle-
ment spectrum encodes the information on the boundary
Hamiltonian. More explicitly, this conjecture states that the
bulk low-lying entanglement spectrum is in one-to-one
correspondence with the universal part of the many-body
energy spectrum at the boundary of the system, which
indicates that the bulk ground state wave function can
capture boundary universal information, such as edge mode
degeneracy of the gapped topological phase [2–7].
Symmetry protected topological phases (SPT) [8–12], as

one subclass of the topological phases, refers to the topo-
logical states that are only nontrivial under certain global
symmetry. While the bulk of SPTs is gapped, nontrivial
gapless states emerge at the boundary. Despite the crucial
role of the bulk gap in defining topological phases, recent
research [13–31] has revealed that many key features of
topological physics persist in the gapless case, even in
the presence of the nontrivial coupling between the topo-
logical edge modes and the critical bulk modes. This
extension is termed gapless symmetry-protected topologi-
cal phases (gSPTs) [24–51], This development has led to
the discovery of new quantum critical points (QCPs) and
phases in 1þ 1D with unusual string operators that imply

symmetry-protected topological edge modes, classified by
conformal boundary conditions [25,26,52].
In the context of gSPTs, the question of how universal

the Li-Haldane conjecture remains an interesting open
question. We note that these gapless topological states
not only host topological protected edge modes, but also
have bulk critical fluctuations described by a conformal
field theory (CFT) [15,24–31,53–64]. The entanglement
spectrum in CFTs has been extensively studied [1,65–77],
which shows that it contains universal information that
goes beyond the entanglement entropy. With powerful
conformal invariance in two dimensions, the entanglement
spectrum in a 1þ 1D CFT in various geometries can be
exactly mapped to the energy spectrum with an open
boundary condition [78–81], aligning with the operator
content [82] of the underlying boundary CFT [83–85].
Hence, this raises an intriguing question: On one hand,
entanglement spectrum reveals the information on non-
trivial boundary states for the topological phases according
to the Li-Haldane conjecture. On the other hand, it also
contains the operator content in a boundary CFT prescribed
presumably by the entanglement cut. What is the interplay
between these two interesting phenomena in 1þ 1D
gapless topological states? Can we extract the topology
and boundary CFT information solely from the bulk wave
function according to entanglement spectrum?
In this Letter, we study different families of quantum

spin chains that exhibit different types of gSPTs in one
dimension. Each family contains symmetry protected
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topological edge modes that are described by the corre-
sponding boundary CFT. By examining their entanglement
spectrum and energy spectrum, we show that the bulk
entanglement spectrum is in one-to-one correspondence
with the energy spectrum at the edge of the system, which
means that the entanglement spectrum contains the infor-
mation of both the topological edge state and the corre-
sponding boundary CFT operator content. Additionally,
thanks to conformal symmetry present in the gSPTs, the
universal spectrum correspondence can be understood
theoretically, thus establishing a solid bulk-boundary cor-
respondence in 1þ 1D gSPTs. We also identify a sym-
metry enriched conformal boundary condition in the free
boson CFT beyond the conventional Dirichlet boundary
condition.
Entanglement spectrum of gapped SPT.—The entangle-

ment spectrum consists of the eigenvalues of the modular or
entanglement Hamiltonian H̃A, which is related to the
reduced density matrix ρA of the subsystem A by

ρA ¼ TrBjΨihΨj ¼
X
α

e− ln λα jΨA
αihΨA

α j ¼ e−H̃A : ð1Þ

Here, jΨ > is the ground state wave function of the
Hamiltonian, and λα is the eigenvalue of ρA. In our study
of 1D quantum chain, A ¼ f1; 2;…L=2g and B ¼
fL=2þ 1;…Lg represent a spatial bipartition of the whole
chain. The boundary points between A and B (more
generally, the boundary between A and B) are called the
entangling surface (or entanglement cut).
As a warm-up, we first study the 1D version of

Li-Haldane conjecture in the following cluster SPT
model [25,86,87], H ¼ −

P
L
i¼1 σ

z
iσ

x
iþ1σ

z
iþ2 − h

P
L
i¼1 σ

x
i .

