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The two-channel Kondo lattice likely hosts a rich array of phases, including hastatic order, a channel
symmetry breaking heavy Fermi liquid. We revisit its one-dimensional phase diagram using density matrix
renormalization group and, in contrast to previous work, find algebraic hastatic orders generically for
stronger couplings. These are heavy Tomonaga-Luttinger liquids with nonanalyticities at Fermi vectors
captured by hastatic density waves. We also find a predicted additional nonlocal order parameter due to
interference between hastatic spinors, not present at large N, and residual repulsive interactions at strong
coupling suggesting non-Fermi-liquid physics in higher dimensions.
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The Kondo lattice model is a foundational model of
correlated electron physics, capturing how antiferromag-
netic (AFM) interactions between conduction electrons and
local moments lead to heavy Fermi liquids, where the spins
are incorporated into the Fermi surface. The model can be
solved analytically in a large-N limit, which captures the
heavy Fermi liquid [1,2], with 1=N corrections leading to
magnetic order, quantum criticality, and superconductivity
[3–6]; numerical results in one dimension (1D) are largely
consistent with large-N, finding a heavy Tomonaga
Luttinger liquid (TLL) [7–16] apparently stabilized by
magnetic fluctuations [17]. The two-channel Kondo lattice
is a well-studied extension, with two symmetry-related
conduction electron channels. The impurity is quantum
critical [18–20], with a residual Majorana fermion. The
lattice has a rich interplay of spin and channel, and
Majorana signatures may survive to higher dimensions
[21–23]. The model can be solved in two large-N limits,
leading to composite pair superconductivity [24–26] for
SPðNÞ and channel symmetry breaking heavy Fermi
liquids known as hastatic order for SUðNÞ [27–34]. The
physical N ¼ 2 limit has been studied numerically in 1D
[35,36] and infinite dimensions [21,26,28–30,37,38], but
many questions remain, including the general phase dia-
gram; validity of large-N limits, including the presence of
composite pair superconductivity; and the nature and Fermi
wave vectors of metallic phases, including non-Fermi-
liquid signatures.
Given recent analytical insights [27,31,32,39] and com-

putational improvements, we revisit the 1D two-channel
Kondo lattice using density matrix renormalization group
(DMRG). We can now address both potential order
parameters and Luttinger liquid properties, including
whether there are “heavy” TLLs. Our results are summa-
rized in Fig. 1. We find algebraic hastatic order at larger
couplings for all conduction electron fillings except half

filling, and we find these are heavy TLLs incorporating the
spins into the Fermi surface. Surprisingly, the two-channel
combination of channel and magnetic fluctuations appears

FIG. 1. Zero temperature phase diagram of the 1D two-channel
Kondo lattice obtained with DMRG, as a function of conduction
electron filling (nc) and Kondo coupling (J). The ground state has
magnetic and channel or hastatic orders, denoted by symbols and
colors as described in the legend. Regions are “heavy,” incor-
porating at least some spins into the Fermi sea, or “light.” Quarter
and half filling are commensurate hastatic density wave (HDW)
and antiferromagnetic (AFM) insulators, respectively, while all
other regions are metallic with generically incommensurate
orders. There are three distinct metallic regions: a coexisting
ferromagnet and HDW (FMHDW) for nc < 1=4, where nc spins
are screened and the rest order ferromagnetically; a pure HDW
for stronger coupling and 1=4 < nc < 1=2; and a weak-coupling
AFM without hastatic correlations (ICAFM).
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to be more effective in stabilizing the heavy TLL than the
one-channel model [17]. Our study greatly extends pre-
vious results [36], which found algebraic hastatic order
only at quarter filling and did not examine the nature of the
metallic phases. Our results have implications for non-
Kramers doublet materials, where two-channel Kondo
physics may be relevant for unconventional superconduc-
tivity in UBe13 [21,37,40,41], 1-2-20 Pr-based materials
physics [22,31,42–44], and hidden order in URu2Si2
[27,39,45].
The 1D two-channel Kondo lattice model is

