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In solid state systems, group representation theory is powerful in characterizing the behavior of
quasiparticles, notably the energy degeneracy. While conventional group theory is effective in answering
yes-or-no questions related to symmetry breaking, its application to determining the magnitude of energy
splitting resulting from symmetry lowering is limited. Here, we propose a theory on quasisymmetry and
near degeneracy, thereby expanding the applicability of group theory to address questions regarding
large-or-small energy splitting. Defined within the degenerate subspace of an unperturbed Hamiltonian,
quasisymmetries form an enlarged symmetry group eliminating the first-order splitting. This framework
ensures that the magnitude of splitting arises as a second-order effect of symmetry-lowering
perturbations, such as external fields and spin-orbit coupling. We systematically tabulate the
quasisymmetry groups within 32 crystallographic point groups and find all the possible unitary
quasisymmetry group structures regarding double degeneracy. Applying our theory to the realistic
material AgLa, we predict a “quasi-Dirac semimetal” phase characterized by two tiny-gap band
anticrossings.
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Introduction.—Symmetry, formulated by group theory,
serves as the most basic concept in physics, as it governs
the transformation behaviors of wave functions such as
selection rules, conserved invariants, and geometric phases.
In solid-state systems, the strength of group representation
theory applies to the behaviors of quasiparticles, where the
degeneracy of energy bands is determined by the dimension
of the irreducible representations (irreps) of little groups at
certain momenta in the Brillouin zone [1,2]. The recent
prosperities of the field of topological phases and topo-
logical materials, including exotic quasiparticles [3–26]
and novel transport responses [27–37], are based on
crystallographic groups, magnetic groups, and spin groups.
It is well believed that the power of group representation
theory resides in answering the yes-or-no questions like if
the degeneracy is lifted or if the transition matrix element is
zero, according to whether the relevant symmetry is broken.
On the other hand, the regime of group theory is hardly
employed for addressing the magnitude of energy splitting
induced by symmetry lowering, because such large-or-
small questions are supposed to related to specific char-
acters such as chemical environments and the strength of
perturbation. For example, consider a simple tetragonal
lattice with space group P4 with atomic pz, dz2 , dxy, and
dx2−y2 orbitals [Fig. 1(a)]. Along the high symmetry line
Γ-Z with little group C4, the two bands, originated from pz

(irrep A) and dx2−y2 (irrep B), respectively, form an
accidental degeneracy when they meet [Fig. 1(c)]; so is
the situation for dz2 (irrep A) and dxy (irrep B) orbitals. Both
degeneracies are gapped once a strain ϵxy is introduced
reducing the little group to C2 [Fig. 1(b)], as both two
matrix elements hpzjϵxyjdx2−y2i and hdz2 jϵxyjdxyi transform
as the identity representation of C4. However, conventional
representation theory seems to have no prediction on
the gap sizes of the two band anticrossings formed by
ðpz; dx2−y2Þ and ðdz2 ; dxyÞ.
Indeed, describing or even predicting the magnitude of

energy splitting becomes increasingly essential. One
notable example is that the tiny gaps along the topological
nodal line, caused by spin-orbit coupling (SOC) could lead
to large Berry curvature and is thus desirable for anomalous
transport phenomena [38–40]. However, such tiny gaps are
typically referred to numerical results rather than a more
fundamental origin of approximate symmetry. Previous
works attempted to evaluate the degree of maintenance of
approximate symmetry by introducing fuzzy sets [41,42] or
setting artificial thresholds [43–45], or to distinguish
distinct topological phases protected by averaged sym-
metry [46,47]. However, it is unsettled how the magnitude
of symmetry-allowed splitting relates to approximate sym-
metry. Recently, it was proposed that a U(1) symmetry that
commutes with the lower-order k · p Hamiltonian exists as
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a so-called quasisymmetry, leading to near degenerate
nodal-line structure in a chiral compound CoSi [48,49].
As the concept was conceived in a specific material, a
comprehensive and universal symmetry description for
near degeneracy (tiny energy splitting) is required for both
fundamental understanding of group theory and realistic
material design.
In this Letter, we develop a generic theory on quasi-

