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The Fermi function FðZ; EÞ accounts for QED corrections to beta decays that are enhanced at either
small electron velocity β or large nuclear charge Z. For precision applications, the Fermi function must be
combined with other radiative corrections and with scale- and scheme-dependent hadronic matrix elements.
We formulate the Fermi function as a field theory object and present a new factorization formula for QED
radiative corrections to beta decays. We provide new results for the anomalous dimension of the
corresponding effective operator complete through three loops, and resum perturbative logarithms and π
enhancements with renormalization-group methods. Our results are important for tests of fundamental
physics with precision beta decay and related processes.
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Introduction.—Many precision measurements and new
physics searches involve charged leptons interacting with
nucleons or nuclei. Examples include neutrino scattering to
obtain fundamental neutrino parameters [1–6], muon-to-
electron conversion to search for charged lepton flavor
violation [7–10], and beta decay to measure fundamental
constants [11–23] and search for new physics [24–34]. It is
important to control radiative corrections to these processes
[35–40]. The precision demands of superallowed nuclear
beta decays are particularly stringent. As a consequence of
conserved vector current relations, hadron and nuclear
structure enter as small corrections. Experimental and
nuclear uncertainties are being pushed to the level of
100 ppm [21,41], providing the best determination of
the fundamental Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing parameter jVudj, and the most stringent
low-energy constraint on scalar currents beyond the stan-
dard model [21]. In this Letter we present new results for
long-distance QED corrections to beta decay [42–44] and
discuss implications for the CKM unitarity discrepancy
[21] and new physics constraints.
QED corrections are dramatically enhanced relative to

naive power counting in the fine structure constant α ≈
1=137 for large-Z nuclei and for small-β leptons (Z denotes
the nuclear charge and β the lepton velocity). The Fermi
function [45] in beta decay describes the enhancement
(suppression) for negatively (positively) charged leptons

propagating in a nuclear Coulomb field. For a nuclear
charge Z and electron energy E it is traditionally defined by
solving the Dirac equation in a pointlike Coulomb field.
The result is then given as [45,46]

FðZ;EÞ ¼ 2ð1þ ηÞ
jΓð2ηþ 1Þj2 ½Γðηþ iξÞ�2eπξð2prÞ2ðη−1Þ; ð1Þ

where η≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

p
, ξ ¼ Zα=β, p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
, and m

is the electron mass. The quantity r denotes a short distance
regulator identified approximately as the nuclear size [47].
Several questions arise in the application of FðZ; EÞ to
physical processes. (1) What is the scale r−1 and how does
it relate to conventional renormalization in quantum field
theory? (2) How can other radiative corrections be included
systematically? (3) What is the relation between the Fermi
function with Z ¼ 1 and the radiative correction to neutron
beta decay? Answering these questions is important for the
interpretation of precision beta decay experiments. For
example, corrections at order αðZαÞ2 must be included at
the current precision (∼3 × 10−4) of jVudj extractions [21].
These corrections require a theoretically self-consistent
treatment of both the Fermi function and other radiative
corrections, but have previously been treated only in a
heuristic ansatz [38,48]. To answer these questions, we
reformulate the Fermi function in effective field theory
(EFT) and study its interplay with subleading radiative
corrections.
Factorization and all-orders matching.—Factorization

arises from the separation of different energy scales involved
in a physical process [49–51]. Nuclear beta decays involve
physics at the weak scale ∼100 GeV, the hadronic scale
∼1 GeV, the scale of nuclear structure Λnuc ∼ 100 MeV,
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and the kinematic scales relevant for beta decayE ∼ 1 MeV.
The methods of EFT allow for each scale to be treated
separately and facilitate the calculation of higher-order
radiative corrections. In a sequence ofEFTs, the components
of a factorization formula are identified with a correspond-
ing sequence ofmatching coefficients and a final low-energy
matrix element. In the context of nuclear beta decays, the
long-distance (or outer) radiative corrections can be
computed in the low-energy effective theory, while

structure-dependent and short-distance (or inner) radiative
corrections are absorbed into the Wilson coefficient. Real
radiation is straightforwardly included [52].
Consider the corrections to a tree-level contact inter-

action with a relativistic electron in the final state. Ladder
diagrams from a Coulomb potential with source charge
þZe correct the tree-level amplitude Mtree with explicit
loop integrals given by (see Ref. [43] for more details)

