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We study the motion (translational, vibrational, and rotational) of a diatomic impurity immersed in an
electron liquid and exposed to electronic current. An approach based on the linear response time-dependent
density functional theory combined with the Ehrenfest dynamics leads to a system of linear algebraic
equations, which account for the competing and counteracting effects of the current-induced force (electron
wind) and the electronic friction.We find and emphasize the coupling between the center of mass motion and
that of the nuclei relative to each other, the feature due to the mediation of the two-body interaction by the
environment. The current-induced forces, by means of the dynamic exchange-correlation (xc) kernel
fxcðr; r0;ωÞ, include the electronic viscosity contribution. Starting from the ground state at the equilibrium
internuclear distance and applying a current pulse, we observe three phases of themotion: (i) acceleration due
to the prevalence of the current-induced force, (ii) stabilization upon balancing of the two forces, and
(iii) deceleration due to the friction after the end of the pulse. At lower, but still metallic, electron densities, the
dynamic xc contribution to the force significantly affects the acceleration (deceleration) at the first (third)
phase of the process. For theCs density (rs ≈ 6 a:u:), this correction amounts up to 40% in the rotation regime.
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The current densities in atomic wires can exceed those in
macroscopic conductors by many orders of magnitude [1].
Current flow in a lightbulb causes heating, light emission,
and electromigration [2], leading to the eventual failure of
the current-carrying element. So what should we expect in
the microscopic world of atomic wires?
This question has prompted intense research into cur-

rent-driven dynamics in nanoscale conductors for over
25 years, resulting in simulation techniques of great
sophistication [3,4]. Of central importance in these studies
is the mean force exerted by the current on individual
atomic nuclei. Techniques typically rely on the static
density functional theory (DFT) or the self-consistent tight
binding (TB) method for the calculation of this all
important quantity under nonequilibrium open boundary
conditions (see Ref. [5] and references therein).
But it is known that static DFT and TB miss key

dynamical effects, which have been shown to be of
importance for related phenomena, such as electronic
stopping [6,7], bulk impurities resistivity [8], and nanoscale
conductance [9–12]. These dynamical corrections, akin to
electron viscosity [13], have never been investigated for
current-induced forces to the best of our knowledge. The
aim of this Letter is to bridge this gap.
We develop a formalism based on the frequency-

dependent kernel of the time-dependent DFT (TDDFT)
[15,16] and its space-nonlocal extensions [17,18], and
apply it to the problem of the electron-wind force on
impurities in jellium. The upshot is to significantly correct
the current-induced forces and the friction effect at metallic
electron densities. This viscous correction to the bare wind
force is far from being of academic interest alone. When

combined with thermal activation, this increase in the wind
force can result in very significant changes to impurity
electromigration rates. A related phenomenon where these
corrections become of central interest are nonconservative
forces under current and the waterwheel effect [19], an
application we propose to study in the near future.
We consider two classical nuclei of atomic numbers Z1

and Z2 at positions R1 and R2, respectively, immersed in
an otherwise homogeneous electron gas (HEG) of density
parameter rs, where n̄−1 ¼ 4

3
πr3s , n̄ is the HEG density

(atomic units are used throughout).
Equilibrium configuration.—In the ground state (GS) at

the equilibrium internuclear distance, the forces on each
nucleus vanish

Fα ¼ −
Z �

∇Rα

Zα

jr−Rαj
�
n0ðr;R1;R2Þdr

−∇Rα

ZαZβ

jRα −Rβj
¼ 0; α¼ 1;2; β ¼ 2;1; ð1Þ

where n0ðr;R1;R2Þ is the nuclear-position-dependent GS
electronic density.
Time-dependent perturbation.—We apply to the equi-