symmetry and near degeneracy, and thus expand the
application of group representation theory by answering
the large-or-small question. Defined in the degenerate

subspace of an unperturbed Hamiltonian H0, quasisymme-
tries form an enlarged symmetry group eliminating the
first-order splitting of the symmetry-lowering term H0.
Consequently, the magnitude of splitting is ensured to be a
second-order effect of the symmetry-lowering perturbation
such as external fields and SOC, leading to near degen-
eracy. We tabulate all the possible quasisymmetry groups
within 32 crystallographic point groups, and demonstrate
that three types of symmetry groups, i.e., Zn, U(1), andD∞
can serve as the quotient group of unitary quasisymmetry
group in doubly degenerate subspace. In addition to the
tetragonal model where the gap size of ðpz; dx2−y2Þ bands is
proved to be an order smaller than that of ðdz2 ; dxyÞ bands
[Fig. 1(d)], we further apply our theory to a realistic
material AgLa to predict a SOC-driven phase transition
from Dirac nodal-line semimetal to “quasi-Dirac semi-
metal” exhibiting two tiny-gap band anticrossings. Our
work paves a new avenue for designing materials with
significant Berry curvature related properties.
Quasisymmetry and elimination of first-order

perturbation.—Considering an unperturbed Hamiltonian
H0, all the symmetry operators Pg commuting it form the
symmetry group GH0

¼ fPgj½Pg;H0� ¼ 0g. Once two
eigenstates jψαi and jψβi, labeled by two inequivalent
irreps Γα and Γβ of GH0

, respectively, share the same
energy E of H0, they form an accidental degeneracy [50].
Adding a symmetry-lowering term H0 (labeled by irrep
Γp), the degeneracy splits only if the matrix element
hψαjH0jψβi (labeled by Γ�

α ⊗ Γp ⊗ Γβ) transforms as the
identity representation of GH0

, which we termed “GH0
-

allowed splitting” for brevity (Supplemental Material,
Sec. S1 [51]). As exemplified by the tetragonal lattice
model shown in Fig. 1, the conventional group represen-
tation theory has no prediction on the magnitude of GH0

-
allowed splitting.
Here we demonstrate that near degeneracy, i.e., slightly

splitting energy levels induced byH0, can also be predicted by
symmetry arguments. Such a scenario is realized when the
energy splitting isGH0

-allowed but hψαjH0jψβi, known as the
first-order perturbation, equals zero, leading to a second-order
effect of H0. We next demonstrate that the vanishment of
hψαjH0jψβi is induced by symmetries emerged in eigensub-
space of H0, Ψαβ ¼ Spanðjψαi; jψβiÞ. Specifically, given a
GH0

-allowed splitting, the vanishment of hψαjH0jψβi can be
constrained by a symmetry operator Pq satisfying

hψαjH0jψβi!
Pq

eiωðPqÞhψαjH0jψβi; ωðPqÞ mod 2π ≠ 0:

ð1Þ

Note that Eq. (1) implies that Pq is Ψαβ invariant, i.e., pre-
serving the eigensubspacePqΨαβ¼Ψαβ and hψαjH0jψβi ¼ 0

(Supplemental Material, Sec. S2 [51]). Here the phase ω is
generally α, β dependent. The Ψαβ-invariant symmetry Pq

FIG. 1. Schematic of a tetragonal lattice model with space
group P4. Top view of the tetragonal lattice without (a) and with
(b) strain ϵxy. (c) Accidental band degeneracies along the
Γð0; 0; 0Þ-Zð0; 0; 1=2Þ line formed by ðpz; dx2−y2Þ and
ðdz2 ; dxyÞ orbitals settled at 1a Wyckoff position, where the
corresponding irreps are labeled in parentheses. (d) Strain ϵxy
gaps out both the degeneracies. Protected by quasisymmetry Pq,
the gap opened in ðpz; dx2−y2Þ bands is a second-order perturba-
tion effect whose size is 1 order smaller than that of the ðdz2 ; dxyÞ
gap, which is a first-order effect. (e) Quasi-mirror-symmetry σx
serves as the quasisymmetry to eliminate the first-order effect in
ðpz; dx2−y2Þ bands. (f) σx would not eliminate the first-order effect
in ðdz2 ; dxyÞ bands.
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satisfying Eq. (1) is thus defined as the quasisymmetry of
eigensubspaceΨαβ inH0, rendering theGH0

