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Gyrokinetic tokamak plasmas can exhibit intrinsic toroidal rotation driven by the residual stress. While
most studies have attributed the residual stress to the parallel-momentum flux from the turbulent E × B
motion, the parallel-momentum flux from the drift-orbit motion (denoted ΠD

k ) and the E × B-momentum

flux from the E × Bmotion (denotedΠE×B) are often neglected. Here, we use the global total-f gyrokinetic
code XGC to study the residual stress in the core and the edge of a DIII-D H-mode plasma. Numerical
results show that both ΠD

k and ΠE×B make up a significant portion of the residual stress. In particular, ΠD
k in

the core is higher than the collisional neoclassical level in the presence of turbulence, while in the edge it
represents an outflux of countercurrent momentum even without turbulence. Using a recently developed
“orbit-flux” formulation, we show that the higher-than-neoclassical-level ΠD

k in the core is driven by

turbulence, while the outflux of countercurrent momentum from the edge is mainly due to collisional ion orbit
loss. These results suggest that ΠD

k and ΠE×B can be important for the study of intrinsic toroidal rotation.

DOI: 10.1103/PhysRevLett.133.025101

Tokamak plasmas can rotate toroidally without external
momentum input, which is important for future reactors
where internal fusion heating is not expected to generate
net momentum. Such intrinsic toroidal rotation is driven by
the residual stress, which is a momentum flux independent
from the toroidal-rotation velocity and its gradient. The
gyrokinetic approach is often used to find the residual stress
in turbulent plasmas, but its determination can be difficult
because turbulence will transport equal amounts of co- and
countercurrent momentum, so the net momentum flux is
zero unless there is an asymmetry in the parallel direction.
Therefore, studies of the residual stress have been active for
many years [1–18].
In an electrostatic gyrokinetic plasma, radial transport

comes from the drift-orbit motion vD and the turbulent
E × B motion vE. While most studies have attributed the
residual stress to the parallel-momentum flux from vE
(the “fluid stress”), the parallel-momentum flux from vD
(the “kinetic stress”) and the E × B-momentum flux from
vE (the “toroidal Reynolds stress”) are often neglected in
the core. In particular, the kinetic stress is usually assumed
to be at a small collisional neoclassical level. However, as
will be discussed in this Letter, part of the kinetic stress can
be driven by turbulence, which is already observed by
several global gyrokinetic simulations [19–23] and studied
from a qualitative theory [23]. Numerically, the residual
stress is often studied in the local geometry, where the
volume-integrated kinetic stress and Reynolds stress vanish
due to radial periodicity, but this radial boundary condition
no longer exists in the global geometry. The kinetic stress

has also been emphasized for the edge rotation [24–27],
which is affected by not only turbulence, but also compli-
cated factors such as the realistic geometry with a magnetic
X point [24–31], interactions with neutrals [32,33], and ion
orbit loss [34–43]. With the advancing computing power,
global gyrokinetic simulations with realistic geometry
could provide new physics insights for this topic.
In this Letter, we use the global total-f particle-in-cell

gyrokinetic code XGC [44] to study the residual stress in a
DIII-D H-mode plasma. Both the core and the edge are
studied through whole-volume plasma simulation from the
magnetic axis to the wall. We initiate the plasma with zero
rotation velocity and study the self-generated momen-
tum fluxes. The gyrocenter toroidal angular momentum
(TAM) density consists of the parallel-flow part Lk and the
E × B-flow part LE×B. Their corresponding radial TAM
fluxes are denoted by Πk and ΠE×B, respectively.
Numerical results show that both ΠD

k (the component of Πk
from vD) and ΠE×B make up a significant portion of the
residual stress. Using a recently developed “orbit-flux”
formulation [45–48], we quantitatively show how ΠD

k is
driven not only by collisions, but also by turbulence in the
core, as well as by collisional ion orbit loss in the edge.
Similar results are also found in the core of a larger machine
ITER, as discussed toward the end. These results suggest
thatΠD

k andΠE×B can be important for the study of intrinsic
toroidal rotation.
Simulation setup.—We simulate deuterium gyrokinetic