librium state a weak external electric field

δEextðtÞ ¼ δEextðωÞe−iωt: ð2Þ
In the anticipation of our results and to justify the following
analysis, we note that we will seek for the charge-density
response of our system to the perturbation (2), calculate forces
exerted on nuclei, and solve equations of motion. We will do
this in three different ways: (i) within the full theory, i.e.,
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including both the static and dynamic xc through the spatially
and temporally nonlocal fxcðq;ωÞ, (ii) including the static xc
only throughfxcðq;ω ¼ 0Þ, and (iii)within the randomphase
approximation (RPA), i.e., setting fxcðq;ωÞ ¼ 0. By the
comparison of the results we will elucidate the role of the
dynamic xc (viscosity) effects (see Figs. 2–5).
To first order in the perturbation (2), the current density

induced in the system is

δjind;iðr;ωÞ ¼
c
iω

Z
χ̂ijðr; r0;ωÞ

�
δEext;jðωÞ

þ
X2
γ¼1

ðδRγðωÞ ·∇0Þ∇0
j

Zγ

jr0 −Rγj
�
dr0; ð3Þ

where i and j are Cartesian indices (summation over the
repeated index j is implied). χ̂ijðr; r0;ωÞ is the tensorial
current density response function [20], in which a para-
metric dependence on R1;2 is implied. δRγðωÞ is the
displacement, to first order in δEextðω), of the nucleus γ
from its equilibrium position. The two terms in the square
brackets in Eq. (3) stand for the bare external field and
that of the Coulomb charges of the displaced nuclei,
respectively.
Based on Eq. (3), in Sec. I of Supplemental Material

[21], we show that the electric field due to the dynamical
redistribution of electrons is

δEeðr;ωÞ ¼
ω2

ω2 − ω2
p
δEextðωÞ þ

1

ω2 − ω2
p
∇
Z

1

jr − r00j ½χðr
00; r0;ωÞ − χðr00; r0; 0Þ�ðδEextðωÞ ·∇0ÞV0ðr0Þdr0dr00

þ∇
Z

1

jr − r00j χðr
00; r0;ωÞ

�X2
γ¼1

ðδRγðωÞ · ∇0Þ Zγ

jr0 −Rγj
�
dr0dr00; ð4Þ

where ωp ¼ ffiffiffiffiffiffiffiffi
4πn̄

p
is the plasma frequency of the HEG,

V0ðrÞ ¼ −
X2
γ¼1

Zγ

jr −Rγj
ð5Þ

is the bare static potential by the nuclei, and χðr; r0;ωÞ is the scalar density response function of TDDFT [15].
The last step is to evaluate the forces on each nucleus. To the first order in the perturbation, they read

δFαðωÞ ¼ ZαδEeðRα;ωÞ − Zα½ðδRαðωÞ · ∇Rα
Þ þ ðδRβðωÞ ·∇Rβ

Þ�∇Rα

Zβ

jRα −Rβj

þ ZαðδRαðωÞ · ∇Rα
Þ∇Rα

Z
n0ðrÞ

jRα − rj dr; β ≠ α: ð6Þ

Indeed, the first term on the rhs of Eq. (6) is the field of
Eq. (4) at the unshifted position of the αth nucleus times its
charge. The second and third terms on the rhs stand for
the change of the bare force from another nucleus due to the
displacements of both of them. The fourth term on
the rhs accounts for the change of the force in the potential
of the ground-state electronic distribution due to the
displacement of the nucleus α. Equations (4)–(6) constitute
the main result of our theory. On equal footing, they include
current-induced forces and the electronic friction [5,22],
and the electron-electron interaction is fully accounted for
through the formally exact density response function
χðr; r0;ωÞ.
Within the Ehrenfest dynamics, Eqs. (4)–(6) are com-

plemented with the Newton’s equations

−Mαω
2δRαðωÞ ¼ δFαðωÞ; ð7Þ

thus closing the system to be solved to find the displace-
ments δRαðωÞ.
The most challenging element of the described scheme is

the determination of the density response function
χðr; r0;ω;R1;R2Þ of the system of the HEG plus two
nuclei in their respective positions. In order to avoid
significant computational difficulties while still keeping
the essential physics, in the implementation of our theory
we resort to the:
Weak electrons-impurity interaction approximation.—