H¼−t
X

iασ

c†iασciþ1ασþH:c:þJ
2

X

iασσ0
Sfi ·c

†
iασσσσ0ciασ0 ; ð1Þ

where t ¼ 1 is the conduction electron hopping and J > 0
is the Kondo coupling. i labels sites (1 ≤ i ≤ L), where
each site has both conduction electrons (c†iασ) with spin σ
and channel α, and local S ¼ 1=2 moments (Sfi). σ are the
Pauli matrices in spin space. We fix the conduction electron
filling, 0 ≤ nc ≤ 1, with nc ¼ 1 indicating four electrons
per site. This is the simplest Kondo model with both SU(2)
spin and SU(2) channel symmetries.
The channel degeneracy leads to a rich possibility of

phases. These can be divided into “heavy” and “light”
phases, where the spins are either incorporated into the
Fermi sea or remain decoupled; in the light phases these
typically order magnetically, hSfii ≠ 0. There are two
proposed heavy orders: a channel symmetry breaking
heavy Fermi liquid that we call hastatic order [27,28],
and composite pair superconductivity [24], which incor-
porates the spins directly into heavy Cooper pairs. These
orders arise within different large-N limits of the SU(2)
two-channel model, where the more commonly used
SUðNÞ limit leads to hastatic order, and composite pairing
arises in the symplectic-N limit extending SU(2) to SPðNÞ
[25]. For N ¼ 2 and nc ¼ 1=2, these are components of an
SO(5) composite order parameter. Both have been found in
d ¼ ∞ away from half filling [26,28–30], and both form
either uniform or modulated orders.
The hastatic order parameter, Ψ⃗, is a composite order

parameter of conduction and f moments that captures the
Kondo singlet channel polarization:

ΨðiÞ ¼ 1

2

X

σσ0αα0
c†iασσσσ0ταα0ciα0σ0 · Sfi; ð2Þ

where τ are channel Pauli matrices. The ẑ component ismani-
festly channel polarization,ΨzðiÞ ¼ ðSci;α¼þ − Sci;α¼−Þ · Sfi

[28]. Hastatic order also generates staggered channel polari-
zation in the conduction electrons, niασ ¼ c†iασciασ , whose
correlations were used previously [36].
The complex composite pair order parameter is

ΔCPðjÞ ¼
X

ασσ0
c†jασ0 ½σðiσ2Þ�σσ0c†jᾱσ0 · Sfj; ð3Þ

with ᾱ ¼ −α. Electrons in orthogonal channels screen the
same spin, giving singlet superconductivity.
An additional hastatic order parameter was recently

predicted [39]. In large N, hastatic order has a spinorial
order parameter hViαi representing a channel-dependent
Kondo singlet. This quantity is gauge dependent, meaning
finite-N order parameters must be bilinears. The composite
order parameter, ΨðiÞ ∝ P

αα0 hV�
iαταα0Viα0 i, is associated

with the on-site moments of these spinors, but another,
nonlocal order parameter can arise from interference
between spinors at different sites, break additional sym-
metries [31,39]. This interference requires intersite
spin correlations, and is not present for N ¼ ∞. 1=N2

Ruderman–Kittel–Kasuya–Yosida couplings generate
these correlations [46,47], often treated within large-N
Kondo-Heisenberg models [31,47] as an emergent f
hopping tf;ij describing spin-liquid physics. This order

parameter, Φ⃗ði; jÞ ∝ P
αα0 htf;ijV�

iαταα0Vjα0 i, is only present
in modulated hastatic phases, and may be written as [39]

Φaði; jÞ ¼ i
X

σσ0αα0
Sf;i ·

�
c†iαστ

a
αα0σσσ0cjα0σ0 × Sf;j

�
; ð4Þ

where i, j denote the sites, typically nearest neighbors,
whose spinorial interference generates Φ⃗. The coexistence
of a local, composite order parameter Ψ⃗ and a nonlocal,
spin-liquid-like order parameter Φ⃗ is reminiscent of the
order parameter fragmentation found in spin ice [48–50],
and is an explicit example of Kondo order parameter
fractionalization [51,52].
We obtained the ground state phase diagram using finite

