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We present a controlled bond expansion (CBE) approach to simulate quantum dynamics based on the
time-dependent variational principle (TDVP) for matrix product states. Our method alleviates the numerical
difficulties of the standard, fixed-rank one-site TDVP integrator by increasing bond dimensions on the fly
to reduce the projection error. This is achieved in an economical, local fashion, requiring only minor
modifications of standard one-site TDVP implementations. We illustrate the performance and accuracy of
CBE-TDVP with several numerical examples on finite quantum lattices, including new results on bipolaron
formation in the Peierls-Hubbard model and spin pumping via adiabatic flux insertion in a chiral spin
liquid.
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Introduction.—The time-dependent variational principle
(TDVP) [1–4] is a standard tool for time-evolving the
Schrödinger equation on a constrained manifold parame-
trizing the wave function. Tensor networks (TN) offer
efficient parametrizations based on low-rank approxima-
tions [5–12]. Their combination, TN-TDVP, holds much
potential for studying the dynamics of quantum lattice
models [13–32], quantum field theories [33,34], and
quantum chemistry problems [35–40].
Here, we focus on matrix product states (MPSs), an

elementary class of TN states. Their time evolution,
pioneered in Refs. [41–43], can be treated using a variety
of methods, reviewed in Refs. [8,44]. Among these, MPS-
TDVP [15,18–22], which uses Lie-Trotter decomposition
to integrate a train of tensors sequentially, arguably gives
the best results regarding both physical accuracy and
performance [44]: it (i) is applicable for long-ranged
Hamiltonians, and its one-site (1s) version (1TDVP)
ensures (ii) unitary time evolution, (iii) energy conservation
[15,45], and (iv) numerical stability [18,21,23].
A drawback of 1TDVP, emphasized in Refs. [46–48], is

use of a fixed-rank integration scheme. This offers no way
of dynamically adjusting the MPS rank (or bond dimen-
sion), as needed to track the entanglement growth typically
incurred during MPS time evolution. For this, a rank-
adaptive two-site (2s) TDVP (2TDVP) algorithm can be
used [22], but it has much higher computational costs and
in practice does not ensure properties (ii)–(iii).
To remedy this drawback, we introduce a rank-adaptive

integrator for 1TDVP that is more efficient than previous
ones [49–52]. It ensures properties (i)–(iv) at the same
numerical costs as 1TDVP, with marginal overhead. Our
key idea is to control the TDVP projection error [22,49,53]

by adjusting MPS ranks on the fly via the controlled bond
expansion (CBE) scheme of Ref. [54]. CBE finds and adds
subspaces missed by 1s schemes but containing significant
weight from HΨ. When used for DMRG ground state
searches, CBE yields 2s accuracy and energy reduction per
sweep, at 1s costs [54]. CBE-TDVP likewise comes at
essentially 1s costs.
MPS basics.—Let us recall some MPS basics, adopting

the notation of Refs. [54,55]. For an L-site system an open
boundary MPS wave function Ψ having dimensions d for
physical sites andD for virtual bonds can always be written
in site-canonical form,

ð1Þ

The tensors , and are variational
parameters. Al and Bl are left- and right-sided isometries,
respectively, projecting Dd-dimensional parent (P) spaces
to D-dimensional kept (K) images spaces; they obey

ð2Þ

The gauge relations Cl ¼ AlΛl ¼ Λl−1Bl ensure that
Eq. (1) remains unchanged when moving the orthogonality
center Cl from one site to another.
The Hamiltonian can likewise be expressed as a matrix

product operator (MPO) with virtual bond dimension w,
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ð3Þ

Its projection to the effective local state spaces associated
with site l or bond l yields effective one-site or zero-site
Hamiltonians, respectively, computable recursively via

ð4aÞ

ð4bÞ

These act on 1s or bond representations of the wave
function, or , respectively.
Let and be isometries that are orthogonal

complements of Al and Bl, with discarded (D) image
spaces of dimension D̄ ¼ Dðd − 1Þ, obeying orthonormal-
ity and completeness relations complementing Eq. (2) [54]:

ð5aÞ

ð5bÞ

Tangent space projector.—Next, we recapitulate the
TDVP strategy. It aims to solve the Schrödinger equation,
iΨ̇ ¼ HΨ, constrained to the manifold M of all MPSs of
the form (1), with fixed bond dimensions. Since HΨ
typically has larger bond dimensions than Ψ and hence
does not lie inM, the TDVP aims to minimize kiΨ̇ −HΨk
within M. This leads to

iΨ̇ðtÞ ¼ P1sðtÞHΨðtÞ; ð6Þ

whereP1sðtÞ is the projector onto the tangent space ofM at
ΨðtÞ, i.e., the space of all 1s variations of ΨðtÞ:

ð7Þ

The form in the first line was found by Lubich, Oseledets,
and Vandereycken [21] (Theorem 3.1) and transcribed into
MPS notation in Ref. [22]. For further explanations of its

form, see Refs. [55,56]. The second line, valid for any
l ¼ 1;…;L − 1, follows via Eq. (5b); Eq. (5a) implies that
all its terms conveniently are mutually orthogonal, and that
the projector property ðP1sÞ2 ¼ P1s holds [55].
One-site TDVP.—The 1TDVP algorithm [21,22] repre-

sents Eq. (6) by 2L − 1 coupled equations, iĊl ¼ H1s
l Cl

and iΛ̇l ¼ −Hb
lΛl, stemming, respectively, from the L

single-site and L − 1 bond projectors of P1s [Eq. (7), first
line]. Evoking a Lie-Trotter decomposition, they are then
decoupled and for each time step solved sequentially, for
Cl or Λl (with all other tensors fixed). For a time step from
t to t0 ¼ tþ δ one repeatedly performs four substeps, e.g.,
sweeping right to left: (1) Integrate iĊlþ1 ¼ H1s

lþ1Clþ1

from t to t0; (2) QR factorize Clþ1ðt0Þ ¼ Λlðt0ÞBlþ1ðt0Þ;
(3) integrate iΛ̇l ¼ −Hb

lΛl from t0 to t; and (4) update
AlðtÞClþ1ðtÞ → ClðtÞBlþ1ðt0Þ, with ClðtÞ ¼ AlðtÞΛlðtÞ.
1TDVP has two leading errors. One is the Lie-Trotter

decomposition error. It can be reduced by higher-order
integration schemes [45,60]; we use a third-order integrator
with error Oðδ3Þ [61]. The second error is the projection
error from projecting the Schrödinger equation into the
tangent space of M at ΨðtÞ, quantified by ΔP ¼
kð1 − P1sÞHΨðtÞk2. It can be reduced brute force by
increasing the bond dimension, as happens when using
2TDVP [22,44,47]; or through global subspace expansion
[50], which enriches the basis representing ΨðtÞ by adding
a few global Krylov vectors, fHΨðtÞ;…; HkΨðtÞg. Here,
we propose a local approach, similar in spirit to that of
Ref. [52], but more efficient, with 1s costs, and without
stochastic ingredients, in contrast to [40].
Controlled bond expansion.—Our key idea is to use

CBE to reduce the 2s contribution in ΔP, given by
Δ2⊥

P ¼ kP2⊥HΨk2, where P2⊥ ¼ P2sð1 − P1sÞ. Here,
P2s is the projector onto 2s variations of Ψ, and P2⊥ its
component orthogonal to the tangent space projector (see
also [55]):

ð8aÞ

ð8bÞ

Now note that Δ2⊥
P is equal to Δ2⊥

E ¼ kP2⊥ðH − EÞΨk2,
the 2s contribution to the energy variance [53–55]. In
Ref. [54], discussing ground state searches via CBE-
DMRG, we showed how to minimize Δ2⊥

E at 1s costs:
each bond l can be expanded in such a manner that the
added subspace carries significant weight from P2⊥HΨ.
This expansion removes that subspace from the image of
P2⊥, thus reducing Δ2⊥

E significantly. Consider, e.g., a
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right-to-left sweep and let be a truncation of
having an image spanning such a subspace, of

dimension D̃, say. To expand bond l from D to Dþ D̃, we
replace by , by and H1s

lþ1

by H1s;ex
lþ1 , with expanded tensors defined as

ð9Þ

ð10Þ

Note that Ψ remains unchanged, Aex
l C

ex
lþ1 ¼ AlClþ1.