The Pauli matrices σx=zi represent the spin-1=2 degrees
of freedom on site i. This model hosts a gapped SPT phase
at h < 1 and a trivial phase at h > 1 [86]. While the ground
state is unique in the trivial phase, the SPT phase features a
fourfold degeneracy from two edges in open boundary
condition (OBC). Figures 1(a) and 1(c) illustrate the energy
spectrum under OBC for the trivial and SPT phases,
respectively. The degeneracy arises from zero-energy
edge states at either end of the chain. The entanglement
spectrum under periodic boundary conditions (PBC) for the
trivial and SPT phases are shown in Figs. 1(b) and 1(d),
respectively. Remarkably, the “lowest-energy” structure,
highlighted by red boxes in Fig. 1, of the entanglement
spectrum faithfully reproduces the (non) degeneracy of the
(trivial) SPT phase [67,75,88,89].
Entanglement spectrum in symmetry enriched QCPs.—

Until now, different families of gSPTs have been identified
in the literature [27,28,30,31]: nonintrinsic gSPTs usually
emerge at critical points between SPTs and spontaneous
symmetry breaking phases and exhibit a partial set of
edge modes from the adjacent gapped SPT, referred to as
symmetry-enriched QCPs; conversely, intrinsically gSPTs

are usually stable phases without a gapped counterpart. For
instance, emergent anomalies in intrinsically gSPTs could
not arise in a gapped phase in the same dimension with the
same symmetry. In this work, we refer to these phases as
gapless symmetry-protected topological states.
As an example of symmetry enriched QCPs, we consider

the generalized cluster Ising chain [24,25,90,91],

HCI ¼ −
XL
i¼1

σziσ
x
iþ1σ

z
iþ2 − h

XL
i¼1

σziσ
z
iþ1: ð2Þ

This model possesses a Z2 spin-flip symmetry and a time-
reversal symmetry ZT

2 : P ¼ Q
i σ

x
i and T ¼ K (complex

conjugation). By adjusting the tuning parameter h, the
system undergoes a transition between a ferromagnetic
(FM) phase and an SPT phase, with the latter sometimes
referred to as the cluster SPT phase. The FM-SPT transition
is described by a symmetry enriched Ising CFT, where the
time-reversal symmetry acts nontrivially on the string
operator. In a semi-infinite geometry, the string operator
(symmetry flux) σz1σ

y
2

Q∞
i¼3 σ

x
i has a nontrivial charge under

time reversal symmetry, making it distinct from a normal
Ising CFT. Moreover, the charged string operator renders a
twofold degenerate algebraic splitting edge mode protected
by Z2 × ZT

2 symmetry. Intuitively, because σz1 commutes
with the Hamiltonian in a semi-infinite chain, the edge
spontaneously breaks the Ising symmetry. Note that this is
not merely a fine-tuned result but protected by the under-
lying symmetry [24].
To investigate the corresponding bulk-boundary duality,

we used the density matrix renormalization group (DMRG)

(a) (b)

(c) (d)