-allowed splitting
at least a second-order effect with near degeneracy.
Two properties related to quasisymmetry emerge. Firstly,

quasisymmetries are excluded from GH0
because for any

Pg ∈GH0
, ωðPqÞ mod 2π ¼ 0. Secondly, the concept of

quasisymmetry can only be defined for eliminating first-
order perturbed Hamiltonian. To prove this, assuming that
Pq is a quasisymmetry eliminating the second-order effect
[∝

P
γð≠α;βÞhψαjH0jψγihψγjH0jψβiðE − EγÞ−1], we note

that Pq must preserves all the eigensubspaces Ψαγ and
Ψγβ of H0, yielding that Pg ∈GH0

. Thus, it rules out the
possibility of “higher-order quasisymmetry.” The detailed
proof of both properties mentioned above is provided in the
Supplemental Material, Sec. S3 [51].
Quasisymmetry group.—Given a symmetry group GH0

and a symmetry-lowering term H0, only certain eigensub-
spaces Ψαβ underpin quasisymmetry. Then two crucial
questions arise: which eigensubspaces of GH0

can support
quasisymmetry, and where to look for the corresponding
quasisymmetries? Next, we attempt to answer these by
extending the exact-symmetry group GH0

to a so-called
quasisymmetry group QðGH0

; PqÞ, which is hidden inside
certain eigensubspace of GH0

. Such extension is based on
an important condition on the irreps of quasisymmetry Pq

that the GH0
-allowed splitting hψαjH0jψβi is not a

QðGH0
; PqÞ-allowed splitting. Consequently, the matrix

element hψαjH0jψβi transforms as a one-dimensional (1D)
nontrivial representation ofQðGH0

; PqÞ, in accordance with
Eq. (1). It indicates that the irreps in GH0

and QðGH0
; PqÞ

characterizing the eigensubspace Ψαβ are highly correlated.
Specifically, there must be multiple inequivalent irreps
Γ0
α;1 and Γ0

α;2 in QðGH0
; PqÞ restricting as the same irrep

Γα in GH0
(Γ0

α;1↓GH0
¼ Γ0

α;2↓GH0
¼ Γα), termed as multi-

ple-to-one restrictive condition (Supplemental Material,
Sec. S4 [51]).
We now tabulate all the possible eigensubspaces with all

the possible quasisymmetry groups in crystallographic
point groups. The process is summarized in the following:
(i) Starting from a point group GH0

and a tentative
crystallographic symmetry Pq, we construct a quasisym-
metry group QðGH0

; PqÞ by group extension as

1 → GH0
→ QðGH0

; PqÞ → F → 1; ð2Þ

where F is an Abelian group generated only by Pq. By
construction, GH0

is a normal subgroup of QðGH0
; PqÞ and

QðGH0
; PqÞ=GH0

≅ F , ensuring at least one irrep in GH0
is

multiple-to-one restrictive (Supplemental Material, Sec. S4
[51]). (ii) We tabulate all the multiple-to-one restrictive
irreps in GH0

. Any eigensubspace spanned by these irreps
can emerge Pq and other elements in QðGH0

; PqÞnGH0
as

quasisymmetries.

