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The rotational properties of the transfermium nuclei are investigated in the full deformation space by
implementing a shell-model-like approach in the cranking covariant density functional theory on a three-
dimensional lattice, where the pairing correlations, deformations, and moments of inertia are treated in a
microscopic and self-consistent way. The kinematic and dynamic moments of inertia of the rotational bands
observed in the transfermium nuclei 252No, 254No, 254Rf, and 256Rf are well reproduced without any
adjustable parameters using a well-determined universal density functional. It is found for the first time that
the emergence of the octupole deformation should be responsible for the significantly different rotational
behavior observed in 252No and 254No. The present results provide a microscopic solution to the long-
standing puzzle on the rotational behavior in No isotopes, and highlight the risk of investigating only the
hexacontetrapole (β60) deformation effects in rotating transfermium nuclei without considering the
octupole deformation.
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The synthesis of superheavy nuclei (SHN) toward the
predicted “island of stability” is in the focus of current
nuclear physics research [1,2]. The single-particle structure
of SHN plays a crucial role in determining the location
of the “island of stability.” In recent years, the SHN with
atomic number from Z ¼ 113 to 118 have been discovered
[3–5]. However, owing to the very small production cross
sections for SHN, so far, only the basic properties such as
the dominant decay modes and the lifetimes are known,
while the single-particle structure of SHN could not be
directly obtained in experiment. Fortunately, owing to
deformation effects, the single-particle orbitals which
determine the location of the “island of stability” come
close to the Fermi surface in the transfermium nuclei
located near the deformed shell gaps at Z ¼ 100 and
N ¼ 152 [6]. Therefore, the spectroscopic experiments
on the transfermium nuclei can provide important infor-
mation for the single-particle structure of SHN.
In-beam, isomer, and decay spectroscopic experiments

have been carried out to study the rotational bands in the
transfermium nuclei [7], such as 253Fm [8], 251Md [9],
252–254No [10–14], 255Lr [15], and 254;256Rf [16,17].
Especially, the rotational bands of the two neighboring
nuclei 252No (N ¼ 150) and 254No (N ¼ 152) have
attracted great attention, because they exhibit a signifi-
cantly different rotational behavior at high angular
momenta [10]. The underlying mechanism, however, has
been a long-standing puzzle. Investigations using the total
Routhian surface (TRS) method [18] and the particle-
number-conserving cranked shell model (PNC-CSM) [19]

speculate that the different rotational behavior might
originate from the hexacontetrapole deformation β60.
However, both methods neglect the reflection-asymmetric
deformation and include only the β20, β40, and β60 degrees
of freedom, and they need to fit the data in one way or
another. In addition, the rotational properties of 252No and
254No have also been investigated by the macroscopic-
microscopic model [20,21], the projected shell model
[22,23], the reflection asymmetric shell model [24], the
nonrelativistic density functional theories [25–27], and the
covariant density functional theories [28,29], but none of
these studies have explained the underlying mechanism of
the different rotational behavior in 252No and 254No. As a
result, it has still been a challenging puzzle up to now.
In this Letter, this long-standing puzzle is microscopi-

cally solved for the first time by using the cranking
covariant density functional theory (CDFT) in three-
dimensional (3D) lattice space with a shell-model-like
approach (SLAP). The cranking CDFT in 3D lattice space
[30–32] provides a microscopic and self-consistent method
to calculate the rotational spectra of nuclei in the full
deformation space. Moreover, the SLAP [33–37] is imple-
mented to take into account the pairing correlations with
exact particle number conservation, which is crucial for
describing the rotational properties of nuclei. Combining
the merits of both CDFT and SLAP, the method is used to
study the rotational spectra of 252No and 254No as well as
the neighboring 254Rf (N ¼ 150) and 256Rf (N ¼ 152).
The kinematic and dynamic moments of inertia (MOIs)
for all nuclei are well reproduced without any adjustable
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parameters. A reliable explanation is provided for the
puzzling rotational behavior in 252No and 254No: the
emergence of the octupole deformation should be respon-
sible for the significantly different MOIs at high angular
momenta. Our results highlight the importance of the
octupole deformation for describing the rotating trans-
fermium nuclei. The risk of studying only the β60 defor-
mation without considering the octupole deformation in
rotating transfermium nuclei is also clearly addressed.
The starting point of the CDFT is a universal nuclear

energy density functional [38–41]. In the cranking CDFT,
the energy density functional is transformed into a frame
rotating with a constant rotational velocity ω around the
rotational axis. The corresponding Kohn-Sham equation for
the nucleons is a Dirac equation,