ions and drift-kinetic electrons. Their equilibrium density
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and temperature are adapted from DIII-D shot number
141451 [25–27] and are functions of the poloidal magnetic
flux ψ (Fig. 1). The gyrocenter coordinates are cylindrical
position R ¼ ðR;φ; zÞ, magnetic moment μ, and parallel
momentum pk. The Hamiltonian for species s is H ¼
p2
k=2ms þ μBþ ZseĴ0Φ, where Ĵ0Φ is the gyroaveraged

electrostatic potential. Define vk ¼ pk=ms, b̂ ¼ B=B,

B� ¼ Bþ ðmsvk=ZseÞ∇ × b̂, and B�
k ¼ b̂ · B�, then the

gyrocenter trajectories are given by

B�
kṘ ¼ vkB� þ ðZseÞ−1b̂ ×∇H; B�

kṗk ¼ −B� ·∇H:

Separating H into an axisymmetric part H̄ ¼ p2
k=2ms þ

μBþ ZseĴ0Φ̄ and a nonaxisymmetric part H̃ ¼ ZseĴ0Φ̃,
we have Ṙ ¼ vkb̂þ vD þ vE, where vkb̂þ vD is the
parallel and the drift-orbit motion and vE is the E × B
motion from Φ̃. Note that vD includes not only the grad-B
and the curvature drift, but also the E × B drift from Φ̄.
The “total-f” numerical scheme is used for the whole-

volume plasma simulation [49], where “f” refers to the
gyrocenter distribution Fs, which evolves according to

dtFs ¼ ∂tFs þ Ṙ ·∇Fs þ ṗk∂pkFs ¼ Cs þ Ss þ Ns; ð1Þ

and is allowed to significantly deviate from the equilibrium
Maxwellian distribution. Here, Cs describes collisions
[50,51], Ss describes heating, and Ns describes neutral
ionization and charge exchange [52]. In our simulations,
a 1 MW heating is applied to ions in the core to sustain
turbulence, and neutral dynamics are included in the edge
and the scrape-off layer.
Neither Ss nor Ns generate net momentum in our

simulations. Then, the gyrokinetic Eq. (1) has a local

gyrocenter TAM conservation relation [15–19]

∂tðLk þ LE×BÞ ¼ −∂VðΠk þ ΠE×BÞ; ð2Þ

where VðψÞ is the volume inside the flux surface ψ . The
TAM densities are calculated as Lk ¼

P
sh
R
d3vFspsφi

and LE×B ¼ −ðdV=dψÞ−1 R dt
P

s ZseΓs, where h…i is
the flux-surface average, psφ ¼ −msvkb̂ · R2∇φ is the
TAM from parallel motion, and Γs ¼ hR d3vFsṘ · ∇Vi is
the radial gyrocenter flux. The sign of psφ is chosen so that
a positive (negative) TAM density corresponds to a co-
(counter) current toroidal rotation. The TAM fluxes are
calculated as Πk ¼

P
sh
R
d3vFspsφðṘ · ∇VÞi and ΠE×B ¼

−
R
dV

P
sh
R
d3vFs∂φHi. Since radial transport comes

from both vD and vE, we write

Γs ¼ ΓD
s þ ΓE

s ; Πk ¼ ΠD
k þ ΠE

k ð3Þ

to emphasize their separate contributions.
Simulation results.—First, we use the axisymmetric

version of XGC (XGCa) to simulate a neoclassical plasma,
where ΠE

k ¼ ΠE×B ¼ 0 but ΠD
k can be nonzero due to

collisions. Starting from a local Maxwellian Fs, the plasma
relaxes to a quasisteady state at t ¼ 0.4 ms, when the TAM
densities and flux are shown in Figs. 1(c) and 1(d). In the
core,LE×B < 0 due to a negative neoclassical radial electric
field Er, while Lk > 0 from the parallel return flow that
balances the poloidal E × B and diamagnetic flow. The
neoclassical-level ΠD

k is very small in the core, so the TAM
density is conserved at each flux surface, Lk ≈ −LE×B. In
the edge, LE×B has a countercurrent peak at ψn ≈ 0.99 due
to the H-mode edge Er well. Correspondingly, Lk has a
cocurrent peak, but the relation Lk ≈ −LE×B is no longer
satisfied due to a dipolar ΠD