Similarly, the projection error Δ2⊥
P can be minimized

through a suitable choice of the truncated complement
[54]. We find Ãtr

l using the so-called shrewd
selection strategy of Ref. [54] (Figs. 1 and 2 there); it
avoids computation of , and has 1s costs regarding
CPU and memory, thus becoming increasingly

advantageous for large D and d. Shrewd selection involves
two truncations (D → D0 and D̂ → D̃ in Ref. [54]). Here,
we choose these to respect singular value thresholds of ϵ0 ¼
10−4 and ϵ̃ ¼ 10−6, respectively; empirically, we found
these to yield good results for various benchmark stud-
ies [56].
CBE-TDVP.—It is straightforward to incorporate CBE

into the 1TDVP algorithm: simply expand each bond l
from D → Dþ D̃ before time evolving it. Concretely,
when sweeping right-to-left, we add step (0): expand
Al; Clþ1; H1s

lþ1 → Aex
l ; C

ex
lþ1; H

1s;ex
lþ1 following Eq. (9)

(and by implication also Λl; Hb
l → Λex

l ; H
b;ex
l ). The other

steps remain as before, except that in (2) we replace the QR
factorization by an SVD. This allows us to reduce (trim) the
bond dimension from Dþ D̃ to a final value Df , as needed
in two situations [49,51,62]: First, while standard 1TDVP
requires keeping and even padding small singular values in
order to retain a fixed bond dimension [13,18], that is not
necessary here. Instead, for bond trimming, we discard
small singular values below an empirically determined
threshold ϵ ¼ 10−12. This keeps the MPS rank as low as
possible, without impacting the accuracy [49]. Second,
once Dþ D̃ exceeds Dmax, we trim it back down to Dmax,
aiming to limit computational costs. The trimming error is
characterized by its discarded weight, ξðtÞ, which we
monitor throughout. The TDVP properties of (ii) unitary
evolution and (iii) energy conservation [51] hold to within
order ξðtÞ.
Results.—The Supplemental Material [56] benchmarks

the performance of CBE-TDVP for two exactly solvable
models. Here, we illustrate its power with three numerically
challenging applications containing interesting physics:
spin dynamics in the Haldane-Shastry model, scattering
dynamics in the Peierls-Hubbard model, and spin pumping
via flux insertion for a chiral spin liquid on a cylinder.

(f)

(a)

(c)

(d)

(e)

(b)

(g)

FIG. 1. 40-site SU(2) Haldane-Shastry model: Time evolution
of a spin excitation, computed with δ ¼ 0.05 and SU(2) spin
symmetry. (a),(b) Real and imaginary parts of Cðx; tÞ, (b) entan-
glement entropy EEðtÞ, and (c) bond dimensions D�

f ðtÞ and
D̃�

f ðtÞ. (e) Error analysis for Dmax ¼ 500: δCðtÞ, the maximum of
δCðx; tÞ over x, energy drift δEðtÞ (should remain zero for unitary
time evolution), and discarded weight ξðtÞ. (f) Normalized
spectral function Sðk;ωÞ=Sðπ; 0Þ, obtained using tmax ¼ 60.
(g) Sðπ;ωÞ=Sðπ; 0Þ, obtained using tmax ¼ 20, 40, 60; red lines
indicate exact peak heights.

FIG. 2. Peierls-Hubbard model: Real-space scattering of two
electron wave packets, computed for U ¼ 10, ωph ¼ 3, δ ¼ 0.05,
nphmax ¼ 8 and U(1) spin symmetry. (a),(b) Spin magnetic moment
Szðx; tÞ for g ¼ 0, g ¼ 1. (c) Phonon density nphðx; tÞ, (d) bond
dimensions, and (e) error analysis: energy δEðtÞ and discarded
weight ξðtÞ, all computed for g ¼ 1, Dmax ¼ 500.
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Haldane-Shastry model: Spin dynamics.—The SU(2)
Haldane-Shastry model on a L-site ring is defined by

HHS ¼
X

0≤l<l0≤L−1

π2Sl · Sl0

L2sin2 π
L ðl − l0Þ : ð11Þ

Its ground state correlator, Cðl; tÞ ¼ hΨ0jSlðtÞS0ð0ÞjΨ0i,
is related by discrete Fourier transform to its spectral
function [63,64], Sðk;ωÞ, given by (0 < l0 < l ≤ L=2)

