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In the high-energy limit, soft gluons can be approximately described by quasiclassical gluon fields. It is
well known that the gluon field is a pure gauge field on the transverse plane at eikonal order. We derived the
complete next-to-eikonal order solutions of the classical Yang-Mills equations for soft gluons in the dense
nuclear regime. Utilizing these solutions, it is shown that Low’s soft theorem at small x can be obtained by
considering off-diagonal matrix elements of quasiclassical chromoelectric field between single-gluon states
in the dilute regime. We further propose on extending Low’s soft theorem at small x to incorporate the
effects of gluon saturation in the dense regime.
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Introduction.—Using quasiclassical gluon fields to char-
acterize soft gluons particularly in small x physics has a
long history [1]. In the high-energy limit, nuclear objects
are highly Lorentz contracted along the longitudinal
direction so that a two-dimensional shockwave picture
becomes applicable in describing high-energy collisions
[2]. In the McLerran-Venugopalan (MV) model [3,4], soft
gluon fields from large nuclei are solved from the classical
Yang-Mills equations with color current sourced by hard
gluons. This eikonal order quasiclassical gluon field, valid
in the parametrically dense regime Oð1=gÞ in which non-
linear QCD interactions cannot be ignored [5,6], was used
to estimate the Weiszacker-Williams gluon distribution
inside a large nucleus in the quasiclassical approximation
[7]. Phenomenological applications in relativistic heavy-
ion collisions [8–15] and high-energy proton-nucleus
collisions [16–19] using the classical field approach were
actively pursued in the past three decades [20].
A quasiclassical gluon field at eikonal order is insensitive

to spin information of the nuclear object. To study spin-
related physical quantities, particularly to understand the
spin structure of proton at small x [21,22], a subeikonal
order gluon field is needed. There have been a lot of efforts
in recent years to identify the effective interactions at
subeikonal order [23–29] and to derive small x evolution
equations for polarized parton distributions inside a
proton or nucleus [30–35]. Notably, the spin-dependent
part of subeikonal order quasiclassical gluon fields was
obtained using a diagrammatic approach in Lorenz gauge
in [36].

In this Letter, we derived the complete solutions at
subeikonal order for quasiclassical gluon fields including
both spin-dependent and spin-independent parts in the
dense nuclear regime. The solutions are presented in the
Lorenz gauge and can be readily transformed to the light-
cone gauge. We found that, in addition to the piece found in
[36], there exists a novel spin-dependent term induced by
gluon saturation, which becomes significant only in the
dense regime. The spin-independent part bears a resem-
blance to the next-to-leading-order magnetic multipole
expansion in two dimensions, as inferred from Ampère’s
law. Regarding the external color currents originating from
hard gluons, our findings indicate that, apart from the color
charge density at subeikonal order, the color spin density
and transverse color current also serve as sources for the
quasiclassical gluon fields.
A closely related topic to soft gluons involves Low’s soft

theorem [37–41], which states that, at amplitude level, the
radiative amplitude can be expressed as a factorized
product of a soft factor and the nonradiative amplitude
when taking the soft limit. In the past decades, there have
been reviving interests in understanding Low’s soft theo-
rem in the standard model of particle physics and gravity
from the perspective of asymptotic symmetries [42–44].
Subleading-order Low’s soft theorem was rederived from
various approaches [45–48].
It is worth noting that current research on Low’s soft

theorem has primarily focused on the dilute regime, where
the soft gluon field is of the order of OðgÞ. However, our
ultimate objective is to understand Low’s soft theorem in
the dense regime, where the soft gluon field is of the order
of Oð1=gÞ. In this dense regime, nonlinear gluon merging
processes, akin to those depicted in Fig. 1, play an equally
important role in contributing to Low’s soft theorem,
necessitating their resummation. The classical field
approach provides a unique avenue for understanding
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Low’s soft theorem in the dense regime, particularly in the
small x limit. We propose that the small x limit of Low’s
soft theorem can be obtained by calculating the off-
diagonal matrix element of quasiclassical chromoelectric
fields between incoming and outgoing nuclear states. We
explicitly demonstrate this proposal in the dilute regime by
showing that the classical field approach effectively repro-
duces the small x limit of Low’s soft theorem up to
subleading order.
In the following, we first present the details of obtaining

complete next-to-eikonal-order solutions by solving
classical Yang-Mills equations and then establish its
equivalence to Low’s soft theorem at small x.
Eikonality expansion of Yang-Mills equations.—We

consider a pure glue theory and solve classical Yang-
Mills equations. The inclusion of quarks and solving the
coupled Dirac equation for soft quark fields are left for a
future work. Starting from the Yang-Mills action S ¼
− 1