system DMRG [53,54] in an ITensor implementation [55]
with open boundary conditions. We conserve the total con-
duction electron number, nc ¼ ð1=4LÞPiσα niασ, and the z
component of total angular momentum, Sz ¼ P

i½SzfiþP
α S

z
ciα�, where Sciα ¼ 1

2

P
σσ0 c

†
iασσσσ0ciασ0 is the conduc-

tion electron spin for a given site and channel. We use bond
dimensions of up to m ¼ 5000 on lattices of up to L ¼ 96

sites, resulting in a maximum discarded weight of 10−6

(with <10−8 typical in the strong-coupling regions),
implying generally good convergence. All figures used
L ¼ 72. The phase diagram shown in Fig. 1 was mapped
out via ground state correlation functions in the lowest
energy total spin sectors as a function of nc, for
0 ≤ nc ≤ 1=2, and J, for 1=3 ≤ J=ðJ þ tÞ ≤ 16=17.
We examined the following correlation functions:

SΨðxÞ ¼ hΨzðiÞΨzðiþ xÞi;
SΦðxÞ ¼ hΦzði; iþ 1ÞΦz†ðiþ x; iþ 1þ xÞi;
SfðxÞ ¼ hSzfiSzf;iþxi: ð5Þ

The first measures composite order correlations, which
captures the same physics as the conduction channel polari-
zation correlations, DðxÞ ¼ P

σσ0αα0 αα
0hniασniþxα0σ0 i, used
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previously [36]. SΦðxÞ captures correlations of the nearest-
neighbor Φ order parameter, while SfðxÞ captures spin
correlations. We fix the reference site i ¼ 10, but results are
unchanged by averaging over i’s sufficiently far from the
edges; x is a discrete variable representing distances
between sites. We use the SU(2) symmetries to fix the
spin or channel components to ẑ.
The peculiarities of 1D allow DMRG to efficiently study

this model, but also mean there is no long-range order, only
algebraic or exponential correlations, and Luttinger instead
of Fermi liquids. The nature of these gapless phases is
indicated by their central charge, which can be calculated
via the scaling of entanglement entropy with system size
cut [56,57], as shown in the Supplemental Material [58];
see also [59–62]. We find that all metallic hastatic density
waves (HDWs) have central charge, c ¼ 2, while the
insulating quarter filled HDW has c ¼ 1, as does the
insulating half filled AFM. Integer central charge implies
that all HDW regions are Tomonaga-Luttinger liquids,
although how the charge, spin, and channel sectors con-
tribute in the metallic HDWs is an open question. While
TLLs do not have a jump at the Fermi wave vector, they
have nonanalyticities at kF that manifest in both spin and
charge Friedel oscillations, whose Fourier transforms have
peaks at 2kF and 4kF [8,9,17], as well as directly in the
conduction electron momentum distribution [13,61,63]:

nq ¼
1

L

X

ijασ

eiqði−jÞhc†iασcjασi: ð6Þ

We sum over all i, j, but results are similar if sites near the
edges are excluded, suggesting that our results represent
bulk physics. We can now show that the HDW Fermi
surfaces incorporate the spins [8,9,11–13,15,17,62,64,65],
confirming a key large-N two-channel result [27,31–33].
Wewill show only nq, which detects kF directly, but the 2kF
and 4kF Friedel oscillation peaks were used as checks [58].
The relative weight of these peaks and the overall spatial
dependence of the Friedel oscillations can be used to
extract the charge Luttinger parameter K, which contains
information about residual interactions [9,17,61]. Note that
TLLs have intrinsic algebraic spin, charge, and super-
conducting correlations, all with 1=xα, α > 1 power laws,
while hastatic correlations, when present, dominate with
α ¼ 1.
Now we turn to the nature of the five distinct ground

states found in the phase diagram in Fig. 1. We confirm the
spin correlations previously reported [36], but find addi-
tional hastatic correlations away from nc ¼ 1=4.
For low filling (nc < 1=4) and moderate to strong

coupling, there is a ferromagnetic region with coexis-
ting algebraic hastatic order (FMHDW). nc spins are
screened by forming Kondo singlets, while the remaining
spins are fully polarized with S ¼ Smax ¼ ð1 − 4ncÞL=2,
analogous to the single-channel case [10,66], aside from a