FIG. 1. OBC energy spectrum and PBC bulk entanglement
spectrum for (a)–(b) the trivial phase (h ¼ 2.0) and (c)–(d) the
SPT phase (h ¼ 0.5). The system size is L ¼ 64 for OBC and
L ¼ 128 for PBC, and k counts the spectrum from the lowest-
lying levels. The ground state manifolds of the entanglement
spectrum show the same number of levels as the physical ground
state manifolds, as indicated by the red boxes.
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method [92–98] (The details of the algorithm are intro-
duced in the Supplemental Material [99].) to calculate the
bulk entanglement spectrum and many-body energy spec-
trum under OBC, respectively, as shown in Figs. 2(a)
and 2(b). After a proper rescaling, we observe that (i) the
entanglement spectrum shows the same doubly degeneracy
in the OBC energy spectrum, reflecting the nontrivial edge
state, (ii) the bulk entanglement spectrum contains the same
operator content in the corresponding boundary CFT,
and (iii) the algebraic splitting edge mode in our example
can be identified through finite-size scaling of the bulk
entanglement spectrum (see Sec. VI of the Supplemental
Material [99] for a detailed discussion). This example also
demonstrates that the bulk wave function nicely encodes
the information on the topology and the operator content
under OBC. (see Secs. II and III of [99] for discussions on
other gSPT families). Furthermore, we verified the stability
of the topological degeneracy of the bulk entanglement
spectrum under symmetry-preserving local disorders for
gSPT phases, to illustrate the generality of our conclusions
(see Sec. IV of [99] for details).
Entanglement spectrum in intrinsically gapless SPT

phases.—Now, we examine a representative system of
the intrinsically gapless SPT phase given by [27]

HigSPT ¼ −
XL
i¼1

�
τz2i−1σ

x
2iτ

z
2iþ1 þ τy2i−1σ

x
2iτ

y
2iþ1

þ σz2iτ
x
2iþ1σ

z
2iþ2 þ Δτx2i−1τx2iþ1

�
; ð3Þ

where each pair of ðτ2i−1; σ2iÞ represents the ith unit cell,
and the two species of spins per unit cell are represented by
Pauli operators σα and τα. We focus on jΔj < 1 for the last
term, within which the ground state is an intrinsically
gapless SPT state. It is an exactly marginal symmetric
perturbation. This Hamiltonian can be obtained by stacking
an Ising-ordered Hamiltonian with an XXZ chain through

the Kennedy-Tasaki (KT) transformation [27,45]. The low-
energy effective theory is described by a c ¼ 1 free boson
CFT. The system possesses a Z4 symmetry generated by
U ¼ Q

i σ
x
2ie

iðπ=4Þð1−τx
2i−1Þ, which exhibits an emergent

anomaly in the low energies. Namely, in the low-energy
sector, where σz2i−2σ

z
2i ¼ τx2i−1, the Z4 is approximately

U ∼
Q

i σ
x
2ie

iðπ=4Þð1−σz
2i−2σ

z
2iÞ, which is the same anomaly on

the boundary of a 2þ 1D Levin-Gu SPT phase [106]. This
anomaly prevents the system from realizing a unique
symmetry-preserving gapped phase. Moreover, in an open
chain with a length L, the square of the low-energy
symmetry operator fractionalizes onto each end of the
boundary [30,31], U2 ∼ τx1σ

z
2σ

z
2L. This charge locally anti-

commutes with the U symmetry, protecting a twofold
ground-state degeneracy.
It is obvious to note that the sublattice magnetization

mx ¼ 1
2

P
ihτx2i−1i is a good quantum number for any Δ.

Consequently, we can categorize the full spectrum into
different sectors labeled by mx. The results of energy and
entanglement spectrum for Δ ¼ 0 are depicted in Figs. 3(a)
and 3(b), respectively. We observe that the bulk entangle-
ment spectrum not only exhibits the same degeneracy as the
OBC energy spectrum but also shares the same operator
content. Both OBC energy spectrum and bulk entangle-
ment spectrum correspond to the operator content of the
free boson boundary CFT [78], which suggests that both
topological and boundary CFT information can be obtained
in the stable critical phase through entanglement spectrum
from a bulk wave function.
Entanglement spectrum and boundary CFT.—There

exists an immediate relation between the entanglement
Hamiltonian and the Hamiltonian of an open boundary
chain [79,80]. In the continuum limit, the entanglement
cut is modeled by a small spatial region of thickness ϵ
at the boundary of A and B. We consider in our examples
the ground state of a one-dimensional periodic chain of a

(a) (b) (c) (d) (e)