This approximation amounts to replacing χðr; r0;ω;R1;R2Þ
with its HEG counterpart χhðjr − r0j;ωÞ while, in the
equilibrium condition (1), taking

n0ðr;R1;R2Þ ¼
Z

χhðjr − r0j; 0ÞV0ðr0Þdr0: ð8Þ
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Then the force and the potential energy at the given
separation d between the nuclei are evaluated to [21], Sec. II

FðdÞ¼Z1Z2

d2

�
8

Z
dq

χhðq;0Þ
q3

ðsinqd−qdcosqdÞþ1

�
; ð9Þ

UðdÞ ¼ Z1Z2

d

�
8

Z
dq

χhðq; 0Þ
q3

sin qdþ 1

�
; ð10Þ

where we have Fourier transformed χhðr; 0Þ to the wave-
vector variable q. In Fig. 1, the force and the potential energy
of Eqs. (9) and (10) are plotted versus the internuclear
separation d, for HEG of the density parameter rs ¼ 2. We
note that, in the weak interaction approximation, the
equilibrium separation is independent on the nuclear
charges, being a function, via χh, of rs only.
Instead of the external field δEextðωÞ, we introduce the

current density δjðωÞ in the HEG, as it would be in the
absence of the impurity. The two quantities are related by

δjðωÞ ¼ iωω2
p

4πðω2 − ω2
pÞ

δEextðωÞ; ð11Þ

which is a consequence of the Drude formula. We, further,
introduce the coordinate of the center of mass (c.m.)

δRcðωÞ ¼
M1δR1ðωÞ þM2δR1ðωÞ

Mc
; Mc ¼M1 þM2;

the relative coordinate

δRrðωÞ ¼ δR2ðωÞ − δR1ðωÞ;

and the corresponding velocities δVcðωÞ and δVrðωÞ. This,
finally, leads to a system of equations of motion

−ωδVcðωÞ¼−
4πðZ1þZ2Þω

Mcω
2
p

δjðωÞþ 2

πMcω

Z
dq

q
q4

½χhðq;ωÞ−χhðq;0Þ�½Z2
1þZ2

2þ2Z1Z2e−iq·d�
��

δjðωÞ
n̄

−δVcðωÞ
�
·q

�

−
2

πM2
cω

Z
dq

q
q4

½χhðq;ωÞ−χhðq;0Þ�½M1Z2
2−M2Z2

1þZ1Z2ðM1−M2Þe−iq·d�ðδVrðωÞ ·qÞ; ð12Þ

−ωδVrðωÞ ¼ −
4πω

ω2
p

�
Z2

M2

−
Z1

M1

�
δjðωÞ

−
2

πMcω

Z
dq

q
q4

½χhðq;ωÞ − χhðq; 0Þ�ðδVrðωÞ · qÞ
�
M1Z2

2

M2

þM2Z2
1

M1

− 2Z1Z2eiq·d
�

þ 2

πω

Z
dq

q
q4

½χhðq;ωÞ − χhðq; 0Þ�
��

δjðωÞ
n̄

− δVcðωÞ
�
· q

��
Z2
2

M2

−
Z2
1

M1

þ
�

1

M2

−
1

M1

�
Z1Z2eiq·d

�

þ 2

πω

�
1

M1

þ 1

M2

�Z
dq

q
q4

Z1Z2χ
hðq; 0Þeiq·d½δVrðωÞ · q� −

1

ω

�
1

M1

þ 1

M2

�
½δVrðωÞ ·∇d�∇d

Z1Z2

d
: ð13Þ

While the c.m. motion and the relative one are coupled in
Eqs. (12) and (13) we show that the motion in the direction
parallel to the impurity’s axis and that in the perpendicular
direction are independent [21], Sec. III. This allows us to
study the two geometries separately. Individual terms in
Eqs. (12) and (13) can be attributed a meaning as follows.
The first terms on the rhs of both equations are due to the

direct field, i.e., the external field (2) screened in HEG. The
second terms stand for the combined action of the electron
wind and the friction, in Eq. (12), and the friction only in
Eq. (13). In the limit ω → 0, a factor ∂χðq;ωÞ=∂ωjω¼0

appears under the integrals. The latter is familiar from the
theories of the stopping power for ions and the impurity
resistivity [6–8], where it is responsible for energy

