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We propose a novel method to significantly enhance the signal rate in qubit-based dark matter detection
experiments with the help of quantum interference. Various quantum sensors possess ideal properties for
detecting wavelike dark matter, and qubits, commonly employed in quantum computers, are excellent
candidates for dark matter detectors. We demonstrate that, by designing an appropriate quantum circuit to
manipulate the qubits, the signal rate scales proportionally to n2q, with nq being the number of sensor qubits,
rather than linearly with nq. Consequently, in the dark matter detection with a substantial number of sensor
qubits, a significant increase in the signal rate can be expected. We provide a specific example of a quantum
circuit that achieves this enhancement by coherently combining the phase evolution in each individual
qubit due to its interaction with dark matter. We also demonstrate that the circuit is fault tolerant to
dephasing noises, a critical quantum noise source in quantum computers. The enhancement mechanism
proposed here is applicable to various modalities for quantum computers, provided that the quantum
operations relevant to enhancing the dark matter signal can be applied to these devices.
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Introduction.—Quantum devices, which rely on funda-
mental quantum properties, play pivotal roles in modern
physics. The advancements and applications of these
quantum devices remain essential for further progress in
our field. Presently, one major motivation for the develop-
ment of quantum devices is to realize quantum computers,
where quantum bits (qubits) are utilized for quantum
computations. Additionally, the remarkable sensitivity to
external fields, particularly, electric and magnetic fields of
certain quantum devices including qubits, makes them
invaluable as high-precision quantum sensors.
Such quantum sensors can be utilized even for the

detection of fields which have never been observed before
(for review, see Ref. [1]). Particularly, recent studies have
pointed out the potential use of quantum sensors, such as
the superconducting qubit, trapped electrons, and nitrogen
vacancy centers, in detecting a specific type of dark matter
(DM), referred to as “wavelike DM” [2–5] (see also
Refs. [6–8]). Although various cosmological and astro-
physical observations strongly suggest the presence of DM
in our universe, its particle physics properties remain
largely unknown. Detection of DM is an essential endeavor
for comprehending the history of the universe and for

advancing our understanding of physics beyond the stan-
dard model.
In a recent publication [2], we have argued that the

transmon qubit [9] has ideal properties for the detection of a
certain type of wavelike DM, such as hidden-photon DM.
The wavelike DM may induce the excitation of the qubit,
providing a distinct signal of the DM. It has been shown
that the search for the hidden photon DMwith the transmon
qubit can probe the parameter regions that have remained
unexplored. Quantum sensors introduce innovative avenues
for the DM detection.
To further improve the detection sensitivity, experiments

with a larger number of qubits offer a clear advantage. With
multiple qubits, one can independently observe the exci-
tation of each qubit. In such a procedure, the signal rate
(i.e., the probability of observing at least one qubit
excitation) is roughly proportional to the number of qubits
(denoted as nq), assuming that the excitation probability of
each qubit is much smaller than n−1q . Such a scaling is
however drastically changed with the quantum-enhanced
parameter estimation technique [10–12]. With a proper set
of quantum operations, the signal rate can become propor-
tional to n2q, which provides a significant improvement of
the sensitivity in the DM detection.
The purpose of this Letter is to demonstrate the protocol

to achieve such quantum enhancement. The key idea is to
coherently sum up the phase evolution inscribed by the DM
in each qubit, using a quantum circuit with a set of single-
or two-bit gate operations. The entanglement between a
large number of qubits plays a vital role. We provide an
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explicit example of quantum circuits and elucidate the core
concept behind the enhancement of the DM signal.
Notably, platforms hosting a large number of qubits and
such gate operations are already realized in the cutting-edge
noisy intermediate-scale quantum computer machines
based on superconducting transmon qubits [13,14] or
trapped ions [15], which are even on the way of scaling
up in terms of both quantity and quality. This implies that
the future or even the present quantum computer machine
may be ideal hardware for the DM detection experiment of
our proposal.
Throughout the Letter, we assume a system consisting of

an array of superconducting transmon qubits. However, the
enhancement protocol should apply also to the other qubit
modalities (e.g., ion trap, Rydberg atoms, etc.) if they can
be embedded into quantum circuits.
Qubit excitation by DM.—We start with discussing the

evolution of a single qubit under the influence of DM. We
denote the ground and excited states of the qubit as jgi and
jei, respectively, and the energy difference between the
ground and the excited states as ω. We consider the case
that the DM field is oscillating with the frequency equal to
its mass mX and that such an oscillating DM field results in
the following effective Hamiltonian of the qubit:

Ĥ ¼ ωjeihej − 2η cosðmXt − αÞðjeihgj þ jgihejÞ: ð1Þ

Here, η is a constant and α is a phase parameter in
association with the DM oscillation. As discussed in
Ref. [2] in detail, for the DM search with a transmon
qubit, an important example is the hidden photon DM. The
hidden photon DM induces an effective ac electric field via
its kinetic mixing with the ordinary photon, which results in
the effective Hamiltonian given in Eq. (1). Denoting the
kinetic mixing parameter as ϵ, the η parameter for the case
of the hidden photon DM is given by

η ¼ 1

2
ϵκd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CωρDM

p
cosΘ: ð2Þ

Here, d and C are parameters characterizing the transmon
qubit; d is the effective distance between two conductor
plates while C is the capacitance of the conductor. In
addition, κ is the “package coefficient,” parameterizing the
effect of the cavity surrounding the qubit, ρDM is the energy
density of the DM, and Θ is the angle between the hidden
photon polarization and the normal axis of the capacitor
plate of the transmom qubit. The value of Θ is expected to
be approximately constant within the coherence timescale
of DM, and an average cos2Θ → 1=3 should be taken for
the numerical estimation due to its randomness.
The DM oscillation can induce the excitation process

jgi → jei. Thus, the DM search can be performed by
observing such an excitation. For the DM search, the case
of ω ¼ mX, i.e., the resonant limit, is of particular impor-
tance because the excitation rate is resonantly enhanced in

such a limit. In the following, we concentrate on the
resonant limit. Denote the single qubit as

jψðtÞi ¼ ψgðtÞjgi þ e−iωtψeðtÞjei; ð3Þ
which evolves as iðd=dtÞjψðtÞi ¼ ĤjψðtÞi. For the time
interval of 0 ≤ t ≤ τ, where τ is the coherence time of the
system and is the longest time interval during which the
coherence of the system is maintained, the state experiences
the unitary evolution as�

ψgðτÞ
ψeðτÞ

�
¼ UDM

�
ψgð0Þ
ψeð0Þ

�
: ð4Þ

With the rotation wave approximation, we can obtain

UDM ≃
�

cos δ ie−iα sin δ

ieiα sin δ cos δ

�
; ð5Þ

with

δ≡ ητ: ð6Þ
The eigenvalues of the unitary operator UDM are given by
e�iδ, for which the eigenstates are jψ�i≡ ð1= ffiffiffi

2
p Þðjgi�

eiαjeiÞ. Note that, although we assume this particular form
ofUDM in this Letter, our result can be easily generalized to
arbitrary interaction between a qubit and the DM. For
convenience, we simply included evolution factor e−iωt in
the definition of excited state jei, which also apply hereafter.
In the DM search with transmon qubits, a simple

procedure to detect a DM signal is to observe the excitation
of the qubit due to the DM oscillation. Taking the ini-
tial condition of jψð0Þi ¼ jgi, the excitation probability
from the ground state to the excited state is given by
jhejψðτÞij2 ≃ sin2δ ≃ δ2, where, in the last equality, we
have assumed that δ ≪ 1. If there is no noise nor read-out
error, observation of the excitation of the qubit is a striking
signal of the DM coupled to the qubit. The process of the
DM search proposed in Ref. [2] is as follows. Assuming nq
qubits are available, all the qubits are set to the ground state,
are left for evolution for time interval t ¼ τ, and are read
out to find the DM signal; such a cycle of the reset,
evolution, and readout processes is repeated as many times
as possible to enhance the sensitivity. Then, the search is
repeated for different qubit frequencies.
In order to enhance the sensitivity, it is better to have a

large number of sensor qubits. In the above-mentioned
procedure, the number of signals scales as ∝ nq, assuming
that each qubit is individually readout; the probability
to observe at least one excited qubit after each cycle is
given by