small incomplete ferromagnetic region near the phase
boundary (0 < S ≤ Smax). Figure 2(b) shows the Ψ struc-
ture factor, SΨðqÞ ¼ ð1=LÞPx SΨðxÞe−iqx. The peak posi-
tion gives the HDW Q vector, Q ¼ 4πnc, which
approaches π at 1=4 filling. SΨðxÞ decays algebraically
as 1=x, while the spin correlations are those of a TLL. In
Fig. 3(a), nq has a nonanalyticity at k�F ¼ 2πnc, twice the
light kF ¼ πnc, indicating that nc spins are incorporated
into the Fermi surface. The total weight under SΨðqÞ
depends on the number of screened spins, growing as
n2c. While the FMHDW is a TLL, the charge Luttinger
parameter KðJÞ decreases with J, suggesting increasingly
repulsive residual interactions as strong coupling is
approached [58].
For 1=4 ≤ nc < 1=2 and J=ðJ þ tÞ ≥ 3=5, there is a

purely hastatic region (HDW), with fully screened spins

(a)

(b)

(c)

FIG. 2. (a) Example hastatic correlator SΨðxÞ, with nc ¼ 7=16,
J ¼ 8.0. It decays algebraically, with a clear modulation. Note
that DðxÞ [36] closely follows SΨðxÞ, up to a numerical factor.
The inset log-log plot confirms the power-law decay. SΨðxÞ is
similar for the FMHDW and HDW. (b) The Fourier transform
SΨðqÞ for several nc with J ¼ 8.0. The Q obtained from the peak
location smoothly evolves from nearly zero at low fillings to π at
1=4 filling as Q ¼ 4πnc in the FMHDW (left); the weight under
SΨðqÞ ∝ n2c, with the nc ¼ 1=4 curve reduced by 1=2. In the
HDW (nc > 1=4) (right), Q evolves smoothly from π as
Q ¼ 4πð1=2 − ncÞ. (c) In the AFM insulator (nc ¼ 1=2), the spin
correlator SfðxÞ has a 1=x power law (log-log plot in top inset),
with Q ¼ π, while SΨðxÞ (bottom inset) decays exponentially.
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(S ¼ 0) and algebraic hastatic order at Q ¼ 4πð1=2 − ncÞ,
with correlations again decaying as 1=x. Exactly at
nc ¼ 1=4, this is a hastatic Kondo insulator, with Q ¼ π,
and charge and spin gaps. Elsewhere, it is metallic—a
heavy TLL, as seen in nq in Fig. 3(b). The main non-
analyticity of nq is pinned to k�F ¼ π=2, regardless of
filling. This pinning results from the Q dependence of nc,
and is captured within a large-N HDW mean-field theory
[58]. The mean-field heavy bands are obtained at com-
mensurate nc, and the resulting conduction electron
momentum distribution nq is shown in Fig. 3(d). While
there are many heavy band crossings, due to the large unit
cell, we find typically only one or two Fermi surface jumps
in nq: one pinned to kF ¼ π=2 and an nc dependent one at
lower q. Both are consistent with DMRG results in location
and sign [compare Figs. 3(b) and 3(d)].
At 1=2 filling, we find an AFM insulator, whose spin

correlations decay as 1=x [Fig. 2(c)], with no spin gap. The
hastatic correlations decay rapidly, suggesting the spins and
conduction electrons are decoupled, although the electrons
also have staggered algebraic spin correlations.
For weaker coupling, there is a nonhastatic, incommen-

surate antiferromagnet (ICAFM), where spins and con-
duction electrons have Q ¼ 2kF ¼ 2πnc, consistent with a
spin-density wave of the light Fermi surface. nq also shows

this light kF ¼ πnc, as seen by peaks in dnq=dq in
Fig. 3(c). Our results here are less reliable, as weak coupling
(J ≲ 1.5) is inherently harder to treat with DMRG, mani-
festing as higher maximum discarded weights. We therefore
cannot conclusively calculate the central charge to confirm
the proposed fractional central charge in the weak Kondo
limit of the two-channel Kondo-Heisenberg model [33,60].
This region appears to have no charge or spin gaps and is
reminiscent of the RKKY liquid phase hypothesized for
J ≪ t in the single-channel lattice [11,17,36,67].
We also examined composite pair correlations, SCPðxÞ ¼