FIG. 1. The potential energy U (10) and the force F (9) versus
the distance d between two point charges in the HEG of the
density parameter rs ¼ 2 a:u. The equilibrium distance between
the charges (marked with an arrow) is d ¼ 5.17 a:u: χhðq; 0Þ used
was obtained with Eq. (15) and the MCP07 approximation for
fhxcðq; 0Þ [17].
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dissipation. At finite ω, the quantity χðq;ωÞ=ω plays the
same physical role, although it might be quantitatively
influenced according to the magnitude of ω. The third
terms are the cross ones, accounting for the c.m. motion
dependence on the relative one and vice verse. The last two
terms in Eq. (13) stand for the elastic restoring force in the
relative motion, as it becomes clear noting that
iδVrðωÞ=ω ¼ δRrðωÞ. This force gives rise to vibrations
shown in Fig 4. When the motion is decomposed into the
parallel and perpendicular to d components, this force
survives in the parallel part only [see Ref. [21], Eqs. (S.32’)
and (S.34’)].
Equations (12) and (13) solve our problem in the case of

a monochromatic field (2). Furthermore, exploiting the
linearity of this approach, by means of the forward and
inverse Fourier transforms, we can construct the solution
for an arbitrary current pulse δjðtÞ. We choose a pulse of
rectangular shape

δjðtÞ ¼ ½HðT − tÞ −Hð−tÞ�j0; ð14Þ

where HðtÞ is the Heaviside’s step function and T is the
duration of the pulse.
We have conducted calculations using Eqs. (12)–(14) for

the impurity comprised of a proton and a deuteron in a
HEG of rs ¼ 2, 6, and 10 a.u. In Figs. 2 and 3, we present
the time evolution of the velocity of the c.m. of the
impurity, in the direction parallel to the axis d and
perpendicular to it, respectively. In Figs. 4 and 5 the same
is shown for the relative velocities. The c.m. motion (Figs. 2
and 3) are qualitatively similar in the two geometries. Upon

the application of the pulse at t ¼ 0, acceleration of the
impurity as a whole under the electron wind takes place.
The acceleration gradually slows down as the counteracting
friction force grows with the increase of the velocity, until
the c.m. velocity stabilizes at the value of j0=n̄, i.e., at the
electronic drift velocity. Upon the pulse switching off at
t ¼ T, the electron wind force vanishes, leading to a fast
slowing down of the impurity under the friction force alone.
In Fig. 4, the relative velocity evolution in the direction

parallel to the impurity axis is shown. A dominating feature
here is the vibrational motion around the equilibrium
separation between the two nuclei. The vibrations are,
however, of the attenuating amplitudes, after the kicks
produced by the pulse switching on and off. This attenu-
ation is due to the coupling between the relative and c.m.
motions in Eqs. (12) and (13): when the velocity of the c.m.
approaches saturation around the middle of the pulse (see
Fig. 2), the electron wind ceases to support the vibrations,
while the friction persists, leading to the decay of the
oscillations. The frequency and the damping of the oscil-
lations are worked out in Ref. [21] Sec. IV.

(a)
(b)
(c)

FIG. 2. Velocity of the center of mass of the impurity comprised
of a proton and deuteron in HEG of rs ¼ 2 a:u: (left), rs ¼ 6 a:u:
(center), and rs ¼ 10 a:u: (right). A rectangular current pulse of
the duration T (schematically shown in short-dashed line) is
applied in the direction parallel to the impurity’s axis. At t < 0,
the system is in its ground state, at the equilibrium separation
between the nuclei. The solid (a), dashed (b), and dotted (c) lines
show results of calculations by Eqs. (12) and (13) with the use of
the rMCP07 xc kernel fhxcðq;ωÞ [18], of its static version
fhxcðq;ω ¼ 0Þ, and in the RPA, fhxcðq;ωÞ ¼ 0, respectively.

(a)
(b)
(c)

FIG. 3. Same as Fig. 2, but the pulse is applied in the direction
perpendicular to the impurity’s axis.