Pðindiv: readoutÞ
g→e ≃ nqδ2; ð7Þ

where nqδ2 ≪ 1 is assumed.
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Quantum circuit.—Now, we discuss how the signal rate
can be significantly enhanced when nq ≫ 1. We consider a
quantum circuit consisting of nq sensor qubits which
interact with DM oscillation. The state can be expressed
by a linear combination of states of the following form:

jΨi ¼ jψ1i ⊗ jψ2i ⊗ � � � ⊗ jψnqi; ð8Þ

where jψ ii denotes the state of ith qubit. The frequencies of
the sensor qubits are assumed to be all equal. In our
discussion, we consider the case that qubits used for the
DM detection can be initialized, measured, and evolved
through standard gates like the Hadamard gate and CNOT
gate. (See Appendix A for the gate operations used in our
analysis.)
An example of quantum circuits for detecting the DM

signal is shown in Fig. 1. This is a quantum circuit for
quantum-enhanced parameter estimation [10–12]. Our
circuit consists of only one-dimensional nearest neighbor
interaction between qubits with OðnqÞ gates. We assume
that t1 − ti ∼ tf − t2 ≪ t2 − t1, so that the effect of DM is
mainly in time interval t1 ≤ t ≤ t2. We also assume that the
coherence time of the qubits is long enough, so that
the coherence time of the system, τ, is determined by
the coherence of the DM and does not scale with n−1q . We
expect that the coherence time of the qubit system longer
than that of DM is achievable in future quantum computer
platforms with sizable nq. The entangled qubit system is
usually more fragile than the individual nonentangled ones
and the coherence time of the entangled state may be
∼τq=nq, where τq is the coherence time of a single qubit
[16]. Even in such a case, the following discussion holds as
far as nq ≲ τq=τDM (with τDM being the coherence time of
the DM).
In order to understand the enhancement mechanism of

the signal, it is instructive to consider the case that α ¼ 0.

For α ¼ 0, the eigenstates of UDM are jþi and j−i,
satisfying UDMj�i ¼ e�iδj�i, where

j�i≡ 1ffiffiffi
2

p ðjgi � jeiÞ: ð9Þ

Thus, considering the states with nq qubits, j�i⊗nq , they

evolve as j�i⊗nq → U
⊗nq
DM j�i⊗nq ¼ e�inqδj�i⊗nq ; the phases

from nq qubits coherently add up. Our quantum circuit
measures this phase as the relative phase between jþi⊗nq

and j−i⊗nq by using the superposition of these states.
With the circuit, the state evolves as follows. First, all the

qubits are prepared in the ground state at t ¼ ti. At t ¼ t1,
the state of sensor qubits is given by

jΨðt1Þi ¼
1ffiffiffi
2

p �jþi⊗nq þ j−i⊗nq
�
: ð10Þ

With the effect of the DM, the state at t ¼ t2 becomes

jΨðt2Þi ¼
1ffiffiffi
2

p �
einqδjþi⊗nq þ e−inqδj−i⊗nq

�
: ð11Þ

The quantum operation from t ¼ t2 to tf brings the phase
information to the first qubit:

jΨðtfÞi¼
1ffiffiffi
2

p ðeinqδjþiþe−inqδj−iÞ⊗ jþi⊗ðnq−1Þ

¼ ½cosðnqδÞjgiþ isinðnqδÞjei�⊗ jþi⊗ðnq−1Þ: ð12Þ

The probability to observe the excitation of the first qubit is

Pðα¼0Þ
g→e ¼ sin2ðnqδÞ ≃ n2qδ2; ð13Þ

where, in the last equality, we have used nqδ ≪ 1. Notably,
the probability is proportional to n2q, indicating a possible

FIG. 1. Quantum circuit for the DM detection. The gate with H represents the Hadamard gate, while that with “•” and “⊕” connected

by the line is the CNOT gate (where “•” is the control qubit). The UDM represents the evolution with the effect of DM.
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enhancement of the signal using the quantum properties of
the qubits.
We can use our circuit even in actual situations where α

is unknown. Concentrating on the case that δ ≪ 1, we may
expand the evolution operator for nq qubits as

U
⊗nq
DM ≃ 1þ iδ

Xnq
i¼1

ðXi cos αþ Yi sin αÞ þOðδ2Þ; ð14Þ

where the summation is over the operators acting on all the
qubits. For any i, the following relation holds:

Xij�i⊗nq ¼ �j�i⊗nq ; ð15Þ

with which we obtain

jΨðt2Þi ≃
1ffiffiffi
2

p ð1þ inqδ cos αÞjþi⊗nq

þ 1ffiffiffi
2

p ð1 − inqδ cos αÞj−i⊗nq þ � � � ; ð16Þ

where terms irrelevant to our discussion are neglected. The
relevant part of Eq. (16) is obtained from Eq. (11) with
replacing δ → δ cos α; the excitation probability of the first
qubit is found to be