ĥ0ψk ¼ fα · ½−i∇−VðrÞ� þ β½mþ SðrÞ� þVðrÞ−ω · Ĵgψk

¼ εkψk; ð1Þ

where the cranking single-particle states are ψkðrÞ ¼
hrjb̂†kj0i, and εk is the corresponding single-particle
Routhian. The scalar SðrÞ and vector VμðrÞ fields are
connected in a self-consistent way to the nucleon densities
and currents; for details see Refs. [42–45]. The Dirac
equation (1) is solved in a 3D lattice space [46,47].
The pairing correlations are taken into account by the

SLAP [37]. The cranking many-body Hamiltonian with
pairing correlations reads as

Ĥ ¼ Ĥ0 þ Ĥpair: ð2Þ

The one-body part Ĥ0 reads as

Ĥ0 ¼
X

m;n>0

½hmnĉ
†
mĉn þ hm̄ n̄ĉ

†
m̄ĉn̄�: ð3Þ

Here, ĉ†m represents a set of noncranking single-particle
basis obtained from Eq. (1) at ℏω ¼ 0 MeV, and m̄ labels
the time-reversal state of m. The pairing Hamiltonian Ĥpair

is used for the two-body part,

Ĥpair ¼ −G
X

m;n>0

ĉ†mĉ
†
m̄ĉn̄ĉn; ð4Þ

where G is the effective pairing strength. With the trans-
formation coefficients Dmk ¼

R
d3rhrjĉ†mj0i�hrjb̂†kj0i

between the cranking and noncranking single-particle
bases, Ĥpair can be rewritten in the cranking single-particle
basis as

Ĥpair ¼ −G
X

k1k2k3k4

X

m;n>0

D�
mk1

D�
m̄k2

Dn̄k4Dnk3 b̂
†
k1
b̂†k2 b̂k4 b̂k3 :

ð5Þ

The cranking many-body Hamiltonian (2) is diagonal-
ized in the space of many-particle configurations (MPC)
jii, which is constructed for the A-particle system as

jii≡ jk1k2 � � � kAi ¼ b̂†k1 b̂
†
k2
� � � b̂†kA j0i; ð6Þ

and the obtained lowest eigenstate reads as

Ψ ¼
X

i

Cijii: ð7Þ

Here, the coefficients Ci are used to determine the
occupation probability for each single-particle state ψk.
Then, the occupation probability for each orbital is iterated
back to calculate the densities and currents in the CDFT to
achieve self-consistency [34,35].
Finally, one can calculate the pairing energy Epair ¼

hΨjĤpairjΨi, which is added to the total energy obtained
with the CDFT. The expectation values of the kinematic
MOI Jð1Þ, the dynamic MOI Jð2Þ, and the deformation
parameter βλμ can be respectively calculated with

Jð1Þ ¼ hΨjĴjΨi
ω

; ð8aÞ

Jð2Þ ¼ dhΨjĴjΨi
dω

; ð8bÞ

βλμ ¼
4π

3ARλ

Z
d3rρVðrÞrλYλμðΩÞ; ð8cÞ

where YλμðΩÞ is the spherical harmonics and ρV is the
vector density [43–45].
In this work, the point-coupling density functional

PC-PK1 [48] is used. For the 3D lattice space, the mesh
sizes and the grid numbers along the x, y, and z axes are
chosen as 1 fm and 26, respectively. The dimensions of the
cranked MPC space are 1000 for both neutron and proton,
and the corresponding neutron and proton pairing strengths
are respectively 0.25 MeV and 0.30 MeV. This provides
a nice description of the experimental three-point odd-
even mass differences [49]. A larger MPC space with the
renormalized pairing strengths gives essentially the same
energy, indicating the convergence of the MPC space.
In Table I, the calculated deformation parameters and

binding energies for the ground states of 252No, 254No,
254Rf, and 256Rf are listed in comparison with the exper-
imental data [50]. The experimental binding energies are
nicely reproduced within 1.30 MeV. The β20 deformations
are close to 0.30, which are consistent with the data
available [10,12], while the β22 deformations are negligible.