By repeating steps (i) and (ii), all the possible quasi-
symmetry groups in 32 crystallographic point groups are
shown in Fig. 2, and all the multiple-to-one restrictive
irreps are tabulated in Tables S1–S5 (Supplemental
Material, Sec. S5 [51]). In Fig. 2, a group-subgroup pair
is linked by a green (orange) line if the subgroup is normal
with all (some of) irreps being multiple-to-one restrictive,
indicating that the parent group could be a quasisymmetry
group of the subgroup. Interestingly, it is proved that
for point groups, QðGH0

; PqÞ can always be expressed
as a semidirect product QðGH0

; PqÞ ¼ GH0
⋊ F or a direct

product GH0
× F [2]. Owing to the completeness for

crystallographic point groups, Fig. 2 and Tables S1–S5
effectively facilitate the search of the quasisymmetries by
referring to the valid group-subgroup pairs even if no Pq is
known.
It is worth noting that the constructed quasisymmetry

groups could go beyond crystallographic point groups.
Taking the double degeneracy, the most practical case, as
an example, a unitary quasisymmetry Pq is an element of
U(2). We prove that the Abelian quotient group F
generated byQðGH0

; PqÞmust be isomorphic to three types
of subgroups of U(2), i.e., Zn, U(1), andD∞ (Supplemental
Material, Sec. S6 [51]). For crystallographic quasisymme-
try groups shown in Fig. 2, F is isomorphic to Z2 or Z3.
On the other hand, the recent proposed near degenerate
nodal line in CoSi belongs to the case with F ¼ Uð1Þ
[48,49]. Such a Lie group formed by quasisymmetry is
also essential for the many-body scar dynamics [63].

FIG. 2. Quasisymmetry group in 32 crystallographic point
groups. A group-subgroup pair is linked by a green (orange)
line if all (some of) representations in the subgroup are multiple-
to-one restrictive with respect to the parent group. Hence, the
parent group could serve as the quasisymmetry group
[QðGH0

; PqÞ] of the subgroup (GH0
). No quasisymmetry emerges

between groups linked by gray lines. Note that point groups C4

and C4v are involved in the tetragonal lattice model C4v serves as
the quasisymmetry group of C4, while along the T high-
symmetry line of AgLa D2h serves as the quasisymmetry group
of C2v.
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Furthermore, the double degeneracy can also contain
antiunitary quasisymmetries, which can be constructed
by taking the complex conjugate of the eigenstates [64].
Tetragonal lattice model.—To apply our theory, we now

present detailed symmetry analysis on the tetragonal lattice
model shown in Fig. 1. Conventional representation theory
predicts that hpzjϵxyjdx2−y2i is a C4-allowed splitting
(GH0

¼ C4). We find that mirror reflection σx, which is
not in GH0

, is Ψpz;dx2−y2
invariant. Moreover, σx reverses

the strain ϵxy!σx − ϵxy and transforms hpzjϵxyjdx2−y2i!
σx

−hpzjϵxyjdx2−y2i satisfying Eq. (1) [Fig. 1(e)]. Therefore,
σx is a quasisymmetry of Ψpz;dx2−y2

protecting the degen-

eracy under the first-order strain effect. Furthermore, the
quasireflection σx will be broken by involving remote states
outside Ψpz;dx2−y2

, and the degeneracy will thus be lifted

by the second-order effect [Fig. 1(d)] (Supplemental
Material, Sec. S7 [51]). In contrast, σx is not a quasisym-
metry of the eigensubspace spanned by ðdz2 ; dxyÞ because
hdz2 jϵxyjdxyi!

σx hdz2 jϵxyjdxyi, leading to the first-order
energy splitting under ϵxy, as shown in Fig. 1(f).
The inclusion of quasireflection σx expands GH0

¼ C4 to
the quasisymmetry group C4v, with the quotient group F
isomorphic to Z2. According to our theory, the matrix
element hpzjϵxyjdx2−y2i (C4-allowed splitting) is not a
C4v-allowed splitting, transforming as A1⊗B2⊗B1¼A2,
a 1D nontrivial representation of C4v. The irreps character-
izing dx2−y2 in C4v and C4 have the same dimension
dimB1 ¼ dimB during the representation restriction
B1↓C4 ¼ B. Meanwhile, there is another inequivalent irrep
B2 in C4v restricting as the same irrep B in C4