FIG. 2. (a) OBC energy spectrum and (b) PBC entanglement spectrum of the generalized cluster Ising chain Eq. (2) at the QCP
h ¼ 1.0 for several L. The results of the bulk entanglement spectrum with additional projections on the boundary are shown in (c) for
ð1þ σz1Þð1þ σzL=2Þ, in (d) for ð1þ σz1Þð1 − σzL=2Þ, and in (e) for ð1þ σz1Þ. All the spectra have been rescaled separately such that the first
two levels are fixed to the corresponding values. For example, dn ¼ 0.5 × ðEn − E1Þ=ðE2 − E1Þ in (a). Open circles represent a twofold
degeneracy while open squares indicate a single degeneracy.
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length L with a bipartition A∶ð−L=4; L=4Þ and the comple-
ment B as shown in Fig. 4(a). Notice that we shift the
entanglement cut from ð0; L=2Þ to ð−L=4; L=4Þ for sim-
plicity without loss of generality. The manifold of the
Euclidean path integral is given by an infinite cylinder
with two entanglement cuts with a radius ϵ, as shown in
Fig. 4(b). The infinite length of the cylinder presents a
projection to the ground state in Euclidean path integral.
A complex number z ¼ zþ L labels the cylinder with
the imaginary time in the direction of ImðzÞ, and the

entanglement cut at z ¼ �L=4. This manifold can be
mapped onto an annulus that terminates at the entangle-
ment cuts by

ξðzÞ ¼ log

�
ei2πz=L − e−iπ=2

eiπ=2 − ei2πz=L

�
; ð4Þ

where ξ ¼ ξþ 2πi represents the coordinate of the annulus
in Fig. 4(b) with ξ ¼ xþ it. The two boundaries of the
annulus are the conformal image of two entanglement cuts
at ξ ≈� logð2L=πϵÞ, which leads to the width of the
annulus

W ¼ 2 log
2L
πϵ

: ð5Þ

After this conformal transformation, the entanglement
Hamiltonian is then the conformal image that generates the
translation in the ImðξÞ direction. Hence, the entanglement
spectrum is equivalent to the energy spectrum in the
annulus with the boundary conditions given at the entan-
glement cuts. When the “low-energy” part of the spectrum
is concerned, these boundary conditions will flow to con-
formal boundary condition, which we labeled by a1 and a2.
Given the conformal boundary conditions, a1 and a2, and
the annulus width W, the entanglement spectrum reads

(a) (b)

(c)

(e1) (e2) (e3)

(d)

FIG. 3. (a) OBC energy spectrum and (b) PBC entanglement
spectrum labeled by the quantum number mx for the intrinsically
gSPT at Δ ¼ 0. The spectra are rescaled separately such that the
first two levels within the mx ¼ 0 sector are fixed to 0 and 1,
respectively. (c)–(d) The rescaled spectrum within the mx ¼ 0
and �1 sectors as a function of Δ. The rescaled value of the first
level in the mx ¼ �1 sector is related to the Luttinger parameter
and is compared with the exact solution, ηðΔÞ ¼ 1 −
arccos ð−ΔÞ=π (red solid line). (e1)–(e3) Display the resulting
entanglement spectrum for Δ ¼ 0 after the projection ð1þ σz2LÞ,
ð1þ σzLÞð1þ σz2LÞ, and ð1 − σzLÞð1þ σz2LÞ from left to right.
(e1)–(e3) Are separately rescaled to be directly compared with
(b). The simulated system size is L ¼ 24 for OBC and L ¼ 64 for
PBC; the colored numbers indicate the degeneracy of each level.