ūðpÞM ¼
X∞
n¼0

ðZe2Þn
Z

dDL1

ð2πÞD
Z

dDL2

ð2πÞD � � �
Z

dDLn

ð2πÞD
1

L2
1 þ λ2

1

ðL1 − pÞ2 − p2 − i0

×
1

ðL1 −L2Þ2 þ λ2
1

ðL2 − pÞ2 − p2 − i0
� � � 1

ðLn−1 −LnÞ2 þ λ2
1

ðLn − pÞ2 − p2 − i0

× ūðpÞγ0ð=p − =L1 þmÞγ0ð=p − =L2 þmÞ � � � γ0ð=p − =Ln þmÞMtree: ð2Þ

Integrals are evaluated in dimensional regularization with
D ¼ 3 − 2ϵ dimensions, and we have included a photon
mass λ to regulate infrared divergences [54].
In contrast to the nonrelativistic problem [55], the

relativistic expression (2) is UV divergent beginning at
two-loop order, indicating sensitivity to short-distance
structure. The factorization theorem reads [43]

M ¼ MSðλ=μSÞMHðp=μS; p=μHÞMUVðΛ=μHÞ; ð3Þ

counting p ∼m ∼ E and where Λ denotes the scale of
hadronic and nuclear structure. We retain separate factori-
zation scales μS and μH for clarity; conventional single
scale matrix elements are obtained by setting μS ¼ μH ¼ μ.
After MS renormalization, to all orders in Zα, the soft
function is given by MS ¼ exp ½iξ logðμS=λÞ� [56,57]. Our
result for the hard function is new [43], and is given (again
to all orders in Zα) by [58]

MH ¼ eðπ=2ÞξþiϕH
2Γðη − iξÞ
Γð2ηþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η − iξ
1 − iξ m

E

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ ηm
Eþm

r ffiffiffiffiffiffiffiffiffiffiffi
2η

1þ η

s �
2p

eγEμHÞ
�

η−1
�
1þ γ0

2
þ Eþm
Eþ ηm

�
1 − iξ

m
E

�
1 − γ0

2

�
; ð4Þ

where ϕH ¼ ξ½logð2p=μSÞ − γE� − ðη − 1Þðπ=2Þ, γ0 is a
Dirac matrix, and γE ≈ 0.577 is the Euler constant.
The leading-in-Z radiative correction to unpolarized

observables from the soft and hard functions is given by

hjMHj2i ¼ FðZ; EÞjrH ×
4η

ð1þ ηÞ2 ; ð5Þ

where we define r−1H ¼ μHeγE . The angle brackets denote
contraction with lepton spinors, MH → ēMHγ

0νL, sum
over final state spins, and division by the same expression
in the absence of Coulomb corrections. Note that there is a
finite multiplicative correction relating the MS hard func-
tion to FðZ; EÞ.
Effective operators and anomalous dimension.—The

structure-dependent factor MUV appearing in Eq. (3)
depends on the process of interest. Important examples
are beta decay transitions ½A; Z� → ½A; Z þ 1�e−ν̄e or

½A; Z þ 1� → ½A; Z�eþνe. Superallowed beta decays are
governed by an EFT consisting of QED for electrons
and heavy charged scalar fields [59–62],

Leff ¼ −Cðϕ½A;Zþ1�
v Þ�ϕ½A;Z�

v ē=vð1 − γ5Þνe þ H:c:; ð6Þ

where ϕ½A;Z�
v denotes a heavy scalar with electric charge

Z whose momentum fluctuations are expanded about
pμ ¼ M½A;Z�vμ, with vμ ¼ ð1; 0; 0; 0Þ in the nuclear rest
frame. For neutron decay, the EFT involves spin-1=2 heavy
fields [59–62],