4

R
x F

a
μνFμν;a with Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ ig½Aμ; Aν�a,
one separates the full gluon field into soft gluon field
Aμ and hard gluon field Aμ according to their longitudinal
momenta:

Aa
μ → Aa

μ þ Aa
μ: ð1Þ

Let Λþ be some longitudinal momentum scale. Soft gluon
fields represent modes with kþ ≪ Λþ, while hard gluon
fields are associated with kþ ≫ Λþ. This division of
degrees of freedom aligns with the spirit of color glass
condensate framework [49] and the idea of rapidity
factorization [50]. By implementing this separation and
eliminating terms that are linear in hard gluon fields as well
as terms exclusively concerning hard gluons, the effective
action for soft gluons becomes

S ¼ −
1

4

Z
x

�
F μν

a F a
μν þ 4igAμ

að∂ν½Aμ; Aν�a þ ½Aν; Fμν�aÞ

þ 2ðigÞ2�½Aμ;Aν�a½Aμ; Aν�a þ ½Aμ; Aν�a½Aμ; Aν�a
− ½Aμ; Aν�a½Aν; Aμ�a��: ð2Þ

The equations of motion for soft gluons follow:

DνF νμ ¼ Jμ ð3Þ

with the hard gluon color current

Jμ ¼ ig½Aν; F̄μν� þ igDν½Aμ; Aν�: ð4Þ

The covariant derivative is defined with respect to the soft
gluon fieldDν ¼ ∂ν þ ig½Aν; �. The field strength tensor for
the hard gluon field is defined correspondingly
F̄μν ¼ DμAν −DνAμ þ ig½Aμ; Aν�. Our goal is to solve
Eq. (3) up to subeikonal order.
The general rule of counting the power of eikonality of

gluon fields comes from their transformations under
Lorentz boost [28]:

Aþ ⟶ ξ−1Aþðξxþ; ξ−1x−;xÞ;
A− ⟶ ξA−ðξxþ; ξ−1x−;xÞ;
Ai ⟶ Aiðξxþ; ξ−1x−;xÞ: ð5Þ

We used light-cone coordinates x� ¼ ðt� zÞ= ffiffiffi
2

p
. Here,

ξ ¼ e−ω with ω characterizing the amount of the Lorentz
boost. In the high-energy limit, ξ → 0. Expansion in
eikonality is equivalent to Taylor expansion in powers of
ξ [51]:

Aþ ¼ ξ−1Aþ
ð−1Þ þAþ

ð0Þ þ ξAþ
ð1Þ þ � � � ;

A− ¼ ξA−
ð1Þ þ � � � ;

Ai ¼ Ai
ð0Þ þ ξAi

ð1Þ þ � � � : ð6Þ

The arguments for the leading terms in the expansions are
ð0þ; x̃−;x⊥Þ, in which we have redefined x̃− ¼ ξ−1x−.
Similar eikonality expansions are understood for the color
current Jμ and the field strength tensor F μν when solving
Eq. (3) order by order in eikonality.
Solutions in Lorenz gauge.—We derive solutions in the

Lorenz gauge ∂μAμ ¼ 0. From the expansions in Eq. (6),
A− ¼ Ai ¼ 0 at the eikonal order. One looks for static
solution Aþ

ð−1Þ that satisfies

∂
2⊥Aþ

ð−1Þ ¼ −Jþð−1Þ: ð7Þ

The solution at eikonal order is formally obtained as

Aþ
ð−1Þ ¼ −

1

∂
2⊥
Jþð−1Þ ¼

Z
d2yGðx − yÞJþð−1Þðx−; yÞ ð8Þ

with Gðx − yÞ ¼ −ð1=2πÞ lnðjx − yjΛÞ regularized by
some IR scale Λ.
At subeikonal order, A− ¼ 0 and we look for solutions