(a)

(b)

FIG. 4. (a) The setup involves a bipartition of one-dimensional
periodic spin models. The orange shaded region denotes the
subsystem A, and B represents its complement. The red dotted
line represents the entanglement cut, and a1;2 labels the boundary
condition. After conformal transformation, the reduced density
matrix maps to a cylinder (annulus) with width W ∼ logL.
(b) The Euclidean theory is defined in an infinite cylinder with
two entanglement cuts with separating subsystems A and B. Via a
conformal transformation ξðzÞ in Eq. (4), the infinite cylinder
with two cuts is mapped to an annulus.
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Eða1;a2Þ
j ¼ π

W

�
−

c
24

þ Δða1;a2Þ
j

�
; ð6Þ

where Δða1;a2Þ
j is the scaling dimension of the allowed

operators consistent with the conformal boundary condi-
tions a1 and a2, and c is the central charge of the underlying
CFT. Notice that the energy level is inversely proportional
to the annulus width, W, and via the conformal trans-
formation, the entanglement spectrum is, on the other hand,
inversely proportional to logL in Eq. (5) (see Sec. Vof [99]
for a detailed discussion).
A bipartition of Hilbert space is subtle for a quantum

field theory [80,107]. This subtlety can be resolved by
considering a finite lattice system and then taking the
thermodynamic limit by sending the number of sites to
infinite. With the lattice regularization, different conditions
on the entanglement cut can be applied. For instance, the
“clear cut” refers to a bipartition of two Hilbert spaces
naturally defined by HA ¼⊗i∈A Hi, HB ¼⊗i∈B Hi on a
lattice system, withHi the local Hilbert space at the ith site.
Also, a projection of the wave function onto a complete set
of commuting operators at the entanglement cut is another
way to make the bipartition well defined in field theory.
This corresponds to projections on the adjacent site of the
entanglement cut in the lattice regularization.
In the symmetry enriched Ising QCPs of Eq. (2), the

boundary CFT is characterized by a “superposition,” Ĩ ⊕ ϵ̃,
where Ĩ, ϵ̃ denotes two fixed boundary conditions in the
language of boundary CFT [24]. Physically, these two
states correspond to the boundary spin pointing towards
two opposite directions, and the superposition means
the boundary has a spontaneous magnetization as two
opposite magnetizations are equivalent. This leads to the
operator content ðĨ ⊕ ϵ̃Þ × ðĨ ⊕ ϵ̃Þ ¼ 2 × ð½I� ⊕ ½ϵ�Þ as
seen in Fig. 2. Here, ½I�; ½ϵ�; ½σ� label the operator content
of the three primary fields in the Ising CFT [57]. It is
in sharp contrast to normal Ising CFT whose boundary
state is normally σ̃, i.e., a free boundary condition without
double degeneracy. The boundary condition beyond the
clear-cut at the entanglement cut provides an additional
knob to control the entanglement spectrum. We intro-
duce the projection operators at the entanglement cut,
PL;R ∝ ð1� σz1;L=2Þ, and investigate the entanglement spec-
trum of renormalized PL;Rjψi. The effect of the projection
is to fix the boundary condition to be Ĩ or ϵ̃. As a result,
we can modify the entanglement spectrum according to
Ĩ × Ĩ ¼ ½I�, Ĩ × ϵ̃ ¼ ½ϵ� and Ĩ × ðĨ ⊕ ϵ̃Þ ¼ ½I� ⊕ ½ϵ� as shown
in Figs. 2(c)–2(f).
Symmetry enriched boundary condition.—In the intrinsi-

cally gSPT phases of Eq. (3), which is described by a free
boson c ¼ 1 CFT, the boundary condition in an open chain
goes beyond the conventional Dirichlet boundary condi-
tion [28,108]. Recall the Dirichlet boundary condition in a
free boson CFT contains states with energy