S

�
2ðlþ l0Þ π

L
;
π2

L2
½ðlþ l0ÞL − 2ðl2 þ l02Þ þ l − l0�

�

¼ 2l − 2l0 − 1

ð2l − 1ÞðL − 2l0 − 1Þ
Yl−1

l¼l0þ1

2lðL − 2lÞ
ð2l − 1ÞðL − 2l − 1Þ :

ð12Þ

Figures 1(a) and 1(b) show the real and the imaginary
parts of Cðx; tÞ, computed using CBE-TDVP. For early
times (t≤20), the local excitation introduced at l¼0, t ¼ 0
spreads ballistically, as reported previously [28,65,66].
Once the counterpropagating wavefronts meet on the ring,
an interference pattern emerges. Figures 1(c)–1(e) show
that our numerical results remain accurate throughout: the
entanglement entropy EEðtÞ and bond expansion per time
step D̃�

f ðtÞ do not grow rapidly, and error measures remain
small. Figure 1(f) shows the corresponding spectral func-
tion Sðk;ωÞ, obtained by discrete Fourier transform of
Cðx; tÞ using a maximum simulation time of tmax ¼ 60.
Figure 1(g) shows a cut along k ¼ π: peaks can be well
resolved by increasing tmax, with relative heights in
excellent agreement with the exact Eq. (12).
Peierls-Hubbard model: Scattering dynamics.—Next,

we consider the scattering dynamics of interacting electrons
coupled to phonons. This interaction leads to nontrivial
low-energy physics involving polarons [67–79]; the
numerical study of polaron dynamics is currently attracting
increasing attention [69,80–84]. Here, we consider the one-
dimensional Peierls-Hubbard model,

HPH ¼
X

l

Unl↑nl↓ þ
X

l

ωphb
†
lbl

þ
X

lσ

ðc†lσclþ1σ þ H:c:Þ

×
�
−tþ gðb†l þ bl − b†lþ1 − blþ1Þ

�
: ð13Þ

Spinful electrons with onsite interaction strength U and
hopping amplitude t ¼ 1, and local phonons with fre-
quency ωph, are coupled with strength g through a Peierls
term modulating the electron hopping.
We consider two localized wave packets with opposite

spins, averagemomenta k ¼ �π=2 andwidthW ¼ 4 [85,86],
initialized as jΨ�i ¼

P
l Ae

−½ðxl∓x0Þ=W�2e∓ikxlc†l�j0i, where

j0i describes an empty lattice. Without electron-phonon
coupling [g ¼ 0, Fig. 2(a)], there is little dispersion effect
through the time of flight, and the strong interaction causes an
elastic collision. By contrast, for a sizable coupling in the
nonperturbative regime [77,79] [g ¼ 1, Figs. 2(b)–2(e)],
phonons are excited by the electron motion [Fig. 2(c)].
After the two electrons have collided, they show a tendency
to remain close to each other (though a finite distance apart,
since U is large) [Fig. 2(b)]; they thus seem to form a
bipolaron, stabilized by a significant phonon density in the
central region [Fig. 2(c)].
We limited the phonon occupancy to nphmax ¼ 8 per site.

Then, d ¼ 4ðnphmax þ 1Þ ¼ 36, and D̄ ¼ 35Df is so large
that 2TDVP would be utterly unfeasible. By contrast, CBE-
TDVP requires a comparatively small bond expansion of
only D̃ðtÞ ≤ 4Dmax for the times shown; after that, the
discarded weight ξðtÞ becomes substantial [Figs. 2(d)
and 2(e)].
Chiral spin liquid: Spin pumping via flux insertion.—A

hallmark of topologically ordered systems is the quantized
charge or spin transport. Laughlin famously argued that
adiabatically threading an axial magnetic flux through a
quantum Hall cylinder pumps quantized charge from one
side to the other. This thought experiment, requiring high
control of the time evolution, has recently been realized in
the lab using a cold-atom integer quantumHall system [87],
but not yet for fractional quantum Hall systems. Here, we
numerically demonstrate quantized spin transport for a S ¼
1
2
chiral spin liquid (CSL) model with same topological

order as the ν ¼ 1
2
fractional quantum Hall state [88]. The

spin Hamiltonian is

HCSL ¼
X

hiji
Si · Sj þ

X

Δijk

ðSi × SjÞ · Sk ð14Þ

on a square lattice, hiji enumerates nearest neighbors, and
Δijk the four clockwise three-site terms of each plaquette
[89,90]. We study aLx × Ly ¼ 20 × 4 cylinder threaded by
an axial flux θ, implemented via a twisted boundary
condition, S�x;1þLy

