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The Bethe-Salpeter equation (BSE) can provide an accurate description of low-energy optical spectra of
insulating crystals—even when excitonic effects are important. However, due to high computational costs it
is only possible to include a few bands in the BSE Hamiltonian. As a consequence, the dielectric screening
given by the real part of the dielectric function can be significantly underestimated by the BSE. Here, we
show that universally accurate optical response functions can be obtained by combining a four-point BSE-
like equation for the irreducible polarizability with a two-point Dyson equation that includes the higher-
lying transitions within the random phase approximation. The new method is referred to as BSEþ. It has a
computational cost comparable to the BSE but a much faster convergence with respect to the size of the
electron-hole basis. We use the method to calculate refractive indices and electron energy loss spectra for a
test set of semiconductors and insulators. In all cases the BSEþ yields excellent agreement with
experimental data across a wide frequency range and outperforms both the BSE and the random phase
approximation.
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The current state of the art for calculating optical
absorption spectra of solids from first principles is based
on many-body perturbation theory [1–7]. In a first step, the
quasiparticle (QP) band structure is calculated within the
GW approximation. In a second step, the two-particle
(four-point) Bethe-Salpeter Equation (BSE) is solved
within a limited space of electron-hole (e–h) transitions.
The dimension of the BSE Hamiltonian is NcNvNk, where
Nc=v is the number of conduction (valence) bands used to
form the e-h basis and Nk is the number of k points. The
scaling of this matrix means that in practice it is only
possible to include a few bands close to the Fermi energy.
This is sufficient for describing the low-energy excitations
and the imaginary part of the dielectric function in the
corresponding frequency range, but the lack of higher-lying
excitations means that the real part is underestimated even
at low frequencies.
The high computational cost of the BSE approach, which

persists even with the best-scaling implementations [8–13],
has motivated attempts to construct exchange-correlation
(xc) kernels (fxc) that can account for excitonic effects
within the time-dependent density functional theory
(TDDFT) [14] formalism [15–26]. The advantage of this
approach is that the fxc is a two-point function, which
renders the Dyson equation much simpler, and allows one
to include transitions up to very high energies.
The simplest approximation sets fxc ¼ 0, which is the

random phase approximation (RPA). The RPA can yield a
reasonably accurate description of the optical response of

bulk metals and semiconductors, but it fails to account for
excitons, which are important in systems with weak
screening such as insulators and low-dimensional materials
[27,28].
Attempts to go beyond the RPA with two-point xc

kernels include the parameter free bootstrap kernel [15],
which is based on a postulated (approximate) relation
between fxc and the macroscopic dielectric constant εM.
The nanoquanta kernel [16] yields absorption spectra in
very good agreement with BSE but at almost the same
computational cost. The long-range correction kernel [17]
of the simple form fxc ¼ −α=q2 is computationally effi-
cient but depends on the parameter α.
Thus, the current situation is that one can either solve the

four-point BSE to obtain an accurate description of the low-
energy excitations but an underestimated screening (due to
the neglect of high-energy transitions), or one can use the
two-point TDDFT formalism to obtain a better description
of screening at the cost of a more approximate description
of excitonic effects.
In this Letter, we show how the BSE and RPA methods

can be combined in a seamless manner to yield a practical
scheme for calculating the optical response function of a
solid that includes high-energy transitions and at the same
time accounts for electron-hole correlations in the low-
energy excitations. The new method is referred to as BSEþ
and has a computational cost comparable to the BSE. Based
on a small test set of semiconductors and insulators, the
BSEþ is shown to yield refractive indices and electron
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energy loss functions in significantly better agreement with
experiments than both BSE and RPA.
We first recall the basic equations of the BSE. The

excitation energies and associated two-particle wave func-
tions are obtained by solving the eigenvalue equation [29]

X
S0
HðqÞSS0Aλ

S0 ðqÞ ¼ EλðqÞAλ
SðqÞ; ð1Þ

where q is the momentum transfer and S ¼ fn;m;kg and
S0 ¼ fn0; m0;k0g are indices of the e-h basis. The
Hamiltonian matrix takes the form

HSS0 ðqÞ ¼ ðεmkþq − εnkÞδSS0
− ðfmkþq − fnkÞKSS0 ðqÞ: ð2Þ

Here, fnk is the occupation function and εnk is the Kohn-
Sham eigenvalue of band n with momentum k. For singlet
excitations, the kernel is

KSS0 ðqÞ ¼ 2VSR
SS0 ðqÞ −WSS0 ðqÞ; ð3Þ

where VSR
SS0 is the short-range Coulomb interaction

(obtained by setting the G ¼ G0 ¼ 0 component in a
plane-wave basis to zero) and WSS0 is the static screened
e-h interaction [7]. The retarded polarizability can be
expanded in terms of the solutions to Eq. (1),