k in the edge. Throughout the

simulation, the edge Lk shifts in the countercurrent direc-
tion at the pedestal top (ψn < 0.98) and in the cocurrent
direction toward the last closed flux surface (ψn ¼ 1)
according to Eq. (2).
Next, we use the 3D version of XGC (XGC1) to simulate

a turbulent plasma and the results are shown in Fig. 2.
Turbulence is active in the core but decays in the edge due
to theH-mode Er well. In the core, turbulence-driven LE×B
and Lk have similar radially wavelike structures. Note that
here Lk and LE×B have the same sign, which is different
from the XGCa solution Lk ≈ −LE×B. In the edge, turbu-
lent intensity is weak so that the TAM flux is dominated by
ΠD

k , and the corresponding edge rotation is also similar to

the XGCa solution. The observed edge ΠD
k ≈ −0.3 N · m is

comparable to that inferred from experiments [26,27],
and our simulation results in the edge are qualitatively

FIG. 1. (a),(b) The equilibrium density (in units m−3) and
temperature (in units keV) as a function of normalized poloidal
flux ψn, and ne0 ¼ ni0 due to quasineutrality. (c),(d) The TAM
density [in units kg=ðm · sÞ] and flux (in units N · m) at
t ¼ 0.4 ms from the neoclassical XGCa simulation.
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consistent with the results using a previous version of XGC
with a different setup [25].
The above results showed that both neoclassical and

turbulent processes can generate residual TAM fluxes and
toroidal rotation in our simulations. In the following, we
study the physics behind these momentum fluxes.
Core momentum fluxes.—Figure 3(a) shows Er, which

varies radially and drives differential poloidal rotation
known as zonal flows. Since LE×B is proportional to Er,
the observed correlation between LE×B and Lk can be
understood as the correlation between zonal flows and
toroidal rotation, which was also seen in other global
gyrokinetic simulations [53–56]. As shown in Figs. 3(b)
and 3(c), turbulent eddies are tilted according to the local
zonal-flow shear, and the corresponding ΠE

k and ΠE×B

oscillate radially. Meanwhile, ΠD
k is larger than the neo-

classical solution in Fig. 1(d) and tends to be out of phase
with ΠE

k , in agreement with other global gyrokinetic-
simulation results [19–23]. Therefore, all the three TAM
fluxes should be considered in order to correctly predict the
toroidal-rotation evolution in the core [Fig. 3(d)].
We found these TAM fluxes significant in the sense that

jvtΠ=aQij can be as large as 0.5, meaning they can drive
toroidal rotation up to a non-negligible fraction of the ion
thermal velocity vt [12,13]. (Here, a is the minor radius and
Qi is the ion heat flux). It is well known that the zonal-flow
shear can produce finite correlation between poloidal and
parallel wave spectra and hence a nonzero ΠE

k [57,58].

However, studies often assumed that ΠE×B is smaller than
ΠE

k by a factor krρiBθ=B and ΠD
k is at a small collisional

neoclassical level [1]. Our results showed that these
assumptions are not always valid, and we focus on the
origin of ΠE×B and ΠD

k in the following.

Using the relation ∂φ ¼ Rbφb̂ · ∇þ B−1b̂ ×∇ψ ·∇ and
assuming kk ≪ k⊥ for turbulence, one can show that

∂VΠE×B ≈ ðdV=dψÞ−1JE; ð4Þ

where JE ¼ P
s ZseΓE

s is the turbulent radial current. This
approximation is numerically verified in Fig. 4(a), and can
be interpreted as the proportionality between toroidal and
poloidal projection of the Reynolds stress. Note that the
drift-orbit current JD ¼ P

s ZseΓD
s balances JE so that the

total gyrocenter current is small. By comparing Figs. 3(a)
and 4(a), these radial currents also oscillate with the zonal
flow. Since a positive gyrocenter current drives Er in the
negative direction and vice versa, the zonal flow is driven
by JE and damped by JD. As Er forms according to JE,
toroidal rotation driven by ΠE×B will have the same radial
profile as Er according to Eq. (4). This is a novel
explanation for the correlation between toroidal rotation
and zonal flows.
Although vD contains the E × B drift from Φ̄, the

corresponding TAM flux is small in our simulations, so
most of ΠD

k is from the magnetic (grad-B and curvature)

drift of ions, vmag ≈ ðμBþmiv2kÞb̂ × ∇ lnB=Zie. Write

μBþmiv2k ¼ 2Ti0 þ ðμB − Ti0Þ þ ðmiv2k − Ti0Þ as the
contributions from isothermal processes and deviation to

FIG. 2. XGC1 simulation results showing (a) amplitude of the
turbulent fluctuations, (b) LE×B, and (c) Lk as a function of t
(in units ms) and ψn. The XGCa solutions of Lk and LE×B are
subtracted to remove their large peaks in the edge.