Emx;n ∼
1

W

�
ηðΔÞm2

x þ n
�
; ð7Þ

where mx (n) is an integer labeling the topological sector
(the descendant state) and ηðΔÞ ¼ 1 − arccos ð−ΔÞ=π.
Here, on the other hand, the boundary state is enriched
by the symmetry fractionalization U2 ¼ τx1σ

z
2σ

z
2L at both

edges, namely, on top of a Dirichlet boundary state, an extra
label of the spontaneous magnetization σ1;2 on each edge
needs to be specified. Hence, the state is enriched,
jmx; n; σ1; σ2i. The boundary condition cannot be obtained
by a superposition of conventional boundary conditions
in free boson boundary CFT. With a parity symmetry in
Eq. (3), those states are classified by distinct parity:
j2k; n; σ; σi and j2kþ 1; n; σ;−σi (see Sec. VII of [99]),
each features a double degeneracy σ ¼ �1. This explains
the double degeneracy of entanglement spectrum as seen in
Fig. 3 in the language of boundary CFT. We can also
modify the entanglement cut by a projection, i.e., ð1� σzLÞ
or ð1� σz2LÞ. A single projection ð1þ σz2LÞ lifts the double
degeneracy and results in the remained states: j2k; n; 1; 1i
and j2k − 1; n; 1;−1i; while a joint projection ð1þ σzLÞ×
ð1þ σz2LÞ [ð1 − σzLÞð1þ σz2LÞ] allows states only with
mx ∈ 2Z (mx ∈ 2Zþ 1), as shown in Figs. 3(e1)–3(e3).
Concluding remarks.—To summarize, we have inves-

tigated several families of 1þ 1D quantum chains featuring
gSPTs. Our primary focus has been to establish a one-to-
one correspondence between the bulk entanglement spec-
trum and the edge energy spectrum, both of which align
with the topological degeneracy of the topological state and
operator content of the underlying boundary CFT. Our
finding highlights the universal entanglement spectrum,
and thus, opens a new avenue toward understanding of
gapless topological phases of matter.
Generalizing our study to higher-dimensional gSPTs

poses a significant challenge, as it necessitates an under-
standing of conformal defects within conformal field
theories, which remains a nascent field in higher dimen-
sions. We notice that the construction of two-dimensional
gSPTs can be done through decorated domain walls and
charges of the symmetry defects [15,24]. Additionally,
gapless topological phases in free fermion systems at one or
higher dimensions [33,51] are more accessible in numerical
simulations of bulk entanglement spectrum. It would be
an interesting future direction to systematically investigate
the entanglement spectrum in these models and make a
connection to the Li-Haldane conjecture.
From the perspective of experimental realization, while

directly probing the entanglement spectrum is challenging,
instead, a reasonable ansatz of entanglement Hamiltonian
can be put forward by leveraging the Bisognao-Wihmann
theorem [109] to lattice systems, and subsequently obtained
efficiently in the state-of-the-art digital quantum platform
via entanglement Hamiltonian learning or analog quantum
simulator via quantum variational learning [110–113]
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(see Sec. VIII of [99] for a review and discussion). It will
be interesting to extend these techniques to explore the
entanglement Hamiltonian in gapless SPT states in the
future.
Regarding the experimental realization in condensed

matter systems, we notice that the Haldane phase has been
realized experimentally in 1D quantum spin chains [114].
It is possible to realize the symmetry enriched quantum
critical point at the transition between this SPT phase
and a spontaneous symmetry breaking phase. Moreover,
in two dimensions, the deconfined quantum phase tran-
sition between the quantum spin Hall insulator and the
s-wave superconducting phase features an intrinsically
gSPT [114–116]. Notably, this deconfined phase transition
could be experimentally realized in WTe2 [117]. Finally, in
a broader sense, the weakly interacting topological semi-
metal that features gapless boundary states, such as 3D
Weyl semimetal with surface Fermi arc [118–121], can be
regarded as a gapless SPT phase. This opens up a
promising avenue for realizing gSPT in condensed matter
experiments, in which the spectrum could be studied.
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Appendix: Symmetry-enriched boundary conditions in
the intrinsically gSPT phase.—We provide additional
results for the igSPT phase in Eq. (3). Recall that the
igSPT model before the KT transformation [27] is a
classical Ising chain stacked with an XXZ chain,