Aþ
ð0Þ ≠ 0 and Ai

ð0Þ ≠ 0 in the background of Aþ
ð−1Þ. The

Lorenz gauge condition reduces to ∂þAþ
ð0Þ ¼ −∂iAi

ð0Þ. It is
apparent that at subeikonal order Aþ

ð0Þ is dependent on the

FIG. 1. Schematic diagram showing gluon merging contribu-
tion to Low’s soft theorem in the dense regime Oð1=gÞ.
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light-cone time xþ while Ai
ð0Þ is a static field. Imposing

these requirements, the Yang-Mills equations reduce to

2∂þ∂−Aþ
ð0Þ−∂

2⊥Aþ
ð0Þþ2ig

h
Aþ

ð−1Þ;∂þA
þ
ð0Þ
i

þ2ig
h
Ai

ð0Þ;∂iA
þ
ð−1Þ

i
¼Jþð0Þ;

−∂
2⊥Ai

ð0Þþig
h
Að0Þ;j;∂jAi

ð0Þ
i
þig

h
Að0Þ;j;F

ji
ð0Þ
i
¼Jið0Þ: ð9Þ

For the more general parametric regime in which
Aþ

ð−1Þ;A
þ
ð0Þ;A

i
ð0Þ ∼Oð1=gÞ, the above equations are non-

linear, and it is unclear whether closed-form analytic
solutions exist or not. We consider subeikonal order
solutions in the parametric regime Aþ

ð0Þ;A
i
ð0Þ ∼Oð1Þ as

compared to the eikonal order fieldAþ
ð−1Þ ∼Oð1=gÞ. In this

regime, the nonlinear equations are reduced to linear
equations. This is also the parametric regime where
helicity-dependent generalization of the McLerran-
Venugopalan model was studied in [36]. The mixing
between eikonality expansion and coupling constant
expansion is a new feature at the subeikonal order.
With these considerations, the equations of motion to be

solved are

−∂2⊥Aþ
ð0Þ − 2∂iD−Ai

ð0Þ ¼ Jþð0Þ;

−∂2⊥Ai
ð0Þ ¼ Jið0Þ: ð10Þ

The covariant derivative here is defined as
D− ¼ ∂− þ ig½Aþ

ð−1Þ; �. The commutator part is the same

order as that of the ordinary derivative because of
Aþ

ð−1Þ ∼Oð1=gÞ. We also consider Jþð0Þ to be of the order

of Oð1Þ, and it is dependent on xþ. Current conservation at
subeikonal order becomes ∂þJþð0Þ þ ∂iJið0Þ ¼ 0. The solu-

tions are readily obtained:

Aþ
ð0Þ ¼ −

1

∂
2⊥

�
2∂iD−Ai

ð0Þ þ Jþð0Þ
�
;

Ai
ð0Þ ¼ −

1

∂
2⊥
Jið0Þ: ð11Þ

In subsequent sections, it will become evident that the
transverse current Jið0Þ contains a piece that is dependent on
the helicity state of hard gluons. Therefore, in the dense
regime, both the transverse field Ai

ð0Þ and Aþ
ð0Þ, which

contains the commutator ig½∂iAþ
ð−1Þ; A

i
ð0Þ�, exhibit sensitiv-

ity to the helicity state of hard gluons. This latter helicity
dependence arises solely from dense gluon effects and
vanishes in the dilute regime. It is convenient to have the

field strength tensor computed:

F iþ ¼
�
δij −

2∂i∂j

∂
2⊥

�
D−

1

∂
2⊥
Jj þ ∂i

∂
2⊥
Jþ;

F ij ¼ −
1

∂
2⊥
ð∂iJj − ∂

jJiÞ;

F−þ ¼ ∂j

∂
2⊥
Jj; F−i ¼ 0: ð12Þ

Low’s soft theorem at small x.—In the dilute regime,
Low’s soft theorem at leading and subleading orders states
that radiative amplitude can be expressed as soft factors
acting on nonradiative amplitude when the radiated gluon
becomes soft (k ≪ pi):

Maðfpig; kÞ ¼
	
Sð−1Þ þ Sð0Þ
gTa

ðiÞMðfpigÞ: ð13Þ

The leading soft factor Sð−1Þ and the subleading soft factor
Sð0Þ have the following expressions [45–48]:

Sð−1Þ ¼
Xn
i

pi · ε�λðkÞ
pi · k

; Sð0Þ ¼ i
Xn
i

εμ�λ ðkÞkνJi;μν
pi · k

: ð14Þ

It is considered that there are n hard gluons with momenta
pi. Ta

ðiÞ is the color matrix associated with gluon “i” and

εμλðkÞ is the polarization vector of the soft gluon. Jμν ¼
Lμν þ Σμν is the total angular momentum of the hard gluons.
The orbital angular momentum is Lμν ¼ i

	
pμð∂=∂pνÞ−

pνð∂=∂pμÞ
, and the spin operator for gluons is ðΣμνÞαβ ¼
iðgμαgνβ − gμβgναÞ. Unlike the case for photon, the gluon soft
theorem receives loop corrections [52,53]. We restrict the
discussion to tree level in this Letter.
Low’s soft theorem up to subleading order was derived

by assuming kþ, k ≪ pþ, p. On the other hand, in the
small x limit, one requires only that longitudinal momen-
tum be much smaller kþ ≪ pþ while the transverse
momentum is of the same order k ∼ p. In the small x
limit, particularly into the gluon saturation regime,
the typical transverse momentum of the soft gluons is
characterized by the emerging gluon saturation scale Qs.
With Qs ≫ ΛQCD, a perturbative treatment becomes
applicable [1,49]. To extract the small x limit of Low’s
soft theorem, we expand the soft factors to linear order in
power series expansion of z ¼ kþ=pþ ≪ 1.
The leading-order soft factor becomes

Sð−1Þ ¼−2δσσ0
�
ki

k2
−z

�
δij−

2kikj

k2

�
pj

k2

�
εi�λ þOðz2Þ: ð15Þ

Terms from expanding the soft factors are purely organized
by counting the power of z. Although Eq. (15) should be
understood with the assumption k ≪ p, as will be shown in
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the next section, the validity of the first two terms actually
extends to the momentum region k ∼ p in the limit z ≪ 1.
For the subleading-order soft factor, the part involving

spin angular momentum becomes

iε�λ;μðkÞkνðΣμνÞαβ
p · k

εασðpÞεβ;�σ0 ðpÞ

¼ 2zσδσσ0
iϵijεi�λ k

j

k2
þOðz2Þ: ð16Þ

For the part involving orbital angular momentum,
only derivatives with respect to the longitudinal momentum
∂=∂pþ contribute. The nonvanishing components of
the orbital angular momentum operator are L−þ ¼
ipþð∂=∂pþÞ and Liþ ¼ ipið∂=∂pþÞ. One gets

iεμ�λ ðkÞkνLμν

p · k
¼ 2δσσ0z

kiεi�λ
k2

�
pþ ∂

∂pþ

�
þOðz2Þ: ð17Þ

It is interesting to observe that in the small x limit the only
components of angular momentum that contribute are Sz ¼
1
2
ϵijΣij for spin and Lþ− for orbital angular momentum.
Putting all the pieces together, the soft factor up to

subleading order in the small x limit is

S ¼ 2δσσ0

�
−
ki

k2
þ z

�
δij −

2kikj

k2

�
pj

k2

þ zσ
iϵijkj

k2
þ z

ki

k2

�
pþ ∂

∂pþ

��
εi�λ þOðz2Þ: ð18Þ

In the dilute regime.—We show that Eq. (18) can be
obtained using the dilute limit of the quasiclassical gluon
field from Eq. (12) by calculating its matrix element
between incoming and outgoing single-gluon states. In
the dilute regime, the chromoelectric field Fþi ∼OðgÞ, and
it has the expression

Fþi ¼ ∂
i

∂
2⊥
Jþ −

�
δij −

2∂i∂j

∂
2⊥

�
∂−

∂
2⊥
Jj: ð19Þ

We use mode expansions for hard gluon fields to express
the color current in terms of gluon creation and annihilation
operators. For Jþa ðkþ;xÞ ¼ ρaðxÞ þ Jþð0Þðkþ;xÞ,