FIG. 3. (a) Er (in units V/m) at t ¼ 1 ms along the outboard
midplane. The black dashed lines are flux surfaces where
∂rEr ≈ 0. (b) Φ̃ (in units V) near the outboard midplane.
(c) The corresponding TAM fluxes. (d) Comparison of the
TAM conservation relation (2) with numerical results.
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Maxwellian distribution in the perpendicular and parallel
directions, the kinetic stress ΠD

k ≈ hR d3vFipiφvmag ·∇Vi
can then be written as

ΠD
k ¼ Πmag;iso þ Πmag;⊥ þ Πmag;k; ð5Þ

with the three terms from 2Ti0, μB − Ti0, and miv2k − Ti0,
respectively. It is straightforward to show that Πmag;iso ∝
−Ti0hγk sin θi, where γk ¼

R
d3vFivk is the ion parallel

flux density and θ is the poloidal angle. Therefore, a
nonzero Πmag;iso arises due to the up-down asymmetry in
γk. As discussed in Ref. [23], such asymmetric γk can be
driven by the divergence of the turbulent radial flux, i.e.,
Πmag;iso ∝ ∂rΓE

i , which explains the radially oscillatory
behavior of ΠD

k in Fig. 3. However, as shown in Fig. 4(b),

both Πmag;⊥ and Πmag;k are comparable to Πmag;iso, so the
qualitative theory from Ref. [23] alone cannot explain the
turbulence-driven ΠD

k in our simulations. Further, we found

the contributions to Πmag;⊥ and Πmag;k from temperature
fluctuations to be small, so they must come from higher-
order moments in the ion distribution.
Turbulent origin of ΠD

k in the core.—Although the

observed ΠD
k cannot be simply explained from the low-

order fluid moments of Fi, we can still numerically
illustrate the turbulent origin of ΠD

k using a recently

developed “orbit-flux” formulation [45,46]. By definition,
the kinetic stress at flux surface ψ is

ΠD
k ¼ 2π

m2
i

I ffiffiffi
g

p
dθ dφ

Z
dpkdμB�

kFipiφvD · ∇ψ ; ð6Þ

where
ffiffiffi
g

p ¼ j∇ψ ×∇θ ·∇φj−1. Since drift-orbit motion

vkb̂þ vD conserves the canonical TAM Pφ ¼ piφ − Zieψ
and the energy H̄, we can use ðμ;Pφ; H̄Þ to label all drift
orbits that cross the flux surface ψ . Changing variables
from ðpk; θÞ to ðPφ; H̄Þ, we obtain

ΠD
k ¼ 2π

Ziem2
i

Z
dμdPφdH̄

I
dφ

�
Fout
i − Fin

i

�
piφ: ð7Þ

Here, it is assumed that each drift orbit crosses the flux
surface twice, one at the incoming point and the other at the
outgoing point, and we define Fin

i and Fout
i to be the ion

distribution at these two points, respectively. For each
drift orbit, ΔFi ¼ Fout

i − Fin
i can be calculated as an orbit

integration from the incoming point to the outgoing point at
fixed time t,

ΔFi¼
Z

dτ
�
CiþSiþNi− ˜̇R ·∇Fi− ˜̇pk∂pkFi−∂tFi

�
; ð8Þ

where ˜̇R ¼ vE, ˜̇pk ¼ −B� · ∇H̃=B�
k, and the integration

is along drift orbits parameterized by τ. Combining (7)
and (8), we write ΠD

k as the summation of “orbit fluxes,”