Leff ¼−h̄ðpÞv ðCVγμþCAγμγ5ÞhðnÞv ēγμð1−γ5ÞνeþH:c:; ð7Þ

where hðpÞv and hðnÞv denote spin-1=2 heavy fields with
electric charge 1 and 0, respectively. Matching to the EFT
represented by Eq. (6) or Eq. (7), we identify the
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components of Eq. (3) in terms of operator coefficients
and matrix elements: MUV is proportional to (a linear
combination of) Ci, while MH and MS give the hard and
soft contributions to the EFT matrix element. In MH, at
each order in α, the leading power of Z is given by the
explicit expression (4), obtained from the amplitudes (2).
In particular, the leading-in-Z anomalous dimension is ob-
tained from the μH dependence of Eq. (4), cf. Eq. (9)
below.
We may proceed to analyze the renormalization-group

properties of weak-current operators in the EFT. Radiative
corrections enhanced by large logarithms,L ∼ logðΛnuc=EÞ,
are determined by the anomalous dimensions of the oper-
ators in (6) and (7), which are spin-structure independent,
i.e., γA ¼ γV ¼ γO. Writing

γO ¼ d log C
d log μ

¼
X∞
n¼0

Xnþ1

i¼0

�
α

4π

�
nþ1

γðiÞn Znþ1−i

≡ γð0ÞðZαÞ þ αγð1ÞðZαÞ þ � � � ; ð8Þ

we note several interesting all-orders properties: (i) Powers
of Z greater than the power of α do not appear [63]. (ii) The
leading series involving ðZαÞn sums to

γð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

q
− 1: ð9Þ

This result is obtained by differentiating Eq. (4) with respect
to μH. (iii) At each order in perturbation theory, the leading
and first subleading powers of Z are related [66]:

γð1Þ2n−1 ¼ nγð0Þ2n−1; γð2Þ2n ¼ nγð1Þ2n ðn ≥ 1Þ: ð10Þ

When Z ¼ 0, the problem reduces to a heavy-light current

operator. Using our new result for γð1Þ2 ¼ 16π2ð6 − π2=3Þ
[42] and property (10), the complete result through three-
loop order at arbitrary Z is

γO ¼ α

4π
γð1Þ0 þ

�
α

4π

�
2h
−8π2ZðZ þ 1Þ þ γð2Þ1

i

þ
�
α

4π

�
3
�
16π2ZðZ þ 1Þ

�
6 −

π2

3

�
þ γð3Þ2

�
; ð11Þ

where γðnÞn−1, n ¼ 1, 2, 3, are known from the heavy quark

literature [67]. Our result for γð1Þ2 disagrees with Ref. [39],
which did not include the full set of relevant diagrams at
OðZ2α3Þ [42]. Note that properties (9) and (10) also
determine the anomalous dimension at orderZ4α4 andZ3α4.
Renormalization group analysis.—An important advan-

tage of identifying the Fermi function as a field theory object
is the ability to resum large logarithms, ∼ logðΛnuc=EÞ, at
high perturbative orders using renormalization-group

methods.Consider the solution to the renormalization-group
equation,

d log C ¼ γðαÞ
βðαÞ dα; ð12Þ

where α is the MS QED coupling (for one dynamical
electron flavor) and β ¼ dα=d log μ ¼ −2α½β0α=ð4πÞ þ
β1α

2=ð4πÞ2 þ � � �� [70]. Expanding γ and β in powers of
α and Z, then integrating, we obtain a systematic expansion
for the ratio of the renormalized operator coefficient at
different scales,CðμHÞ=CðμLÞ. Setting μH ∼ Λ and μL ∼m,
we thus resum large logarithms logðΛ=mÞ [74]. Since the
convergence of the series in α is influenced by Z, let us
consider several regimes of Z.
(i) Large Z asymptotics. Consider a large Z nucleus,

counting log2ðΛ=mÞ ∼ α−1 and Z ∼ α−1. For example, we
may consider beta decays of 210Pb or 239U. ThroughOðα1=2Þ,

log

�
CðμLÞ
CðμHÞ

�

¼ ½−γð0ÞðZαLÞL� þ
�
b0αLL2

ðZαLÞ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαLÞ2

p �

þ
�
b20α

2
LL

3
ðZαLÞ2ð3 − 2ðZαLÞ2Þ
6ð1 − ðZαLÞ2Þ3=2

− αLLγð1ÞðZαLÞ
�
;

ð13Þ

where αH;L≡αðμH;LÞ, L¼ logðμH=μLÞ, and b0¼−β0=ð2πÞ.
Consider separately the terms in γð1Þ with odd and even
powers of ðZαÞ. Using Eq. (10),

γð1Þodd ¼
1

2

∂

∂ðZαÞ γ
ð0Þ ¼ −Zα

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

p : ð14Þ

The corresponding decay rate corrections involve (less the
known Zα2 correction) [76]