(B1↓C4 ¼ B2↓C4 ¼ B). In turn, by referring to Table S4
it is also straightforward to find that C4v ¼ C4 ⋊ S2 is a
quasisymmetry group of C4, of which irreps A and B
support σx as the quasisymmetry.
Application to realistic material AgLa.—We next apply

our quasisymmetry group theory to realistic material by
taking SOC as the symmetry-lowering perturbation. We
choose AgLa (ICSD-58306 [65]) as an example, which
has a tetragonal structure with a space group P4=mmm
and lattice constants a ¼ b ¼ 3.656 Å and c ¼ 3.840 Å
[Fig. 3(a)]. This compound has been predicted as a topo-
logical nodal-line semimetal without SOC by topological
quantum chemistry [66]. The combination of inversion and
time-reversal symmetry ensures spin degeneracy through-
out the Brillouin zone. Our calculations show that without
SOC, two spin-degenerate bands intersect around the R
point at 0.85–1 eV above the Fermi level [upper panel in
Fig. 3(b)], forming a Dirac nodal line (DNL) on the
high-symmetry plane ky ¼ π=a [red curve in Fig. 3(c)].
The computational details are shown in the Supplemental
Material, Sec. S8 [51].

When SOC is considered, the entire DNL is gapped, as
shown in Figs. 3(b) and 3(c). However, the size of the gap
varies dramatically as a function of the wave vector. In the
lower panel of Fig. 3(b) we find that the degeneracies
crossed at the W (X-R) and F (R-M) lines open ∼80 meV
gaps (blue arrow), whereas only a 6.7 meV gap is opened at
the T (A-R) line (green arrow). We map the inverse gap ϵ−1g
upon the kx-kz plane in Fig. 3(d) and observe the minimum
of the gap size at the T line. Such interesting distribution of
the SOC-induced band gap reveals a novel phase transition
from DNL to quasi-Dirac semimetal, the latter of which
exhibits gapless Dirac cones under the first-order SOC
effect. Such a quasi-Dirac cone is protected by quasisym-
metry, and is slightly gapped by the second-order SOC
effect. We next show that in AgLa, the quasi-Dirac cones
are located at the T line [Fig. 3(c)] and protected by
quasisymmetry group D2h.
We obtain the orbital projection of the bands relevant to

the DNL along the T andW lines [51], where the dyz, pz, py
orbitals from Ag and dx2−y2 , fyð3x2−y2Þ, fzðx2−y2Þ from La
dominate those bands denoted by α, β, γ in Fig. 3(e),
respectively. In the absence of SOC, bands α and β with
irreps T2 and T3 of the little group GT ¼ C2v intersect with
each other at the T line, whereas bands β and γ with irreps

(a)

(d)(c)

(b)

(e)

FIG. 3. Quasisymmetry protected tiny gap induced by spin-orbit
coupling in AgLa. (a) Crystal structure and Brillouin zone of
AgLa. (b) Band structure of AgLa without (upper panel) and with
spin-orbit coupling (lower panel) around the high symmetry wave
vector R. (c) Visualization of the quasi-Dirac semimetal phase
caused by spin-orbit coupling, where the red line marks the
Dirac nodal line. (d) Inverse gap ϵ−1g as a function of kx (T line) and
kz (W line) with and without spin-orbit coupling, and “QS”
denotes quasisymmetry. (e) Orbital projections of the bands α, β, γ
forming the nodal line along T and W lines, where the dominant
orbitals are tabulated. The crossing points are intersected by
representations T2 (W3) and T3 (W1) along the T (W) line.
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W1 and W3 of the same little group GW ¼ C2v cross at the
W line. We next use the theory of quasisymmetry to
elucidate the remarkable difference of SOC-induced gap
at T andW. By referring to Fig. 2 and Table S5, we find that
at wave vector T only D2h can serve as the quasisymmetry
group of the eigensubspace spanned by irreps (T2,T3) due
to the condition of multiple-to-one restrictive irreps, i.e.,