hΔCPðiÞΔ†
CPðiþ xÞi, finding exponential suppression with

generically short correlation lengths, by contrast to the
algebraic TLL conventional superconducting correlations.
In the HDW, ΔCPðiÞ is staggered, and the correlation length
increases with J and nc [58], consistent with the order
found for d ¼ ∞ [26].
Finally, we examine the additional hastatic order para-

meter Φ⃗, which captures interference between neighboring
hastatic spinors. Φ⃗ has algebraic correlations in the HDWs,

(a) (b)

(c) (d)

FIG. 3. For several nc within each metallic region, we calculate
the conduction electron momentum distribution nq, which should
have nonanalyticities at the Fermi wave vectors, with the
derivative (dnq=dq, arbitrary units) plotted below. The numerical
results are in (a)–(c). Panel (a) shows the FMHDW nq, with
dashed lines indicating the nonanalyticity at k�F ¼ 2πnc, twice the
light kF, consistent with incorporating nc spins into the Fermi sea.
Panel (b) shows the HDW nq, where the primary k�F ¼ π=2,
regardless of filling, with secondary nc dependent nonanalytic-
ities at lower q. Panel (c) shows nq in the nonhastatic ICAFM,
with light kF ¼ πnc. In (d), we calculate nq for the HDWwithin a
large-N mean-field theory [58]. Only some heavy Fermi surfaces
have nonzero conduction weight (nq), including one pinned at
π=2; the secondary nonanalyticity at low q is also qualitatively
captured.

(a)

(b)

FIG. 4. The nonlocal order parameter Φ⃗ captures interference
between neighboring hastatic spinors. (a) SΦðxÞ correlator at
J ¼ 8.0, nc ¼ 1=4 (insulating HDW) and 7=16 (HDW). There is
a clear power-law dependence, with a smaller magnitude than SΨ.
In metallic regions, SΦ shows 1=x behavior with a clear
oscillation. In the insulator, SΦ is uniform, with a subleading
1=xα power law [39]; we fit α ¼ 2.7 for x ≥ 20. Φ⃗ is not present
for large N and indicates RKKY physics. Inset: log-log plot
confirming power-law decay; nc ¼ 1=4 has a steeper slope than
nc ¼ 7=16, due to differing exponents. (b) The Fourier transform
SΦðqÞ for several nc, J ¼ 8.0. nc ¼ 1=4 only has a Q ¼ 0 peak,
but other fillings show both uniform and oscillating components,
with the same Q as SΨ.
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which must arise from RKKY interactions beyond large N.
The correlations shown in Fig. 4 are consistent with
simple Landau arguments [39] predicting uniform and
Q-modulated components of Φ⃗, given a modulated

Ψ⃗ðQÞ. Away from quarter filling, SΦ has 1=x correlations,
with the leading Q vector matching Ψ⃗, and a potential
uniform component. At quarter filling, Φ⃗ is uniform, with a
distinct subleading 1=xα power law; α ≈ 3, but is sensitive
to the x fitting range, with α∈ f2.5; 3.5g.
To conclude, we find hastatic correlations to be nearly

ubiquitous for strong coupling, and have shown that these
regions are heavy TLLs whose Fermi surfaces can be
understood within large N. The two-channel Kondo insu-
lator at nc ¼ 1=4 is particularly robust, which is relevant for
its predicted Majorana zero modes [68]. We also find a
predicted hastatic order parameter associated with intersite
spinorial interference, which implicates RKKY physics,
and signatures of a residual critical nature of the TLL: in the
FMHDW, the charge Luttinger parameter K decreases as
J increases, meaning the residual interactions are increas-
ingly repulsive approaching strong coupling [58], opposite
to the single-channel case [9,17]. Further work is needed to
resolve KðJÞ in the HDW and to address whether higher
dimensional hastatic phases are non-Fermi liquids [21–23].
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