Pðα∶ unknownÞ
g→e ≃ n2qδ2cos2αþOðnqδ2Þ: ð17Þ

In the proposed DM detection experiment [2], the cycle of
the reset, evolution, and readout processes is repeated many
times. At each cycle, α, the phase of the DM oscillation, is
unknown and can be regarded as random. We can thus take
the average over α; for nq ≫ 1, the excitation probability is

Pg→e ≃
1

2
n2qδ2: ð18Þ

One can see that Pg→e vanishes for the case without the DM
(i.e., δ ¼ 0). Thus, the detection of the excitation of the first
qubit can be regarded as a signal of the DM. More
importantly, the signal rate is proportional to n2q as opposed
to nq thanks to the coherent phase evolution of the
entangled state.
Lastly, we make a few comments about our quantum

circuit. First, our circuit requires OðnqÞ steps to prepare the
initial state, Eq. (10). However, with additional qubits, we
may prepare the initial state with Oð1Þ steps. The detail is
discussed in Appendix B and C. Second, the quantum
circuit between t2 ≤ t ≤ tf can be regarded as the parity
measurement of jΨðt2Þi, where the parity P≡Qi Zi is the
product of the Z operator of each qubit. (Notice that, under

the parity operation, jþi⊗nq↔
P j−i⊗nq .)

Effect of noises.—Next, we evaluate the tolerance to
noises in our quantum circuit. The quantum noises can be

associated with either the gate operations or the evolution
and may result in dark counts. Thermal noise may also
mimic the signal. When the noise rate is low enough, the
number of dark counts is expected to scale linearly with the
number of qubits and gate operations in the circuit, i.e.,
OðnqÞ, where the impact of the dark counts on the signal-
to-noise ratio is subdued with a sufficiently large nq. The
assumption is not always trivial when a large number of
qubits are involved in an entangled state since it is generally
more susceptible to decoherence through dephasing errors.
In the following discussion, however, we find that our
sensor qubits are robust against dephasing errors, while
other errors such as deexcitation or bit-flip remain
inevitable.
We first consider the case without UDM to study what

type of noises mimic the signals, yielding dark counts.
Noises during t1 < t < t2 are analyzed with a given state
Eq. (10) at t ¼ t1. As discussed in Appendix B, noises are
described as a set of Kraus operators fEkg, where k
indicates the type of operators; an initial pure state jψi
is mapped onto a classical mixture of states fEkjψig, where
we ignore normalization factors in this section for sim-
plicity. Assuming the noise influences each qubit inde-
pendently, Ek is an operator on a single qubit space. In the
following, we focus on noises described by a single Kraus
operator E.
First, we consider E ¼ Xi, which corresponds to a bit-

flip noise. With this error, the state at t ¼ t2 becomes

XijΨðt1Þi ¼
1ffiffiffi
2

p �jþi⊗nq − j−i⊗nq
�
; ð19Þ

which is indistinguishable from the real excitation signals
by the DM. The state at t ¼ tf is therefore

jΨðtfÞi ¼ jei ⊗ jþi⊗ðnq−1Þ; ð20Þ
faking the signals with the first qubit being excited. Note
that the quantum error correction algorithms do not
ameliorate this problem since the error and the signal
are reduced to the same state. Similarly, errors involving Xi
or Yi, such as deexcitation channel, E ¼ Xi þ iYi, mimic
the DM signal and cannot be corrected. The result is not
surprising because these errors matter even when the
entanglement of qubits is not used [2].
Next, we consider E ¼ Zi. This corresponds to the

dephasing noise. The state at t ¼ t2 is

ZijΨðt1Þi ¼
1ffiffiffi
2

p �jþi⊗ði−1Þ ⊗ j−i ⊗ jþi⊗ðnq−iÞ

þj−i⊗ði−1Þ ⊗ jþi ⊗ j−i⊗ðnq−iÞ�; ð21Þ
where ith qubit is transformed as j�i → j ∓i, resulting in

jΨðtfÞi ¼ jgi ⊗ �jþi⊗ði−2Þ ⊗ j−i ⊗ jþi⊗ðnq−iÞ�: ð22Þ
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One finds the first qubit remains in the ground state,
indicating that the error Zi does not induce the dark counts.
The discussion almost applies in the same way when