P̃SS0 ðq;ωÞ ¼ 2
X
λ

Aλ
SðqÞAλ

S0 ðqÞ�

×

�
fmkþq − fnk
ω − Eλ þ iη

−
fm0k0þq − fn0k0

ωþ Eλ þ iη

�
; ð4Þ

where η is a small positive number and we have employed
the Tamm-Dancoff approximation [30] (TDA) under which
the eigenvectors AλðqÞ are orthogonal (note that the λ sum
runs only over the positive excitation energies). Contracting
the four-point polarizability to a two-point function and
Fourier transforming yields

P̃GG0 ðq;ωÞ ¼ 1

Ω

X
SS0

ρSðGÞP̃SS0 ðq;ωÞρS0 ðG0Þ�; ð5Þ

where G is a reciprocal lattice vector, Ω is the crystal
volume, and

ρSðGÞ ¼ ρmkþq
nk ðGÞ ¼ hψnkje−iðqþGÞrjψmkþqi; ð6Þ

where jψnki are the Kohn-Sham eigenstates. In the optical
limit, it can be shown that

lim
q→0

ρmkþq
nk ð0Þ ¼ iq · hψnkj∇jψmki

εnk − εmk
: ð7Þ

We have introduced a tilde in Eq. (4) to indicate that the
sum in practice only runs over a limited set of e-h
transitions corresponding to the bands (and k points) used
to construct HSS0 . We shall denote this set of transitions
by T .
In practice, it is only possible to converge the imaginary

part of P̃ up to a few electron volts above the band gap. It
then follows from the Kramers-Kronig relations that the
real part cannot be converged even at low frequencies. To
address these issues, we introduce a BSEþ polarizability,
capturing excitonic effects at the BSE level within the T
transition manifold while accounting for high-energy
transitions at the RPA level, thereby ensuring better
convergence of both real and imaginary parts across all
frequencies.
We start by defining an irreducible polarizability P̃irr

satisfying the following Dyson equation:

P̃irr
SS0 ðq;ωÞ ¼ P̃0

SS0 ðq;ωÞ

−
1

2

X
S1S2

P̃0
SS1

ðq;ωÞWS1S2ðqÞP̃irr
S2S0

ðq;ωÞ: ð8Þ

In practice, this response function is obtained from Eq. (4)
by solving the eigenvalue equation (1) with VSR ¼ 0 in
Eq. (3). In the above equation, P̃0 is the noninteracting
(Kohn-Sham) polarizability in the e-h basis and with the
sum over bands limited to the transitions T . The contracted
and Fourier transformed P0 takes the form

P0
GG0 ðq;ωÞ ¼ 2

Ω

X
k;n;m

ðfnk − fmkþqÞ

×
ρmkþq
nk ðGÞρmkþq

nk ðG0Þ�
ωþ εnk − εmkþq þ iη

: ð9Þ

Next, we replace P̃0 by P0 (with no constraint on the sum
over bands) to obtain

Pirr
GG0 ðq;ωÞ ¼ P̃irr

GG0 ðq;ωÞ− P̃0
GG0 ðq;ωÞþP0

GG0 ðq;ωÞ: ð10Þ

Finally, we obtain the BSEþ result for the polarizability by
solving the Dyson equation

PBSEþ
GG0 ðq;ωÞ ¼ Pirr

GG0 ðq;ωÞ
þ

X
G1G2

Pirr
GG1

ðq;ωÞVSR
G1G2

ðqÞPBSEþ
G2G0 ðq;ωÞ:

ð11Þ

We note that the BSE polarizability follows from Eq. (11)
by replacing Pirr by P̃irr. Moreover, by replacing VSR by the
full Coulomb interaction V, we obtain the full density-
density response function within the BSEþ approximation.
Finally, we stress that within the BSEþ the TDA is only
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applied for the BSE part (calculation of the irreducible
polarizability) while the RPA treatment of the high-energy
transitions includes the coupling between resonant and
antiresonant transitions, i.e., it does not invoke the TDA.
Equations (8), (10), (11), which constitute the BSEþ
method, can be illustrated by the Feynman diagrams
in Fig. 1.
Previous work has stressed the importance of screening

the e-h exchange in the BSE by transitions outside the T
subspace [31,32]. Our work goes beyond the previous work
by including such transitions explicitly in the response
function.
To evaluate the performance of the BSEþ method, we