δ
jCðμLÞj2
jCðμHÞj2

− αðZαÞ logΛ
E

¼ α log
Λ
E

�
1

2
ðZαÞ3 þ 3

8
ðZαÞ5 þ � � �

�
: ð15Þ

The even series γð1Þeven is determined through three-loop order
by Eq. (11).
(ii) Intermediate Z. Consider a medium Z nucleus,

counting log2ðΛ=mÞ ∼ Z2 ∼ α−1. This is relevant for super-
allowed beta decays contributing to jVudj extraction, which
range from Z ¼ 6 (10C) to Z ¼ 37 (74Rb). Through
Oðα3=2Þ, the scale dependence is
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log

�
CðμLÞ
CðμHÞ

�
¼ γð1Þ0

2β0

��
log

aH
aL

þ Z2γð0Þ1

γð1Þ0

ðaH − aLÞ
�
þ
�
Zγð1Þ1

γð1Þ0

ðaH − aLÞ
�

þ
��

γð2Þ1

γð1Þ0

−
β1
β0

�
ðaH − aLÞ þ

�
Z2γð1Þ2

γð1Þ0

−
β1
β0

Z2γð0Þ1

γð1Þ0

�
1

2
ða2H − a2LÞ þ

Z4γð0Þ3

γð1Þ0

1

3
ða3H − a3LÞ

��
; ð16Þ

where aH;L ¼ αðμH;LÞ=ð4πÞ and the square brackets ac-
count for effects at order α1=2, α1, α3=2, etc.
Achieving permille precision demands proper treatment

of terms through resummed order α3=2. This result (16)
replaces (and disagrees with) logarithmically enhanced
contributions at order Z2α3 in the “heuristic estimate” of

Sirlin and Zucchini [78]. Using our new result for γð1Þ2 [42]
we compare to this heuristic estimate, and investigate the
convergence of perturbation theory in Fig. 1. Here we fix
μH and compute the product of jCðμLÞ=CðμHÞj2 and the
squared operator matrix element at μL, varying μL as an
estimate of perturbative uncertainty [79]. Normalizing to
the leading Fermi function (known analytically to all
orders) this quantity corresponds to the outer radia-
tive correction appearing in the beta decay literature
[cf. Eq. (11) of Supplemental Material [52] ]. We note that
Eq. (11) is in fact sufficient for a resummation of
CðμHÞ=CðμLÞ through Oðα2Þ, although for practical

applications one would also need currently unknown
operator matrix elements at OðZα2Þ [80].
(iii) Neutron beta decay. Neutron beta decay corresponds

to the case Z ¼ 0 (in our convention); we therefore define

γn−1 ≡ γðnÞn−1. Again counting log2ðΛ=mÞ ∼ α−1, the resum-
mation is [81]

log

�
CðμLÞ
CðμHÞ

�

¼ γ0
2β0

�
log

aH
aL

þ
�
γ1
γ0

−
β1
β0

�
ðaH − aLÞ

�
; ð17Þ

where the first term is of order α1=2, and the second term is
of order α3=2. The complete result, correct through order
α3=2, is obtained using (17) together with the one-loop low-
energy matrix element.
Even after resumming logarithms in the ratio of hadronic

and electron mass scales logðΛ=mÞ, large coefficients
remain in the perturbative expansion of the hard matrix
element. While the class of amplitudes summed in the
Fermi function are enhanced at small β and large Z, neither
limit holds for neutron beta decay [83]. The large coef-
ficients can instead be traced to an analytic continuation of
the decay amplitude from spacelike to timelike values of
momentum transfers. The enhancements are systematically
resummed by renormalization of the hard factorMH in the
factorization formula (3) from negative to positive values of
μ2S (cf. Refs. [84,85]), with the result [44]

jMHðμ2SþÞj2 ¼ exp

�
πα

β

�
jMHðμ2S−Þj2; ð18Þ

where μ2S� ¼ �4p2 − i0 andMHðμ2S−Þ is free of π enhance-
ments. This analysis systematically resums π-enhanced
contributions, and does not rely on a nonrelativistic
approximation.
Discussion.—At the outset of our discussion we posed

three questions, which are now answered. (1) The scale r−1

appearing in the Fermi function (1) is unambiguously
related to a conventional MS subtraction point, cf. Eq. (5).
(2) The Fermi function is identified as the leading-in-Z
contribution to the matrix element from the effective
Lagrangian (6). Other radiative corrections are systemati-
cally computed using the same Lagrangian. (3) Numerically
enhanced contributions in neutron beta decay arise from