UDM is taken into account. We elaborate on the dephasing
channel which is nontrivial among noises given above. For
simplicity, let us assume α ¼ 0 and that only one shot of
error E ¼ Zi occurs at t ¼ t0 ∈ ½t1; t2�. The state at t ¼ t2 is

jΨðt2Þi ¼
1ffiffiffi
2

p �
einqδ

0 jþi⊗ði−1Þ ⊗ j−i ⊗ jþi⊗ðnq−iÞ

þe−inqδ
0 j−i⊗ði−1Þ ⊗ jþi ⊗ j−i⊗ðnq−iÞ�; ð23Þ

where nqδ0 ≡ nqητ0 þ ðnq − 2Þηðτ − τ0Þ and τ0 ¼ t0 − t1.
While the signal rate is penalized according to the number
of qubits affected by the dephasing noise, it is remarkable
that it does not break the multibit coherence, and that the
Oðn2qÞ excitation probability is still maintained. This
dephasing error insensitivity can be understood by seeing
this quantum circuit as an error correction code, the details
of which we elaborated in Appendix C. There, we also
show that we can even identify and correct dephasing
errors, which is helpful when a large number of qubits are
affected by the error during t1 ≤ t ≤ t2.
Conclusions and discussion.—We present a signal

enhancement method for the DM detection experiment
using qubits proposed in our earlier work [2]. Employing a
tailored kernel of a quantum circuit, the signal rate can be
made proportional to n2q as opposed to nq, reflecting the
nature of quantum interference. We have provided a
specific example of the circuit (see Fig. 1) that realizes
such an enhancement. The circuit is feasible with the
architecture of a one-dimensional chain of qubits, and
found to be fault tolerant against the dephasing noise.
One of the promising candidate platforms to host such an

experiment is the superconducting quantum computer with
an array of transmon qubits, as discussed in Ref. [2]. While
it allows probing the unexplored parameter region of
hidden photon DM even without the proposed quantum
enhancement, a significant improvement is expected with
the enhancement. With the current best superconducting
qubit technology, a longitudinal coherence time of τq ∼
1 ms and a two-qubit gate error rate of ∼0.5% are achieved.
Given that the coherence time of the entangled nq-qubit
system scales as ∼τq=nq and that the DM coherence time is
τDM ∼ 0.1 ms for the case of our interest, we may use nq ∼
10 entangled qubits with satisfying τDM ≲ τq=nq. The two-
qubit gate error rate defines the level of dark count.
Assuming nq ¼ 10, a two-qubit gate error rate of 0.5%,
and other circuit parameters adopted in Ref. [2], ϵ down to
Oð10−13Þ can be probed with the proposed entanglement
scheme. To go further, improvements are required in the
coherence time of the qubits and also in gate fidelities
(particularly for two-qubit gates like CNOT). The require-
ments above are shared with the future fault-tolerant

quantum computers (FTQCs), and hence we expect that
the technical challenges will be significantly lowered on the
way towards FTQCs being realized. Assuming that τq ¼
10 ms and a two-qubit gate error rate of 0.1% can be
realized, the sensitivity reaches ϵ down to Oð10−14Þ using
nq ∼ 100. These specifications can be further improved,
and the gain is open ended.
Towards the practical implementation, one challenge

may be that the qubit frequencies have to be aligned to the
DM mass within their intrinsic widths, and be able to scan
over multiple-GHz range. Since this is a highly anomalous
configuration for quantum computers to operate, it is not
likely possible to experiment in a parasitic manner during
normal operation. However, with a frequency tunable
computer (e.g., Google Sycamore [14]) the frequency
alignment and the scan are technically feasible.
The other consideration involves the package coefficient

κ in Eq. (2). In conventional superconducting quantum
computers, the quantum processor chips are typically
covered with a hermetic metal shield to minimize qubits’
spontaneous radiation as well as the external radiation
noises, which can greatly suppress κ below 1.
Quantum computers using other modalities, especially

trapped ions and Rydberg atoms, can potentially circum-
vent these issues. Although their coupling with photons is
generally weaker than that of superconducting qubits, they
are advantageous in that the frequency alignment is ensured
by nature, and that they are free from the shielding issue.
The better frequency alignment also allows us to entangle a
larger number of qubits using the proposed quantum
enhancement, which can compensate for the disadvantage
in the signal rate due to the weaker coupling. These factors
enable the potential of the DM detection experiment to be
performed on the same hardware as the current or future
quantum computer machines.
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Appendix A: Notation.—The following are definitions
adopted for gates that appeared in this Letter.
Hadamard gate H:

� jgi
jei

�
⟶
H 1ffiffiffi

2
p
�
1 1

1 −1

�� jgi
jei

�
: ðA1Þ

X, Y, and Z gates:
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� jgi
jei

�
⟶
X;Y;Z

σX;Y;Z

� jgi
jei

�
; ðA2Þ

where σX, σY , and σZ are Pauli’s σ matrices. X, Y, and Z are
also used for operators acting on qubits.
Controlled NOT gate (CNOT):

0
BBBB@
jgi⊗ jgi
jgi⊗ jei
jei⊗ jgi
jei⊗ jei

1
CCCCA⟶

CNOT

0
BBBB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCCCA

0
BBBB@

jgi⊗ jgi
jgi⊗ jei
jei⊗ jgi
jei⊗ jei

1
CCCCA; ðA3Þ

where the first qubit is the control qubit and the second is
the target qubit.
For more details about quantum gates and quantum

circuits, see, for example, Ref. [17].

Appendix B: Quantum operation and quantum
noise.—We review the basics of quantum operation and
how quantum noises are taken into account as quantum
operations. Good reviews are found in Refs. [17,18].
A state in quantum mechanics can be described by a

density matrix operator, ρ. Any evolution of the state is
described by an operation called the quantum operation, E;
a quantum state ρ is mapped into EðρÞ. Elementary
examples of E include unitary evolution and measurements.
As the mapped operator EðρÞ is also a density matrix, E
must satisfy three conditions. First, it must conserve the
trace. Second, the map of a classical mixture of density
matrices ρi with probability pi must be equal to a classical
superposition of the mapped density matrices EðρiÞ with
probability pi. Lastly, the eigenvalues of the mapped
operator EðρÞ must be positive; in addition, if we introduce
an additional system R and perform a composed quantum
operation IR ⊗ E, where IR is the identity operation in R,
on a density matrix ρ of the composed system, the
eigenvalues of ðIR ⊗ EÞðρÞ must also be positive.
With these conditions, it is known that any quantum

operation can be written as the operator sum representation;
any E can be written as

EðρÞ ¼
X
k

EkρE
†
k; ðB1Þ

where operators fEkg are called the Kraus operators. The
set of Kraus operators conserves the trace of density
matrices; X

k

E†
kEk ¼ 1: ðB2Þ

Unitary evolution and measurements have the operator sum
representation. Note that the operator sum representation is
not unique, as Fi ¼ UijEj, where U is a unitary matrix,
describes the same map on density matrices.

Let us get an insight into the physical meaning of the
quantum operation and Kraus operators. Without loss of
generality, we may start with a pure state, ρ ¼ jψihψ j for
some state jψi, asmixed states are a classicalmixture of pure
states. After a quantum operation E, the state is mapped toP

Ekjψihψ jE†
k. The state is understood as a classical

mixture of states fEkjψi=jEkjψijg with probabilities
fjEkjψij2g. Thus, we can interpret that a quantum operation
E maps a state ρ into a state ρk ≡ EkρE

†
k=TrðEkρE

†
kÞ with a

probability TrðEkρE
†
kÞ.

As any map on a density matrix can be written using a
quantum operation, quantum noises on a qubit are also
written as quantum operations. In general, any Kraus
operator on one qubit can be expanded in I, X, Y, and
Z, where I is the identity operator:

Ek ¼ ckI I þ ckXX þ ckYY þ ckZZ: ðB3Þ

Among various errors on one qubit, the deexcitation and
dephasing channels are of particular importance; the sets of
Kraus operators of the deexcitation and dephasing are

EA
0 ¼

�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pA

p
�
¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−pA
p
2

Iþ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pA

p
2

Z;

ðB4Þ

EA
1 ¼

�
0

ffiffiffiffiffiffi
pA

p
0 0

�
¼

ffiffiffiffiffiffi
pA

p
2

X þ i
ffiffiffiffiffiffi
pA

p
2

Y; ðB5Þ

and

EP0
0 ¼

�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pP0

p
�
; ðB6Þ

EP0
1 ¼

�
0 0

0
ffiffiffiffiffiffiffi
pP0

p
�
; ðB7Þ

respectively, where pA and pP0 governs the damping
probability of the amplitude and phase, respectively, and
satisfy 0 ≤ pA, pP0 ≤ 1. By the unitary transformation
described above, the Kraus operators of the phase damping
can be rewritten as

EP
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pP

p
I; ðB8Þ

EP
1 ¼ ffiffiffiffiffiffi

pP
p

Z; ðB9Þ

with the relation pP ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pP0

p Þ=2. Therefore, the
channel is also called the phase flip channel.