PHYSICAL REVIEW LETTERS 133, 022501 (2024)

022501-2



In addition to the sizable quadrupole deformations, the β40
and β60 deformations are also visible. It is particularly
notable that the nonzero β32 deformation in 252No is
supported by the appearance of the low-lying 2− band in
the experimental spectrum [51].
In Fig. 1, the calculated kinematic MOIs Jð1Þ and

dynamic ones Jð2Þ as functions of the rotational frequency
are depicted in comparison with the data [10,12,16,17].
Both the kinematic and dynamic MOIs in the full defor-
mation space (red solid lines) agree well with the experi-
mental data. Note that the experimental dynamic MOIs of
252No exhibit an abrupt upbending at ℏω ≈ 0.15 MeV,
while those of 254No are much smoother. The distinct
behavior for these two neighboring nuclei is also very well
reproduced in the present calculations.
The deformation β60 plays different roles in reproducing

the MOIs in N ¼ 150 and N ¼ 152 nuclei. If the defor-
mation β60 is constrained to zero (blue dashed lines), the
calculated MOIs for 252No are almost unchanged, and the
data are still reproduced. For 254No, however, the calculated
MOIs become larger especially for the rotational frequency
ℏω higher than 0.15 MeV, where a rapid increase of the
dynamic MOIs can be seen. Qualitatively, this is similar to

the results given by the TRS [18] and PNC-CSM methods
[19], in which only the deformations βλ0 with even λ are
considered. The β60 deformation effects have also been
studied for the MOIs of 254Rf (N ¼ 150) and 256Rf
(N ¼ 152). Interestingly, it is also found that the β60
deformation has distinct roles in the Rf isotopes with
N ¼ 150 and N ¼ 152.
Considering the visible octupole deformations in 252No,

we also study the effects of the octupole deformations on
the MOIs for the first time. If the deformations β30 and β32
are constrained to zero (green dashed-dotted lines), the
calculated MOIs for 252No do not agree with the data,
indicating the crucial role of the octupole deformations.
However, the octupole deformations have almost no effects
on the MOIs for 254No, 254Rf, and 256Rf. Although the
octupole deformation effects on the MOIs are similar in the
N ¼ 150 and N ¼ 152 Rf isotopes, they are quite different
in the corresponding No isotopes. This suggests that the
observed different rotational behavior in the No isotopes
may originate from the octupole deformations.
To further explore the octupole deformation effects on

the MOIs for 252No and 254No, the calculated octupole
deformations β30 and β32 as functions of the rotational

TABLE I. The calculated quadrupole deformations β20 and β22, octupole deformations β30 and β32, hexadecapole deformation β40,
hexacontetrapole deformation β60, and the binding energies Ecal for the ground states of 252No, 254No, 254Rf, and 256Rf. The experimental
ground-state energies Eexp [50] are also listed for comparison. All energies are in MeV.

Nucleus β20 β22 β30 β32 β40 β60 Ecal Eexp

252No 0.296 0.011 0.0042 0.0128 0.082 −0.029 1871.3 1871.3
254No 0.297 0.013 0.0004 0.0000 0.062 −0.049 1885.6 1885.6
254Rf 0.300 0.000 0.0000 0.0006 0.069 −0.044 1876.7 1875.5
256Rf 0.302 0.000 0.0004 0.0000 0.049 −0.063 1892.0 1890.7

FIG. 1. Calculated kinematic MOIs Jð1Þ and dynamic MOIs Jð2Þ for 252No (a),(b); 254No (c),(d); 254Rf (e),(f); and 256Rf (g),(h) in
comparison with the experimental data (symbols) [10,12,16,17]. The results obtained in the full deformation space (Full), imposing only
vanishing β60 deformation (β60 ¼ 0), and imposing only vanishing octupole deformations (β30 ¼ β32 ¼ 0) are represented by solid,
dashed, and dashed-dotted lines, respectively.
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frequency for these two nuclei are shown in Fig. 2. The β30
and β32 values (red solid squares) for 252No keep almost
constant at low frequency, and they sharply increase at
ℏω ≈ 0.15 MeV, which just corresponds to the upbending
point as seen in Figs. 1(a) and 1(b). In contrast, for 254No,
the calculated β30 and β32 values are always zero along the
rotational band. This demonstrates the distinct octupole
deformations in 252No and 254No.
If the deformation β60 is fixed to zero (blue open

squares), the β30 and β32 values for 252No are nearly
unchanged as compared to the ones obtained in the full
deformation space. In particular, the surge at ℏω ≈
0.15 MeV still exists. However, the octupole deformations
for 254No are dramatically different from those obtained in
the full deformation space. Both β30 and β32 deformations
become nonzero, and they exhibit a sudden rise at
ℏω ≈ 0.15 MeV, which corresponds to the upbending as
seen in Figs. 1(c) and 1(d).
Based on these analyses, it is clear that the octupole