(a)

(c)
(b)

FIG. 4. Same as Fig. 2, but for the velocity of the nuclei relative
to each other (vibrations). For visualization, lines circumscribing
maxima-minima of the fast oscillations are drawn.
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Figure 5 also shows the evolution of the relative velocity,
but in the geometry with the current perpendicular to the
impurity axis. This regime corresponds to the rotation of
the impurity around its c.m. Similar to vibrations, the
velocity of the rotation quickly increases after the pulse
switching on and off, but it falls off in the region of the
stabilization. We note that, at the end of the pulse,
the direction of the rotation is reversed. This is due to
the friction, which is not balanced any more by the electron
wind, and which acts in the opposite direction than the
latter has acted.
In our theory, a factor of the primary importance is the

coupling between the motion of the c.m. of the impurity
and that of the nuclei relative to each other. This is due to
the mediation by the environment of the electron liquid and
it is, obviously, absent in the motion in vacuum. One of the
consequences of the coupling is that, in the middle of the
pulse duration, when the stabilization of the c.m. velocity is
reached, the DC current does not support vibrations and
rotation, because the impurity is moving as a whole with
the saturation velocity j0=n̄. However, the pulse switching
on or off constitutes kicks on the system, as a result all
frequencies get involved, leading to the commencement or
resumption of vibrations and rotation which die out after-
ward due to the friction (see Figs. 4 and 5).
In the determination of χhðq;ωÞ in Eqs. (12) and (13), we

rely on the linear response TDDFT equality [15]

1

χhðq;ωÞ ¼
1

χhsðq;ωÞ
−
4π

q2
− fhxcðq;ωÞ; ð15Þ

where χhs ðq;ωÞ is the Kohn-Sham single particle density
response function and fhxcðq;ωÞ is the dynamic xc kernel.
While the former is known exactly and analytically by the
Lindhard formula [14,23], the knowledge of the latter is
limited to approximations. In our calculations we use state-
of-the-art spatially and temporally nonlocal xc kernel
fhxcðq;ωÞ rMCP07, which is considered accurate at all
densities of the fluid phase of HEG [18]. Results are

compared with those with the neglect of the temporal non-
locality fhxcðq;ω ¼ 0Þ [24], and in the RPA fhxcðq;ωÞ ¼ 0.
From Figs. 2–5 we conclude that the electronic viscosity,

i.e., the temporal nonlocality of fxc, significantly influences
the motion at lower HEG densities (larger rs). In the c.m.
motion (Figs. 2 and 3), it leads to an increase in the
acceleration due to the electron wind at the first phase of the
motion, and to a faster deceleration upon the end of
the pulse, the latter due to friction. The maximal effect
of the viscosity can be observed in the case of the rotational
motion (Fig. 5), where, for the Cs density (rs ¼ 6), in the
stabilization region (phase II) and at the asymptotic decay
of the motion after the end of the pulse (phase III), it leads
to the decrease of the velocity by up to 40% (see Ref. [21]
Sec. V, for the quantitative comparison).
We anticipate our results to provide a motivation for

further research beyond the HEG model. The main chal-
lenge on this path is the construction of fxcðr; r0;ωÞ for
inhomogeneous systems. One of the fruitful methods of
doing this is (i) the exploitation of the relation between the
tensorial f̂xc of the current density functional theory [20]
and the scalar fxc of TDDFT [7,25] and (ii) the use of the
local density approximation (LDA) to the tensorial kernel.
It is known that such a procedure produced a nonlocal
scalar fxc [7,25].
In conclusion, we have studied the motion of a diatomic

impurity in an electron liquid under the action of an
electronic current. A consistent linear response TDDFT
approach combined with Ehrenfest dynamics has been
utilized. We have revealed and discussed the consequences
of a fundamental property of a composite impurity motion
in electron liquid: coupling of the center of mass motion
and that of nuclei relative to each other. Our results show
that without the inclusion of the electronic viscosity, the
electron-wind force and the friction are in general under-
estimated. For the heavier alkali metals’ densities and
lower, we find the role of the viscosity of the electron
liquid to be of major importance. Fundamental implications
for the electromigration theory are envisaged.
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