Appendix C: Error correction.—We describe that our
circuit can be regarded as an error correction code,
illustrating why the enhanced signal is protected by
dephasing errors. First, let us suppose that α ¼ 0. The
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states evolve in the Hilbert subspace spanned by
fjþi⊗nq ; j−i⊗nqg, and this is invariant under the group
of operations of S ¼ fX1X2; X2X3;…; Xnq−1Xnqg. Such a
subspace corresponds to a stabilizer code with the
generating set S and can also be regarded as one column
of surface code [19–21]. This implies that we can even
identify and correct dephasing errors without breaking
the coherence, which is helpful when a large number of
qubits are affected by the error during t1 ≤ t ≤ t2. To
identify the errors, we repeatedly measure the
eigenvalues of “error syndrome operators” fXiXiþ1g
during t1 ≤ t ≤ t2, and examine the change of outcomes
between each cycle of measurements. The measurement

of XiXiþ1 can be performed with an ancilla qubit using,
e.g., the circuit shown in Fig. 2. All the syndrome
operators return þ1 without the dephasing error, while
two syndromes, Xi−1Xi and XiXiþ1, return −1 in case of
a single E ¼ Zi being in action. Subsequently, we
recover the state by applying Z gates accordingly. (We
assume that the gate and measurement errors are
negligible).
In reality, due to the effect of the DM with unknown

phase α, the state is not completely confined within the
subspace fjþi⊗nq ; j−i⊗nqg even without the Zi error, i.e.,
the state is not an eigenstate of the syndrome operators.
However, the coherence within the subspace
fjþi⊗nq ; j−i⊗nqg is maintained and Eq. (17) still holds
even with the error correction.
Finally, we comment that, with syndrome measurement

and subsequent feedback, we can prepare the state at t ¼ t1,
Eq. (10), in Oð1Þ steps of gate operations. This can be seen
as follows. For simplicity, let us assume that nq is odd.
Suppose that initially all qubits are prepared in the ground
state. Using jgi ¼ ð1= ffiffiffi

2
p Þðjþi þ j−iÞ, as well as Zjþi ¼

j−i and Z2 ¼ 1, we can rewrite the state as

jgi⊗nq ¼
�

1ffiffiffi
2

p
�

nq X
fqi¼0;1g

Zq1
1 Zq2

2 …Z
qnq
nq jþi⊗nq

¼
�

1ffiffiffi
2

p
�ðnq−1Þ

2
64 XP

i
qi<nq=2

fqi¼0;1g
Zq1
1 Zq2

2 …Z
qnq
nq

 
jþi⊗nq þ Z1Z2…Znq jþi⊗nqffiffiffi

2
p

!375

¼
�

1ffiffiffi
2

p
�ðnq−1Þ

2
64 XP

i
qi<nq=2

fqi¼0;1g
Zq1
1 Zq2

2 …Z
qnq
nq

 
jþi⊗nq þ j−i⊗nqffiffiffi

2
p

!375: ðC1Þ

Notice that all syndrome operators return þ1 for
ð1= ffiffiffi

2
p Þðjþi⊗nq þ j−i⊗nqÞ and that XiXiþ1 anticommutes

with Zi and Ziþ1. Thus, all states in the linear combination
in the last line of Eq. (C1) are distinguished by the
eigenvalues of the syndrome operators. This implies that,
with the syndrome measurement, the state collapses into
one of the states in the following form:

Zq1
1 Zq2

2 …Z
qnq
nq

�jþi⊗nq þ j−i⊗nqffiffiffi
2

p
�
; ðC2Þ

of which the value of all qi is known by the measurement
outcome. By applying Z gates accordingly we can prepare
the desired state at t ¼ t1, Eq. (10). The argument applies
similarly when nq is even.
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