deformation should be responsible for the upbending of the

rotational bands in 252No. The octupole deformation of
254No keeps vanishing along the rotational band, leading to
its smooth rotational behavior. Therefore, the emergence of
the octupole deformation in only 252No explains the distinct
rotational behavior observed in these two isotopes.
Moreover, it is indeed risky to investigate only the effects
of the deformation β60 on the rotation behavior without
considering the octupole deformations, because the octu-
pole and hexacontetrapole deformations are coupled with
each other.
The coupling of the octupole and β60 deformations can

be clearly seen from the potential energy surface in the
ðβ60; β30Þ plane, which is depicted in Figs. 3(a) and 3(b) for
the case of ℏω ¼ 0.3 MeV. The energy minimum for 252No
has a nonzero β30 deformation, whereas for 254No, this
minimum has a zero β30 value and is very soft in the β30
direction. Moreover, for 254No, one can also see for β60 ¼ 0
a “spurious” minimum with a nonzero β30 value. This
explains the coupling of the deformation β60 and the
octupole deformations, indicating that it is wrong to
investigate the effects of the deformation β60 on the
MOIs without considering the octupole deformations. It
is even more wrong to neglect the octupole deformations
for 252No, because it has a visible β30 deformation.
To understand the significant difference of the octupole

deformations in 252No and 254No in a more microscopic
way, the components of the single-proton orbitals near the
Fermi surface are analyzed by considering the overlap of
the wave functions with those of the spherical Woods-
Saxon basis [52]. The amplitude ratios jAf7=2 j2=jAi13=2 j2
between the f7=2 and i13=2 components for the highest-j
proton orbital, which reflect the coupling strength between
the proton i13=2 and f7=2 orbitals, are depicted in Fig. 3(c).
For 252No, the ratios jAf7=2 j2=jAi13=2 j2 show a slight increase
with the rotational frequency below ℏω ¼ 0.15 MeV and
then a rapid rise, which results in the trend of the octupole
deformations as shown in Figs. 2(a) and 2(b). In contrast,

FIG. 2. Calculated octupole deformations β30 and β32 for 252No
(a),(b) and 254No (c),(d) with (solid squares) and without (open
squares) β60 deformation.

FIG. 3. Potential energy surfaces of 252No (a) and 254No (b) in the ðβ60; β30Þ plane at ℏω ¼ 0.3 MeV. The energy minimum and the
“spurious” minimum without β60 deformation are indicated by a solid star and an open star, respectively. The energies are normalized
with respect to the minimum energy, and the contour interval is 0.05 MeV. (c) The amplitude ratios between the f7=2 and i13=2
components for the highest-j orbital near the proton Fermi level as a function of the rotational frequency for 252No (solid squares) and
254No (solid triangles).
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the ratios jAf7=2 j2=jAi13=2 j2 for 254No stay zero for all
rotational frequencies, indicating that there is no coupling
between the proton i13=2 and f7=2 orbitals. This explains the
vanishing octupole deformations in Figs. 2(c) and 2(d).
In summary, the rotational properties of the transfer-

mium nuclei are investigated in the full deformation space
by implementing a shell-model-like approach in the crank-
ing covariant density functional theory on a 3D lattice,
where the pairing correlations, deformations, and moments
of inertia are treated in a microscopic and self-consistent
way. The kinematic and dynamic moments of inertia of the
rotational bands observed in the transfermium nuclei 252No,
254No, 254Rf, and 256Rf are well reproduced without any
adjustable parameters using a well-determined universal
density functional. In particular, the distinct rotational
behavior at high angular momenta in 252No and 254No is
also successfully reproduced. It is found for the first time
that the emergence of the octupole deformation should be
responsible for the difference in 252No and 254No. The
emergence of the octupole deformation in 252No is asso-
ciated with the significant coupling between the proton
i13=2 and f7=2 orbitals, especially at high angular momenta.
Moreover, the potential energy surface of 254No in the
ðβ60; β30Þ plane explains the coupling between the hex-
acontetrapole and octupole deformations, indicating a risk
of investigating only the effects of the hexacontetrapole
(β60) deformation in rotating transfermium nuclei without
considering the octupole deformations. The present work
provides a microscopic solution to the long-standing puzzle
on the rotational behavior in No isotopes, and highlights the
importance of the octupole deformation for describing the
rotating transfermium nuclei.
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