ΠD
k ¼ Πcol þ Πsrc þ Πneut þ Πturb þ Πt: ð9Þ

A similar procedure can be applied to ΓD
i to obtain

ΓD
i ¼ Γcol þ Γsrc þ Γneut þ Γturb þ Γt: ð10Þ

Equations (9) and (10) are called “orbit-flux” formulations,
which show that ΠD

k and ΓD
i are not only driven by

collisions (which is the focus of the conventional neo-
classical theory), but also by heating, neutral dynamics,
turbulence, and time evolution of the plasma along colli-
sionless drift orbits. Our simulated plasma is in the low-
collisionality banana regime, with mostly collisionless drift
orbits up to the last closed flux surface.
We numerically implemented this formulation in XGC

[47,48]. As an example, we look at ΠD
k at the ψn ¼ 0.76

flux surface and the results are in Figs. 4(c) and 4(d). The
dominant contribution to ΠD

k are the turbulent term Πturb

and the associated time evolution of the plasma Πt,
while effects from collisions and heating are small.
Also, the orbit-flux calculation (9) agrees well with the
direct calculation of ΠD

k in XGC1 using (6), which

demonstrated that it is implemented with good numerical
accuracy. These results quantitatively confirmed that the
higher-than-neoclassical-level ΠD

k in the XGC1 simulation

is indeed driven by turbulence.
Edge momentum fluxes.—In the edge region of our

simulation, turbulence is weak and ΠD
k is mainly driven

FIG. 4. (a) The radial currents and ∂ψΠE×B (in units A) at
t ¼ 1 ms. The black dashed lines are the flux surfaces plotted in
Fig. 3. (b) The isothermal and nonisothermal parts (5) of ΠD

k in

Fig. 3. (c) Orbit-flux calculations (9) for momentum fluxes across
the ψn ¼ 0.76 core flux surface. (d) Comparison with the direct
calculation of ΠD

k from XGC1 using Eq. (6).
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by neoclassical processes. Note that the edge is subject to
ion orbit loss, where some drift orbits do not form closed
loops but connect the confined region to the divertor leg or
the vessel wall. Considering the separate contributions from
loss orbits and the remaining confined orbits (which form
closed loops), we write orbit fluxes as, e.g.,

Γcol ¼ Γloss
col þ Γconf

col ; Πcol ¼ Πloss
col þ Πconf

col : ð11Þ

Results for an edge flux surface ψn ¼ 0.992 are shown in
Fig. 5. For the particle flux, we find Γloss > 0 and Γconf < 0.
In other words, while gyrocenter ions leave the plasma
following the loss orbits, they also enter the plasma
following the confined orbits. For the momentum flux,
however, both Πloss and Πconf are countercurrent and they
add up to ΠD

k ≈ −0.3 N · m in the edge. These results are

consistent with each other, namely, most loss orbits are
countercurrent and the remaining confined orbits are over-
all cocurrent, so that both Γloss > 0 and Γconf < 0 result in
countercurrent momentum fluxes. The loss-orbit fluxes are
mainly caused by collisional scattering of ions into the loss
orbits, while effects from turbulence and neutrals are small.
Therefore, the outgoing countercurrent momentum fluxes
in the edge are mainly from collisional ion orbit loss within
our simulation. Finally, note that the self-consistent orbit-
loss driven ΠD

k determines ∂tLk in the edge, which is
different from simple orbit-loss models that determine Lk
itself [40,41].
Conclusions.—In summary, global total-f gyrokinetic

simulations showed that ΠD
k is higher than the collisional

neoclassical level in the presence of turbulence, and both
ΠD

k and ΠE×B make up a significant portion of the residual

stress in a DIII-D H-mode plasma. Using the orbit-flux
formulation, we identified the mechanisms that drive ΠD

k ,

including turbulence in the core and collisional ion orbit
loss in the edge. It is often assumed that vD gives rise only
to neoclassical transport, which is driven solely by colli-
sions and is smaller than the turbulent transport from vE.
Our results showed that this assumption is not always
valid, because part of the radial transport from vD can be
driven by turbulence. In Supplemental Material [59], we
provide an ordering estimate for ΠD

k and argue that it can

be comparable to ΠE
k ; we also report similar results in

simulations of electrostatic turbulence in a larger machine
ITER. These results suggest that ΠD

k and ΠE×B can be

important for the study of intrinsic toroidal rotation, and
global gyrokinetic simulations could lead to further new
physics insights for this topic.

The data that supports the findings of this study are openly
available at Princeton Data Commons Discovery [62].
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