→ e�iθS�x;1 [91–93]. Starting from the

ground state, we adiabatically ramp up the flux as θðtÞ ¼
2πt=T over a total time T ¼ 20. According to Laughlin,
this transports one spinon from the left to the right edge of
the cylinder [94,95]. The challenge is to demonstrate this
numerically. To this end, we performed a single, unin-
terrupted CBE-TDVP evolution run [96].
Figure 3(a) shows the time evolution of the local spin

moment per column, MxðtÞ ¼
PLy

y¼1 S
z
x;yðtÞ: it decreases

(increases) near the left (right) edge at x ¼ 1 (Lx) while
remaining close to zero in between. Importantly, the
transferred spin, i.e., the left deficit (right surplus),
ΔMðtÞ ¼ −

PLx=2
x¼1 MxðtÞ ¼

PLx
x¼ðLxþ1Þ=2 MxðtÞ, increases

linearly and reaches 0.5 [Fig. 3(a), inset]. Thus, the final
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state has a fractional Chern number, C ¼ 1
2
, in accord with

the fundamental bulk-edge correspondence [98].
Figure 3(b) shows the time evolution of the six lowest-

lying levels of the many-body entanglement spectrum (ES)
[97,99]. For an integer Chern insulator (C ¼ n), a 2π flux
insertion is known to shift the ES by n units. Here, by
contrast, the degeneracy structure changes: the lowest four
levels at t ¼ 0 form a singlet and triplet, those at t ¼ T form
two doublets. This suggest, again, that a spin-1

2
entity has

indeed been pumped from left to right.
As a consequence, the initial and final states lie in

different topological sectors. Figures 3(f) and 3(g) confirm
this by displaying their momentum-resolved entanglement
spectra [95,100]. According to conformal field theory, the
ES levels in each sector can be labeled by the quantum
numbers ðSz; KyÞ with integer transverse momentum Ky,
and exhibit the multiplicities f1; 1; 2; 3;…g [101]. The
initial state [Fig. 3(f)] shows a linear Ky dispersion (up to
minor finite-size effects) with degeneracies that indeed
match this pattern, lying higher for Jz ¼ 1 than Jz ¼ 0. For
the final state [Fig. 3(g)], by contrast, the lowest-lying

levels (which again have nearly integer Ky), are almost
degenerate for Sz ¼ 0 and Sz ¼ 1.
Summary and outlook.—Among the schemes for MPS

time evolution, 1TDVP has various advantages (see
Introduction), but its projection error is uncontrolled.
2TDVP remedies this, albeit at 2s costs, Oðd2wD3Þ, and
is able to simulate dynamics reliably [44]. CBE-TDVP
achieves the same accuracy as 2TDVP, but at 1s costs,
OðdwD3Þ (see Ref. [56]). Our benchmark tests of CBE-
TDVP demonstrate its reliability. Our results on the Peierls-
Hubbard model suggest that bipolarons form during
electron scattering—an effect not previously explored
numerically. We further simulated adiabatic flux insertion
in a CSL and demonstrated the pumping of a spinon
through the system. This illustrates the potential of CBE-
TDVP for tracking complex dynamics over long times in
computationally very challenging models.
For applications involving the time evolution of MPSs

defined on “doubled” local state spaces, with effective
local bond dimensions deff ¼ d2, the cost reduction of
CBE–TDVP vs 2TDVP, Oðd2wD3Þ vs Oðd4wD3Þ, will be
particularly dramatic. Examples are finite temperature
properties, treated by purification of the density matrix
[102], dissipation-assisted operator evolution [103], or
tangent tensor renormalization [104]; and the dynamics
of open quantum systems [105], described by Liouville
evolution of the density matrix [106–108] or by an in-
fluence matrix approach [109].
1TDVP-equivalent integrators are also used in computa-

tional chemistry for the computation of molecular quantum
dynamics [110], where d, the size of the basis sets
describing molecular orbitals, easily exceeds 100. There,
suboptimal subspace expansion schemes can lead to
dramatic problems—CBE offers a solution, and its d2 to
d cost reduction relative to 2TDVP would be huge.
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