HXXZ ¼ −
X
i

�
τy2i−1τ

y
2iþ1 þ τz2i−1τ

z
2iþ1 þ Δτx2i−1τx2iþ1

�
:

ðA1Þ
It is well known that the XXZ model is exactly solvable
and in the bosonization language, it is described by a
free compacted boson with the Lagrangian density

L ¼ 1

2

�
1

vF
ð∂τϕÞ2 þ vFð∂xϕÞ2

�
; ðA2Þ

where ϕ denotes the boson field. The spin operators are
expressed by 1

2
τxi ≈ −ð1=2πRÞ∂xϕþ Að−1Þi sinðϕ=RÞ,

1
2
τyi ≈ cosð2πRθÞ½Cþ Bð−1Þi cosðϕ=RÞ�, and 1

2
τzi ≈

sinð2πRθÞ½Cþ Bð−1Þi cosðϕ=RÞ�, where ϕ (θ) denotes

the free (dual) boson and A, B, C are nonuniversal
constants. The radius R of the bosonic field is
determined by the anisotropy parameter Δ via R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2πÞ − ð1=2π2Þ arccosð−ΔÞ

p
.

The boundary condition of the XXZ model with an open
boundary corresponds to the Dirichlet boundary condition
of the field ϕ, giving rise to the partition function [108]

ZXXZ ¼ Tr½e−βHXXZ � ¼ 1

ηðqÞ
X
mx ∈Z

q2πR
2m2

x

¼
X
mx ∈Z

X∞
n¼0

pðnÞq2πR2m2
xþn; ðA3Þ

where q ¼ e−βπvF=L and ηðqÞ ¼ q1=24
Q∞

n¼1ð1 − qnÞ is the
Dedekind η function. pðnÞ is the number of partitions of the
integer n, e.g., pð0Þ ¼ 1; pð1Þ ¼ 1; pð2Þ ¼ 2; pð3Þ ¼ 3;
pð4Þ ¼ 5;…. From the partition function, the operator
content is classified into different topological sectors given
by an integer mx, and within each sector, another integer n
denotes the excited state. Hence, in the XXZ sector, the
eigenstate jmx; ni is labeled by two integers mx and n with
the eigenenergy

Emx;n ¼
πvF
L

�
2πR2m2

x þ n
�
; ðA4Þ

and the degeneracy pðnÞ. The topological number mx is
associated with the total spin magnetization mx ¼P

i
1
2
hτx2i−1i, which is a good quantum number in the

XXZ model. We consider the number of sites to be even,
so mx is an integer. Before the KT transformation because
the XXZ model and the Ising ferromagnet are decoupled,
there will be a trivial doubling for all states merely due to
the two possible magnetizations.
Because the KT transformation is unitary with an open

boundary condition, one expects that its OBC energy
spectrum contains the operator content of a free boson
CFTwith a double degeneracy. However, this degeneracy is
nontrivial because now the σ spins and the τ spins are
strongly coupled in Eq. (3). Moreover, this double degen-
eracy cannot be accounted in the conventional boundary
states given by two integers mx and n without the
degeneracy. For clarity, we consider a chain with 2Lþ 1
sites labeled by i ¼ 0;…; 2L, where the σ (τ) spin is located
at even (odd) site. The model has an open boundary
condition that terminates on the σ spins at the site 0 and
the site 2L,

HigSPT ¼ −σz0τx1σ
z
2 −

XL−1
i¼1

�
τz2i−1σ

x
2iτ

z
2iþ1 þ τy2i−1σ

x
2iτ

y
2iþ1

þ σz2iτ
x
2iþ1σ

z
2iþ2 þ Δτx2i−1τx2iþ1

�
: ðA5Þ

We also consider L to be an even number, L∈ 2Z. The
model respects a parity symmetry,
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I∶ τα2i−1 → τα
2L−ð2i−1Þ; σα2i → σα2L−2i: ðA6Þ