use it to calculate the refractive index of a set of solids and
compare it to experimental data and results of the BSE and
RPA methods. We have calculated the refractive indices of
silicon (Si), molybdenum disulfide (MoS2), hexagonal
boron nitride (hBN), and titanium dioxide (TiO2) in both
the rutile and anatase phases. The structures were set up
using experimental lattice parameters from [33] (Si), [34]
(rutile TiO2), [35] (anatase TiO2), [36] (MoS2), and [37]
(hBN). For rutile TiO2 the refractive index has been
calculated for two orientations, namely in plane and out
of plane, corresponding to the electric field being orthogo-
nal and parallel to the c axis, respectively. For MoS2, hBN,
and anatase TiO2 we have only considered the in-plane
refractive index. The refractive index depends on both the
real and imaginary part of the dielectric function, and it
therefore offers a way of evaluating the accuracy of both of
these simultaneously. The refractive index is determined
from the relation

nðωÞ ¼ Re
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

εMðωÞ
p �

; ð12Þ

where εMðωÞ is the macroscopic dielectric function

εMðωÞ ¼ 1 − lim
q→0

4π

q2
PG¼G0¼0ðq;ωÞ: ð13Þ

The divergence of the Coulomb potential is cancelled in the
optical limit by exploiting Eq. (7).
To further evaluate the ability of the BSEþ to de-

scribe high frequency responses and plasmonic excitations,
we calculate the electron energy loss spectrum (EELS)
defined as

EELSðωÞ ¼ −Imð1=εMðωÞÞ: ð14Þ
We have implemented functions to determine P̃irr, P̃0, and
P0 in the BSE and RPA codes in GPAW [38,39]. For each
material, we performed a DFT calculation [40] using the
PBE exchange-correlation functional [41] to determine the
ground state wave functions and eigenvalues. All the
computational details can be found in the Supplemental
Material [42].
For the BSE and BSEþ calculations, we explicitly

account for the screened e-h interaction within the tran-
sition space T . We include a given band n in T , if and only
if εnðkÞ lies within ΔEB of the valence band maximum or
the conduction band minimum for at least one k point.
This ensures that at least all transitions up to the energy
EQP
gap þ ΔEB are included in T . For all materials we have

used ΔEB ¼ 2 eV, except for TiO2 anatase where we have
used ΔEB ¼ 1.6 eV due to the larger number of atoms in
the unit cell (12 atoms). The corresponding number of
bands is listed for each material in the Supplemental
Material [42].
As a final comment, PBE is known to underestimate

band gaps. As our primary focus has not been on obtaining
accurate QP gaps, we have handled this issue by utilizing a
scissors operator to adjust the band gaps, aligning the
lowest peak observed in the refractive index calculated with

FIG. 1. Feynman diagrams representing Eqs. (8),(10), (11).
Double fermion lines represent propagators restricted to the
transition space T , whereas single fermion lines represent full
propagators. The double wiggly line represents the screened
interactionW and the single wiggly line is the short-range part of
the bare Coulomb interaction VSR.

TABLE I. Fitted direct QP band gaps and low-energy refractive
indices from experiments and calculations using BSEþ, BSE,
and RPA. The experimental data are not available down to the
static limit, so we have specified the energy, ωmin, at which the
refractive index of each material has been read off. In the last row
we show the mean absolute percentage error (MAPE) of the
calculations compared to experiments.

nðωminÞ

Material
EQP
dir

[eV]
ωmin
[eV] Exp. BSEþ BSE RPA

Si 3.35 1.50 3.67 3.66 3.63 3.36
Rutile TiO2

in plane
3.30 1.49 2.51 2.51 2.06 2.40

Rutile TiO2

out of plane
3.30 1.53 2.75 2.64 2.13 2.52

Anatase TiO2 4.05 1.50 2.36 2.34 1.80 2.23
hBN 7.06 0.78 2.20 2.07 1.78 1.95
MoS2 1.87 0.73 4.05 3.86 3.61 3.56
MAPE
from exp. [%]

2.62 15.87 8.36
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BSE with the lowest peak in the refractive index observed
in the experimental data. The fitted direct QP band gaps,
EQP
dir , can be found in Table I. The same value for the direct

QP band gap, or equivalently the scissors shift, is used for
RPA, BSE, and BSEþ. In the Supplemental Material [42]
we show that there is good agreement between the fitted
direct QP band gaps and direct GW band gaps found in the
literature [44–46].
The refractive indices of all five crystals calculated with

BSEþ, BSE, and RPA together with experimental data are
shown in Fig. 2. The values of the refractive indices at the
lowest energies available in the experimental data, ωmin,
can be found in Table I.
With the exception of Si, which is well-described by both

BSE and BSEþ, the BSE underestimates the refractive
index across all frequencies. This is due to the neglect of
transitions beyond the limited set T . The RPA misses the
excitonic peaks and underestimates the refractive index for
frequencies below the band gap. This is due to the neglect
of attractive e-h interactions. In all cases, the BSEþ
captures the exciton peaks and provides an accurate
description of the refractive index over the entire frequency
range surpassing both the BSE and RPA in performance
with no additional computational cost compared to BSE.
We note that the BSEþ presents only little or no

FIG. 2. Refractive indices calculated with BSEþ (orange), BSE (green), and RPA (blue). The experimental refractive indices are
marked with black dots, and are obtained from [47] (Si), [48] (TiO2), [49] (hBN), and [50] (MoS2). For MoS2, n was calculated from the
experimental dielectric function.