ρaðxÞ ¼ igfabc
Z
qþ

âb;λðqþ;xÞâ†c;λðqþ;xÞ ð20Þ

and

Jþð0Þðkþ;xÞ ¼ −igfabc
kþ

2

Z
qþ

�
âb;λðqþ;xÞ

∂

∂qþ
â†c;λðqþ;xÞ

−
∂

∂qþ
âb;λðqþ;xÞâ†c;λðqþ;xÞ

�
: ð21Þ

The total transverse current can be decomposed into
JiaðxÞ ¼ −ϵil∂ljaðxÞ þ jiaðxÞ with the color spin density

jaðxÞ ¼ igfabc
Z
qþ

1

qþ
λâb;λðqþ;xÞâ†c;λðqþ;xÞ ð22Þ

and the spin-independent transverse color current

jlaðxÞ ¼ gfabc
Z
qþ

1

2qþ
	
∂
lâ†c;λðqþ;xÞâb;λðqþ;xÞ

− â†c;λðqþ;xÞ∂lâb;λðqþ;xÞ


: ð23Þ

Unlike the case at eikonal order, in which the effective
degrees of freedom for hard gluons are completely deter-
mined by the color charge density ρaðxÞ, one needs the
color spin density jaðxÞ, the transverse color current jiaðxÞ,
and the subeikonal-order correction Jþð0Þðkþ;xÞ at subei-

konal order.
Using these expressions, one calculates the matrix

element of chromoelectric fields between incoming and
outgoing single-gluon Fock states:


0

����âd0;σ0 ðp0þ;p0ÞFþi
a ðkþ;kÞâ†d;σðpþ;pÞ

����0
�

¼ gfadd
0
δσσ02

�
−
ki

k2
þ z

ki

k2

�
pþ ∂

∂pþ

�

þ σz
iϵilkl

k2
þ z

�
δij −

2kikj

k2

�
pj

k2

�

× ð2πÞ2pþδðpþ − p0þÞð2πÞ2δð2Þðp0 þ k − pÞ: ð24Þ

Equation (24) formally reproduces the soft factor at small x
given in Eq. (18). The overall factor 2 accounts for the
inclusion of both gluon emission and absorption in the
classical fields, ensuring consistency with Low’s soft
theorem. Unlike Eq. (18), Eq. (24) is justified even when
the transverse momenta are comparable k ∼ p. Therefore,
the small x limit of Low’s soft theorem turns out to be
applicable when k≲ p, extending the conventional
requirement k ≪ p.
In the dense regime.—In the dense regime, the chromo-

electric field Fþi ∼Oð1=gÞ is given by Eq. (12) rather than
Eq. (19). Low’s soft factor at small x is then calculated
using incoming and outgoing states of dense nuclear
objects such as large nuclei or protons at high energies:

SLowjsmall x ∼ HhP0; s0; a0jFþijP; s; aiH: ð25Þ

Here, jP; s; aiH, which is also of the order of Oð1=gÞ,
represents the nuclear wave function for hard gluons with
P, s, and a labeling the momentum, spin, and color,
respectively. The chromoelectric field Fþi for soft gluons
is sourced by dense color currents of hard gluons Eq. (4);
Fþi can be derived by solving classical Yang-Mills
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equations in the dense regime, the nuclear wave function
for hard gluons, which is presumably related to the
hadronic (nuclear) structure of the proton (nucleus) and
is, in principle, nonperturbative. Further analyses in the
dense regime necessitate the modeling of off-diagonal
elements of color currents beyond the conventional
MV model.
Conclusions.—In this Letter, we have proposed to study

the small x limit of Low’s soft theorem using a quasiclass-
ical field approach. To that end, we obtained the full
subeikonal-order solutions Eq. (11) to the classical Yang-
Mills equations with external currents in the dense regime.
We explicitly demonstrate the equivalence between off-
diagonal matrix elements of quasiclassical chromoelectric
gluon field Eq. (24) and Low’s soft theorem at small x
Eq. (18) in the dilute regime. It is found that Low’s soft
theorem at small x extends to the regime when the trans-
verse momenta of the soft gluons and the gluon emitting
sources are comparable. Explicit analysis of Low’s soft
theorem toward the dense regime using Eq. (25) requires
modeling of the nuclear wave function for hard gluons in
addition to the obtained dense fields Fþi ∼Oð1=gÞ. In the
current Letter, Yang-Mills equations are solved in powers
of ξ, with the Lorentz boost parameter ξ → 0. Interestingly,
the asymptotic symmetry approach to Low’s soft theorem
also involves solving Yang-Mills equations [54]. But it is
carried out in the asymptotically flat space using power
series expansion in terms of 1=r in the limit that the
distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
approaches infinity r → ∞

[44]. It would be interesting to study how these two
approaches are connected, particularly addressing the
topics of infrared safety of S-matrix [54] and color memory
effects [55–57], as well as unraveling the effects of dense
gluons.
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