QðC2v; IÞ ¼ D2h ¼ C2v × fE; Ig: ð3Þ

Therefore, inversion I emerges as the candidate of quasi-
symmetry. We further notice that by taking the on site
SOC term H0 ¼ HSOC ∝ L · S, only the z component
hα;sjLzSzjβ;s0i (s;s0 ¼↑;↓) is GT-allowed splitting. Such
a matrix element in D2h transforms as A2g ⊗ B1g ⊗ B2u ¼
A1u ≠ A1g, indicating that D2h is indeed the quasisymmetry
group that eliminates the first-order SOC effect. Involving the
remote bands breaks the quasi-inversion symmetry and thus
opens a second-order SOC gap of 6.7 meV gap. Similarly, for
theW line the eigensubspace spanned by irreps (W1,W3) also
has D2h as the candidate of quasisymmetry group (see
Table S5). However, the matrix element in D2h transforms

hβ; sjHSOCjγ; s0i!I hβ; sjHSOCjγ; s0i with ωðIÞmod 2π ¼ 0.
Therefore, I is not a quasisymmetry for theW line according
to Eq. (1), leading to a relatively larger gap [51]. Overall, the
SOC-driven quasi-Dirac semimetal phase originates from the
quasi-inversion emerged only at the L line.
Discussion.—It is worth emphasizing that our theory on

quasisymmetry is also valid for the energy splitting of
higher-dimensional accidental degeneracy and necessary
degeneracy. For the former case, the procedure of analyzing
quasisymmetry is the same as that of doubly degenerate
band crossings. We show an example of a hexagonal lattice
model in the Supplemental Material, Sec. S9 [51]. For the
latter case, the symmetry-lowering term H0 of irrep Γp is
supposed to split the degenerate eigensubspace Ψα spanned
by ðψα;1;ψα;2;…;ψα;N; Þ of N-dimensional irrep Γα in GH0

.
The matrix elements hψα;ijH0jψα;ji (i; j ¼ 1;…; N) are
GH0

-allowed splitting only if ½Γα ⊗ Γα� ⊗ Γp contains
the identity representation Γ1 in GH0

, where ½Γα ⊗ Γα�
denotes the symmetric tensor product [5]. The identifica-
tion of quasisymmetry is the same as that in accidental
degeneracy, i.e., Eq. (1). For instance, consider the triplet of
GH0

¼ T spanned by ðpx; py; pzÞ (irrep T), where an
external electric field E ¼ Ezẑ (transform as a partner in
irrep T) breaks the symmetry group down to D2 and hence
lifts the triplet due to the condition ½T ⊗ T� ⊗ T → A. By
referring to Table S2 we find that irrep T can have Th as the
quasisymmetry group. Furthermore, the matrix element

transforms as hpijdzjpji!I − hpijdzjpji (i; j ¼ x, y, z)
with dz the electric dipole, resulting in tiny splitting of
the triplet protected by quasi-inversion symmetry.
At last, we discuss some possible scenarios and applica-

tions for the implementation of quasisymmetry. For

example, recent angle-resolved photoelectron spectroscopy
measurements have revealed Rashba-like spin splitting with
Kramers degeneracy around certain momenta that lack time-
reversal symmetry [67], which can be readily explained by
the theory of quasisymmetry [68]. More importantly, the key
application of quasisymmetry is to generate a substantial
anomalous Hall effect by introducing small gaps along the
nodal lines in magnetic materials. These small gaps result in
significant Berry curvature (Supplemental Material, Sec. S10
[51]), while the extensive distribution of nodal lines enhan-
ces the integrated Hall conductivity [38–40,69,70]. Further-
more, it is also possible to create a high-contrast anomalous
Hall device sensitive to external field, e.g., a tiny electro-
magnetic field applied may break quasi-inversion or reflec-
tion to create a dip in the Hall signal. Overall, our research
paves a new avenue for expanding the scope of group
representation theory and designing materials with large
Berry curvature and anomalous transport properties.

Note added.—Recently, two experiments have observed the
near-quantized double quantum spin Hall effect in twisted
bilayer transition-metal dichalcogenide [71,72], indicating
that new symmetry indicators of the quantum spin Hall
effect are needed. We note that such a phenomenon is
protected by the spin U(1) quasisymmetry [73], which is
covered by our generic theory in this letter.
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