10 20 30 40

1.034

1.035

1.036

1.037

1.038

FIG. 1. Radiative correction to the beta decay rate as a function
of nuclear charge, normalized to leading Fermi function. RC
denotes the outer radiative correction, 1þ δ0R, computed for fixed
electron energy, cf. Eq. (11) of Supplemental Material [52]. Red,
blue, and green curves show results correct through resummed
order α1=2, α and α3=2, respectively. The black curve represents
the central value for Sirlin’s heuristic estimate as implemented in
Ref. [21]. Illustrative values E ¼ 2 MeV, Em ¼ 5 MeV, Λ ¼
100 MeV are used for the electron energy, maximum electron
energy (which enters the one-loop matrix element [35]), and
renormalization scale μH ¼ Λ, respectively. The width of the
curves is given by varying me=2 < μL < 2Em. Analytic expres-
sions can be obtained using Eq. (16) [52].
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perturbative logarithms j log½ð−p2 − i0Þ=p2�j ¼ π, and can
be resummed to all orders. The result (18) differs from the
nonrelativistic Fermi function ansatz [37,69] beginning at
two-loop order.
Our EFTanalysis allows us to systematically resum large

perturbative logarithms and to incorporate corrections that
are suppressed by 1=Z or E=Λ. New results include the
following. (1) New coefficients in the expansion of the
anomalous dimension for beta decay operators. We have
computed the order Z2α3 coefficient for the first time [86],
and found a new symmetry linking leading-Z and sub-
leading-Z terms in the perturbative expansion. Using our
new result, and the existing heavy quark effective theory
literature, we show that the first unknown coefficient occurs
at four loops, at order Z2α4 [42]. (2) New results for the
large-Z asymptotics of QED radiative corrections to beta
decay. We supply the infinite series of terms of order
αðZαÞ2nþ1 logðΛ=EÞ, replacing Wilkinson’s ansatz [77],
and present a new result for the term of order
αðZαÞ2 logðΛ=EÞ, replacing Sirlin’s heuristic estimate
[38]. We provide the EFT matrix element to all orders in
Zα and clarify its relation to the historically employed
Fermi function [43]. (3) An all-orders resummation of
“π-enhanced” terms in neutron beta decay, replacing the
Fermi function ansatz. This substantially improves the
convergence of perturbation theory and is important for
modern applications to neutron beta decay [44].
Each of these results has important implications for

ongoing and near-term precision beta decay programs
[13,16,22,87–102]. Detailed computations are presented
elsewhere [42–44]. Related work on new eikonal identities
for charged current processes is presented in Ref. [64]. The
same formalism applies to any situation involving charged
leptons and nuclei, provided the lepton energy is small
compared to the inverse nuclear radius.
An immediate conclusion of our study is that the existing

estimate for OðZ2α3Þ corrections is incorrect. Focusing on
the dominant logarithmically enhanced terms, the coeffi-
cient “a” in Sirlin’s heuristic estimate [38,39] changes. For
the 9 transitions with smallest F t uncertainty (at or below
permille level), this leads to shifts ranging from 1.1 × 10−4

for 14O to 1.4 × 10−3 for 54Co [52], i.e., an order of
magnitude larger than the estimated uncertainty on the
outer radiative correction [21]. We observe that these shifts
are comparable in magnitude to the CKM discrepancy,
jVudj2 þ jVusj2 þ jVubj2 − 1 ¼ −0.0015ð6Þ [21], and with
a sign that goes in the direction of resolving the discrep-
ancy. Accounting for these strongly Z-dependent correc-
tions should also impact new physics constraints such as on
scalar currents beyond the standard model [21]. A complete
determination of the long-distance radiative corrections at
the 10−4 level will require revisiting the OðZα2Þ matrix
element in the pointlike EFT considered here; this work is
ongoing. Future work will address factorization at sub-
leading power and investigate the impact on phenomenol-
ogy including hadronic [12,40] and nuclear [15] matching
uncertainties.
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