FIG. 3. Convergence of the in-plane real and imaginary parts of
the dielectric function of rutile TiO2 with respect to the number of
bands included in the BSE and BSEþ calculations.NB is the total
number of bands in the BSE=BSEþ calculations divided equally
between valence and conduction bands. The parameter ET
denotes the energy below which all e-h transitions are included
given the number of bands in the calculation, and the values are
marked with vertical lines.
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improvement over the BSE in terms of predicting the shape
and location of the low-energy excitonic peaks. Instead, it
provides a better description of the peak height. We further
note that the in-plane BSE and BSEþ calculations of rutile
TiO2 are more accurate than the out-of-plane calculations.
The specific reasons for this discrepancy remain unknown.
A key parameter in the theory is the number of bands
included in the transition space T . As the number of bands
included in T increases, the BSE and BSEþ results will
eventually become identical, as illustrated in the plot of Si
in Fig. 2, although the convergence is very slow and not
feasible to achieve in practice for all but the simplest
materials. Figure 3 shows the in-plane dielectric function of
rutile TiO2 obtained with BSE and BSEþ as a function of
the size of T . The latter is represented by the parameter ET,
denoting the highest energy below which all e-h transitions
are included in T .
From Fig. 3 we see that the low-energy real part of the

dielectric function from BSE converges very slowly with
the number of bands, while BSEþ yields a converged value
already with two bands. The imaginary part of the dielectric
function is more localized and thus both the BSE and
BSEþ seem converged up to ET . The faster convergence of
the BSEþ calculations with the number of bands stems
from the following: while BSE completely neglects all
transitions beyond T , the BSEþ merely neglects the e-h
attraction (W) in the transitions beyond T , which is
obviously a much more gentle approximation. It can be
seen that the dielectric function from BSEþ generally is
well converged up to the transition energy threshold ET ,
which provides a simple means to estimate and control the
energy range in which a BSEþ calculation can be expected
to be converged.
We now turn to the description of EELS. In Fig. 4 we

show the q ¼ 0 EELS of Si and TiO2 in the rutile and
anatase phases as calculated with RPA, BSE, BSEþ, and
compared to experimental data. In all cases, the BSE falls
short due to the lack of high-energy excitations. As also
seen for the refractive indices, the RPA-based EELS do not

capture the excitonic features in the low-energy range. On
the other hand, the BSEþ reproduces both the gross
features in the experimental spectra, which are mainly
governed by plasmonic excitations, and the finer structures
of excitonic origin around the band edge. In the case of Si,
the e-h attraction does not produce distinct excitonic peaks,
but redshifts the large plasmon peak (as compared to the
RPA result). This shift is captured by the BSEþ despite
the plasmon energy (∼17 eV) being much larger than the
threshold energy of 2 eV used to select the bands to be
included in P̃irr. For anatase and rutile TiO2 the BSEþ
result is close to the RPA (and experiments) for energies
above 10 eV, while the excitonic peaks around 4–7 eV are
better described by BSEþ.
In conclusion, we have introduced the BSEþ method,

which extends the well-known BSE method by including
transitions outside the active BSE e-h space. The additional
transitions are included at the RPA level, which makes it
possible to complete the transition space without increasing
the computational cost. We have shown that relative to
standard BSE and RPA, the BSEþ method significantly
improves the description of dielectric screening, refractive
indices, and EEL spectra because it accounts for excitons
and plasmons simultaneously. The method can be further
extended by using any two-point TDDFT kernel to account
for xc effects among the additional transitions. The method
could also form the basis for total energy calculations based
on the adiabatic connection fluctuation dissipation theo-
rem, where a response function with an accurate descrip-
tion of low-energy excitations and inclusion of high-energy
transitions is of key importance [53].

We acknowledge funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program Grant No. 773122
(LIMA) and Grant agreement No. 951786 (NOMAD
CoE). K. S. T. is a Villum Investigator supported by
VILLUM FONDEN (Grant No. 37789).

FIG. 4. EEL spectra calculated with BSEþ (orange), BSE (green), and RPA (blue). The experimental data are marked with black dots
and are obtained from [51] (Si), and [52] (TiO2).
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