Because L is an even integer, the middle site i ¼ L is the σ
spin, the parity is a site (bond) parity for the σ (τ) spin.
The presence of bond parity symmetry classifies the eigen-
state into even and odd parity sectors. The parity is
closely related to the topological sector mx [108],
I ¼ ð−1Þmx .
There is an easy way to see such a degeneracy in the

model Eq. (A5). The boundary σ spins, σz0 and σz2L, com-
mute with the Hamiltonian Eq. (A5). These two boundary
spins are related via the parity transformation. Therefore,
the eigenstates can be labeled by jmx; n; σ0; σ2Li, which is
further classified into two sectors, i.e., even parity: jmx ¼
2k; n; σ; σi and, odd parity, jmx ¼ 2kþ 1; n; σ; σ̄i. Here
σ ¼ −σ̄ ¼ �1. The boundary spins σz0 and σz2L anticom-
mute with the Z4 symmetry introduced in [27], U ¼Q

i σ
x
2ie

iðπ=4Þð1−τx
2iþ1

Þ, so every eigenstate is twofold degen-
erate. Namely, jmx ¼ 2k; n; σ; σi and jmx ¼ 2kþ 1;
n; σ; σ̄i are both two-fold degenerate for σ ¼ �1. In
summary, in the presence of inversion symmetry, the
spectrum of an open chain given by (A5) can be classified
into even and odd parity with energy Emx¼2k;n and
Emx¼2kþ1;n, respectively, and all levels are doubly degen-
erate. It is worth pointing out that the degeneracy is a
consequence of the gapless edge state protected by the Z4

symmetry, irrespective of the parity symmetry. The pres-
ence of the parity symmetry relates the degenerate state
with σ0 ¼ σ2L (σ0 ¼ −σ2L) to topological sector mx ¼
2k (mx ¼ 2kþ 1).
To verify this theoretical understanding, we implement

projections of the boundary spin ð1� σz0Þ and ð1� σz2LÞ.
For a single projection on one edge, 1þ σz0, the degeneracy
is lifted, because only a single nondegenerate edge state
is allowed. The parity sector is determined solely by the
degree of freedom on the other edge, σz2L. A joint projection
on both edges, ð1þ σz0Þð1þ σz2LÞ, selects even parity
states, mx ∈ 2Z. While the other one, ð1þ σz0Þð1 − σz2LÞ,
selects odd parity states, mx ∈ 2Zþ 1. The results of the
operator content for this OBC energy spectrum can be seen
in Fig. 7 in Supplemental Material Sec. VII [99], where
we have performed a direct simulation of Eq. (A5) with
boundary projections applied on the energy spectrum to
achieve the parity selection described here.
The conformal transformation relates the entanglement

spectrum to the operator content in boundary CFT. In
particular, the boundary condition a1 and a2 also get
mapped between two theories. In the current context, it
means projection on the boundary σ spins. Hence, the
same parity selection exhibits in Fig. 3(e). There, with a
periodic boundary condition, σ (τ) spin is defined at even
sites i ¼ 2; 4;…; 2L (odd sites i ¼ 1; 3;…; 2L − 1). We
also set L to be an even number L∈ 2Z. Then the
corresponding projections are acted on σL and σ2L, with
the specific form

P ¼ ð1� σzLÞð1� σz2LÞ: ðA7Þ

As found in Fig. 3(e) that a single projection on σL or σ2L
can remove the double degeneracy, but the resulting
spectrum can still reflect the same operator content of
the boundary CFT. Moreover, when the projections on σL
and σ2L are simultaneously applied, depending on the spin
orientations chosen for sites L and 2L, the contribution
from odd or even quantum sectors can be further projected
out from the degeneracy-removed entanglement spectrum.
The results reveal how implementations of the entangle-
ment cut can affect the bulk entanglement spectrum,
consistent with the analysis of operator content of the
related boundary CFT.
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